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Preface

1 Specification Languages

By a specification language we understand a formal system of syntax, se-
mantics and proof rules. The syntax and semantics define a language; the
proof rules a proof system. Specifications are expressions in the language —
and reasoning over properties of these specifications is done within the proof
system.

This book [2] will present nine of the current specification languages (ASM
[40], B [5], CafeOBJ [8], CASL [33], Duration Calculus [14], RAISE (RSL) [12],
TLA+ [32], VDM (VDM-SL) [11] and Z [22]) and their logics of reasoning.

1.1 Specifications

Using a specification language we can formally describe a domain, some uni-
verse of discourse “out there, in reality”, or we can prescribe requirements to
computing systems that support activities of the domain; or we can specify
designs of computing systems (i.e., machines: hardware + software).

A specification has a meaning. Meanings can be expressed in a property-
oriented style, as in ASM, CafeOBJ, CASL and Duration Calculus, or can
be expressed in a model-oriented style, as in B, RAISE/RSL, TLA, VDM or
Z. RAISE/RSL provides a means for “slanting” a specification either way, or
some “compromise” in-between. In the property-oriented style specifications
emphasise properties of entities and functions. In the model-oriented style
specifications emphasise mathematical values like sets, Cartesians, sequences,
and maps and functions over these. (The above “compartmentalisation” is a
very rough one. The nine language chapters of this book will provide more
definitive delineations.)

Descriptions

Descriptions specify an area of, say, human activity, a domain, as it is, with
no reference to requirements to computing systems that support activities
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of the domain. Usually the domain is “loose”, entities, functions, events and
behaviours of the domain are not fully understood and hence need be loosely
described, that is, allow for multiple interpretations. Or phenomena of the
domain are non-deterministic: the value of an entity, the outcome of a function
application (i.e., an action), the elaboration of an event, or the course of a
behaviour is not unique: could be any one of several. We take behaviours to
be sets of sequences of actions and events — or of behaviours, that is multiple,
possibly intertwined behaviours.

Hence we find that some specification languages allow for expressions
of looseness, underspecification, non-determinism and/or concurrency. Since
phenomena of domains are usually not computable the specification language
must allow for the expression of non-computable properties, values and func-
tions.

Prescriptions

Prescriptions are also specifications, but now of computable properties, values,
functions and behaviours. Prescriptions express requirements to a computing
system, i.e., a machine, that is to support activities (phenomena: entities,
functions, events and behaviours) of a domain. Thus prescription languages
usually emphasise computability, but not necessarily efficiency of computa-
tions or of representation of entities (i.e., data).

Designs

On the basis of a requirements prescription one can develop the design of
a computing system. The computing system design is likewise expressed in a
specification language and specifies a machine: the hardware and software that
supposedly implement the requirements and support desired activities of the
domain. The machine, once implemented, resides in the (previously described)
domain and constitutes with that prior domain a new domain. (Usually we
think of requirements being implemented in software on given hardware. We
shall, accordingly, just use the term software design where computing systems
is the more general term.)

1.2 Reasoning

In describing domains, in prescribing requirements and in designing software
we may need to argue that the specification possess certain not immediately
obvious (i.e., not explicitly expressed) properties. And in relating requirements
prescriptions to the “background” domain, and in relating software designs to
the “background” requirements and domain, one may need to argue that the
requirements prescription stands in a certain relation to a domain description
or that the software design is correct with respect to “its” requirements under
the assumptions expressed by a domain description.

VIII
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For this we need resort to the proof system of the specification language
— as well as to other means. We consider in this prelude three such means.

Verification

Verification, in general terms, is a wide and inclusive term covering all ap-
proaches which have the aim of establishing that a system meets certain prop-
erties. Even a simple test case demonstrates a, perhaps limited, fact: that in
this case (though maybe no others) a given system achieves (or does not) a
desirable outcome.

More specifically and usually, we use the term verification for more elab-
orate and systematic mathematical techniques for establishing that systems
possess certain properties. Here, the system might be a more-or-less abstract
description (a specification) or a concrete realisation in hardware or software.
The properties may be specific emergent properties of abstract specifications;
they include general statements of, say, liveness, safety and/or termination;
and they cover the correctness of realisations or implementations of given sys-
tem specifications. In all the cases of interest to us, the system description
and the properties to be determined will be couched in a precise formal math-
ematical language. As a consequence, the results of such a verification will be
correspondingly precise and formal.

There are three forms of formal verification that are relevant to the ma-
terial covered in this book and that are, therefore, worth describing in just a
little more detail.

Inferential Verification

This approach is often simply referred to as verification despite the fact that
other approaches, such as model checking, are also such methods. Here, we
have at our disposal logical principles, a logic or proof system, which correctly
captures the framework within which the system is described. This framework
might be a programming or specification language with a semantics which lays
down, normatively, its meaning. The logical principles will (at the very least)
be sound with respect to that semantics; thus ensuring that any conclusions
drawn will be correct judgements of the language in question.

The logical principles, or fully-fledged logic, will provide means that are
appropriate for reasoning about the techniques and mechanisms that are avail-
able in the language of description. For example, many frameworks provide a
means for describing recursive systems, and appropriate induction principles
are then available for reasoning about such systems.

Inference-based methods of verification allow us to make and support gen-
eral claims about a system. These may demonstrate that an implementation
is always guaranteed to meet its specification; that it always possesses certain
characteristic properties (for example, that it is deadlock-free or maybe that it
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terminates); or that an abstract specification will always possess certain im-
plicit properties (which will, in turn, be inherited properties of any (correct)
implementation).

Model Checking

This approach to verification (see, for example, [6]) aims to automatically
establish (or provide a counterexample for) a property by direct inspection of
a model of the system in question. The model may be represented (explicitly
or implicitly) by a directed graph whose nodes are states and whose edges
are legitimate state transitions; properties may be expressed in some form of
temporal logic.

Two key issues are finiteness and the potential combinatorial explosion
of the state space. Many techniques have been developed to minimise the
search. In many cases it is not necessary to build the state graph but sim-
ply to represent it symbolically, for example by propositional formulae, and
then, using techniques such as SAT-solvers, to mimic the graph search. Par-
tial order reductions, which remove redundancies (in explicit graphs) arising
from independent interleavings of concurrent events can also be employed to
significantly reduce the size of the search space. It is also possible to simplify
the system, through abstraction, and to investigate the simpler model as a
surrogate for the original system. This, of course, requires that the original
and abstracted systems are related (by refinement) and that the abstracted
system is at least sound (if not complete) with respect to the original: that
properties true of the abstracted system are also true of the original, even if
the abstracted system does not capture all properties of the original.

Model checking has been a spectacularly successful technology by any
measure; the model checker SPIN [23], for example, detected several crucial
errors in the controller for a spacecraft [21]. Other important model checkers
are SMV [31] and FDR, based on the standard failures-divergencies model of
CSP [42].

Formal Testing

Dijkstra, in his ACM Turing Lecture in 1972, famously said: “... program test-
ing can be a very effective way to show the presence of bugs, but is hopelessly
inadequate for showing their absence” [9]. A correct contrast between informal
testing (which might demonstrate a flaw in a system) and a formal verifica-
tion (which might make a general correctness claim) was established by this
remark. More recently, however, it has become clear that there is something
to be gained by combining variations on the general theme of testing with
formal specifications and verifications. Indeed, the failure of a formal test is
a counterexample, which is as standard a mathematical result as could be
wished for (and potentially as valuable too); the problem is that when testing
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without a theoretical basis (informal testing), it is often simply unclear what
conclusion can and should be drawn from such a methodology.

A portfolio approach, in which a variety of verification methods are used,
brings benefits. In the case of formal testing, there is an interplay between
test (creation, application and analysis) and system specification: a formal
description of a system is an excellent basis for the generation (possibly auto-
matically) of test cases which, themselves, have precise properties regarding
coverage, correctness and so on. In addition, the creation of adequate test
suites is expensive and time-consuming, not to say repetitious if requirements
and specifications evolve; exploiting the precision implicit in formal specifi-
cation to aid the creation of test suites is a major benefit of formal testing
technologies.

1.3 Integration of Specification Languages

Domains, requirements or software being described, prescribed or designed,
respectively, usually possess properties that cannot be suitably specified in
one language only. Typically a variety, a composition, a “mix” of specifi-
cation notations need be deployed. In addition to, for example, either of
ASM, B, CafeOBJ, CASL, RAISE/RSL, VDM or Z, the specifier may resort
to additionally using one or more (sometimes diagrammatic) notations such
as Petri nets [27, 35, 37–39], message sequence charts [24–26], live sequence
charts [7, 19, 28], statecharts [15–18, 20], and/or some textual notations such
as temporal logics (Duration Calculus, TLA+, or LTL — for linear temporal
logic [10, 29, 30, 34, 36]).

Using two or more notations, that is, two or more semantics, requires their
integration: that an identifier a in one specification (expressed in one language)
and “the same” identifier (a) in another specification (in another language)
can be semantically related (i.e., that there is a ‘satisfaction relation’).

This issue of integrating formal tools and techniques is currently receiving
high attention as witnessed by many papers and a series of conferences: [1,3,
4, 13, 41]. The present book will basically not cover integration.1

2 Structure of Book

The book is structured as follows: In the main part, Part II, we introduce,
in alphabetic order, nine chapters on ASM, event-B, CafeOBJ, CASL, DC,
RAISE, TLA+, VDM and Z. Each chapter is freestanding: It has its own list of
references and its own pair of symbol and concept indexes. Part III introduces
just one chapter, Review, in which eight “originators” of respective specifica-
tion languages will comment briefly on the chapter on “that language”.

1 TLA+ can be said to be an integration of a temporal logic of actions, TLA,
with set-theoretical specification. The RAISE specification language has been
“integrated” with both Duration Calculus and concrete timing.
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An Overview

Dines Bjørner and Martin C. Henson

1 Department of Informatics and Mathematical Modelling, Technical University of
Denmark, DK-2800 Kgs. Lyngby, Denmark (bjorner@gmail.com)

2 Department of Computer Science, University of Essex, Wivenhoe Park,
Colchester, Essex CO4 3SQ, UK (hensm@essex.ac.uk)

Before going into the topic of formal specification languages let us first survey
the chain of events that led to this book as well as the notions of the specific
specification languages and their logics.

1 The Book History

Four phases characterise the work that lead to this book.

1.1 CoLogNET

CoLogNET was a European (EU) Network of Excellence. It was funded by
FET, the Future and Emerging Technologies arm of the EU IST Programme,
FET-Open scheme. The network was dedicated to furthering computational
logic as an academic discipline.

We refer to http://newsletter.colognet.org/.
One of the editors (DB) was involved in the CoLogNET effort. One of his

obligations was to propagate awareness of the logics of formal specification
languages.

1.2 CAI: Computing and Informatics

One of the editors of this book (DB) was also, for many years, an ed-
itor of CAI, the Slovak Academy journal on Computing and Informatics
(http://www.cai.sk/). The chief editors kindly asked DB to edit a special
issue. It was therefore quite reasonable to select the topic of the logics of for-
mal (methods’) specification languages and to invite a number of people to
author papers for the CAI.

The result was a double issue of CAI:
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CAI, Volume 22, 2003, No. 3

� The Expressive Power of Abstract State Machines

W. Reisig [7]
Abstract: Conventional computation models assume symbolic represen-
tations of states and actions. Gurevich’s “Abstract State Machine” model
takes a more liberal position: Any mathematical structure may serve as a
state. This results in “a computational model that is more powerful and
more universal than standard computation models”.
We characterize the Abstract State Machine model as a special class of
transition systems that widely extends the class of “computable” transition
systems. This characterization is based on a fundamental Theorem of Y.
Gurevich.

� Foundations of the B Method

D. Cansell, D. Méry [1]
Abstract: B is a method for specifying, designing and coding software
systems. It is based on Zermelo–Fraenkel set theory with the axiom of
choice, the concept of generalized substitution and on structuring mecha-
nisms (machine, refinement, implementation). The concept of refinement
is the key notion for developing B models of (software) systems in an in-
cremental way. B models are accompanied by mathematical proofs that
justify them. Proofs of B models convince the user (designer or specifier)
that the (software) system is effectively correct. We provide a survey of
the underlying logic of the B method and the semantic concepts related
to the B method; we detail the B development process partially supported
by the mechanical engine of the prover.

� CafeOBJ: Logical Foundations and Methodologies

R. Diaconescu, K. Futatsugi, K. Ogata [2]
Abstract: CafeOBJ is an executable industrial-strength multi logic al-
gebraic specification language which is a modern successor of OBJ and
incorporates several new algebraic specification paradigms. In this paper
we survey its logical foundations and present some of its methodologies.

� CASL — The Common Algebraic Specification Language:

Semantics and Proof Theory

T. Mossakowski, A.E. Haxthausen, D. Sannella, A. Tarlecki [6]
Abstract: CASL is an expressive specification language that has been
designed to supersede many existing algebraic specification languages and
provide a standard. CASL consists of several layers, including basic (un-
structured) specifications, structured specifications and architectural spec-
ifications (the latter are used to prescribe the structure of implementa-
tions). We describe a simplified version of the CASL syntax, semantics
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and proof calculus at each of these three layers and state the correspond-
ing soundness and completeness theorems. The layers are orthogonal in
the sense that the semantics of a given layer uses that of the previous
layer as a “black box”, and similarly for the proof calculi. In particular,
this means that CASL can easily be adapted to other logical systems.

CAI, Volume 22, 2003, No. 4

� The Logic of the RAISE Specification Language

C. George, A.E. Haxthausen [3]
Abstract: This paper describes the logic of the RAISE Specification Lan-
guage, RSL. It explains the particular logic chosen for RAISE, and mo-
tivates this choice as suitable for a wide spectrum language to be used
for designs as well as initial specifications, and supporting imperative and
concurrent specifications as well as applicative sequential ones. It also de-
scribes the logical definition of RSL, its axiomatic semantics, as well as
the proof system for carrying out proofs.

� On the Logic of TLA+

S. Merz [5]
Abstract: TLA+ is a language intended for the high-level specification of
reactive, distributed, and in particular asynchronous systems. Combining
the linear-time temporal logic TLA and classical set-theory, it provides an
expressive specification formalism and supports assertional verification.

� Z Logic and Its Consequences

M.C. Henson, S. Reeves, J.P. Bowen [4]
Abstract: This paper provides an introduction to the specification lan-
guage Z from a logical perspective. The possibility of presenting Z in this
way is a consequence of a number of joint publications on Z logic that
Henson and Reeves have co-written since 1997. We provide an informal
as well as formal introduction to Z logic and show how it may be used,
and extended, to investigate issues such as equational logic, the logic of
preconditions, the issue of monotonicity and both operation and data re-
finement.

1.3 The Stara Lesna Summer School

The preparation of the many papers for the CAI lead to the desire to “crown”
the achievements of the many authors by arranging the Logics of Specification
Language Summer School at the Slovak Academy’s conference centre in Stara
Lesna, the High Tatras.

We refer to http://cswww.essex.ac.uk/staff/hensm/sssl/.
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One of the editors of the present volume (MH) coordinated with the seven
sets of authors of the CAI double issue as well as with Drs. John Fitzgerald
(VDM: The Vienna Development Method) and Michael Reichhardt Hansen
(DC: Duration Calculi) on the schedule of nine sets of lectures of 90 minutes
each during the two-week event.

The other editor (DB) was the primary organiser of the event: solicit-
ing funds, participants, and communicating with the local organiser Prof.
Branislav Rovan at the Comenius University in Bratislava.

The event took place June 6–19, 2004 at the Slovak Academy’s ideally
located conference centre in Stara Lesna, the High Tatras.

Besides being substantially sponsored by the EU’s CoLogNET effort,
much-needed support also came from UNU-IIST, the United Nations Univer-
sity’s International Institute for Software Technology (http://www.iist.unu.edu)
(located in Macau, China) and Microsoft Research (http://research.micro-
soft.com/foundations/).

Forty-four young researchers from 22 countries in Asia and Europe took
part in this seminal event.

1.4 Book Preparation

The success, so we immodestly claim, of the Summer School then lead to the
proposal to rework the CAI papers and the Summer School lecture notes into
a book. MH coordinated the first phase of this endeavour, summer 2004 to
February 2006. DB then followed up and is responsible for the minute style
editing, indexing, etc., and the compilation of the nine individual contributions
into this volume.

2 Formal Specification Languages

Here we cull from the introductions to the chapters covering respective lan-
guages — and edit these “clips”.

2.1 ASM: Abstract State Machines

ASM is a technique for describing algorithms or, more generally, discrete sys-
tems. An abstract state machine [specification] is a set of conditional assign-
ment statements. The central and new idea of ASM is the way in which
symbols occurring in the syntactic representation of a program are related to
the real-world items of a state. A state of an ASM may include any real-world
objects and functions. In particular, the ASM approach does not assume a
symbolic, bit-level representation of all components of a state. ASM is “a
computation model that is more powerful and more universal than standard
computation models”, as Yuri Gurevich, the originator of ASM, claims.
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2.2 B

Classical B is a state-based method for specifying, designing and coding soft-
ware systems. It is based on Zermelo–Fraenkel set theory with the axiom of
choice. Sets are used for data modelling. Generalised substitutions are used to
describe state modifications. The refinement calculus is used to relate models
at varying levels of abstraction. There are a number of structuring mechanisms
(machine, refinement, implementation) which are used in the organisation of
a development.

Central to the classical B approach is the idea of a software operation
which will perform according to a given specification if called within a given
precondition. A more general approach in which the notion of event is funda-
mental is also covered. An event has a firing condition (a guard) as opposed
to a precondition. It may fire when its guard is true.

2.3 CafeOBJ

CafeOBJ is an executable algebraic specification language. CafeOBJ incorpo-
rates several algebraic specification paradigms.

Equational specification and programming is inherited from OBJ and con-
stitutes the basis of CafeOBJ, the other features being somehow built “on top”
of it.

Behavioural specification characterises how objects (and systems) behave,
not how they are implemented. This form of abstraction is used in the spec-
ification and verification of software systems since it embeds other useful
paradigms such as concurrency, object-orientation, constraints, nondetermin-
ism, etc.

Preorder algebra (abbreviated POA) specification (in CafeOBJ) is based
on a simplified unlabelled version of Meseguer’s rewriting logic specification
framework for concurrent systems. POA gives a non-trivial extension of tra-
ditional algebraic specification towards concurrency. POA incorporates many
different models of concurrency, thus giving CafeOBJ a wide range of appli-
cations.

2.4 CASL

The basic assumption underlying algebraic specification is that programs are
modelled as algebraic structures that include a collection of sets of data values
together with functions over those sets. This level of abstraction is commen-
surate with the view that the correctness of the input/output behaviour of
a program takes precedence over all its other properties. Another common
element is that specifications of programs consist mainly of logical axioms,
usually in a logical system in which equality has a prominent role, describing
the properties that the functions are required to satisfy.
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Basic specifications provide the means for writing specifications in a par-
ticular institution, and provide a proof calculus for reasoning within such
unstructured specifications.

The institution underlying CASL, together with its proof calculus, involves
many-sorted basic specifications and subsorting.

Structured specifications express how more complex specifications are built
from simpler ones.

The semantics and proof calculus is given in a way that is parameterized
over the particular institution and proof calculus for basic specifications.

Architectural specifications, in contrast to structured specifications, pre-
scribe the modular structure of the implementation, with the possibility of en-
forcing a separate development of composable, reusable implementation units.

Finally, libraries of specifications allow the (distributed) storage and re-
trieval of named specifications. Since this is rather straightforward, space con-
siderations led to the omission of this layer of CASL in the present work.

2.5 DC: The Duration Calculi

Duration Calculus (abbreviated DC) is an interval logic. DC was introduced
to express and reason about models of real-time systems. A key issue in DC
is to be able to express the restriction of durations of certain undesired but
unavoidable states.

By a duration calculus we shall understand a temporal logic whose concept
of time is captured by Real, whose formula connectives include those of �

(�P : always P ), � (�P : sometimes P ), → (P → Q: P implies Q [Q follows
logically from P ]), and the chop operator, ‘;’ (P ; Q: first P then Q); whose
state duration terms, P , include those of

∫
P (duration of P ), o(t1, ..., tn),

and �; and whose formulas further include those of �� (point duration) �P �

(almost everywhere P ).

2.6 RAISE and RSL

The RAISE method is based on stepwise refinement using the invent and verify
paradigm. Specifications are written in RSL. RSL is a formal, wide-spectrum
specification language that encompasses and integrates different specification
styles in a common conceptual framework. Hence, RSL enables the formula-
tion of modular specifications which are algebraic or model-oriented, applica-
tive or imperative, and sequential or concurrent.

A basic RSL specification is called a class expression and consists of
declarations of types, values, variables, channels, and axioms. Specifications
may also be built from other specifications by renaming declared entities, hid-
ing declared entities, or adding more declarations. Moreover, specifications
may be parameterized.

User-declared types may be introduced as abstract sort types, as known
from algebraic specification. In addition RSL provides predicative subtypes,
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union and short record types, as known from VDM, and variant type defini-
tions similar to data type definitions in ML.

Functions may describe processes communicating synchronously with each
other via declared channels, as in CSP.

2.7 TLA and TLA+

TLA is a variant of linear-time temporal logic; it is used to specify system
behaviour. TLA+ extends TLA with data structures that are specified in (a
variant of) Zermelo-Fraenkel set theory. TLA+ does not formally distinguish
between specifications and properties: both are written as logical formulas,
and concepts such as refinement, composition of systems, or hiding of internal
state are expressed using logical connectives of implication, conjunction, and
quantification.

2.8 VDM

VDM can probably be credited as being the first formal specification language
(1974).

Classical VDM focuses on defining types over discrete values such as num-
bers, Booleans, and characters — as well as over sets, Cartesians, lists, maps
(enumerable, finite domain functions), and functions (in general); and defin-
ing applicative (“functional style specification programing”) and imperative
(“assignment and state-based specification programing”) functions over val-
ues of defined types, including pre-/post-based function specifications. Set, list
and map values can be comprehended, as in ordinary discrete mathematics.
Logical expressions include first-order predicate (quantified) expressions.

2.9 Z

Z could be said to be rather close in some aspects to VDM-SL. A main —
syntactically — distinguishing feature is, however, the schema. Schemes are
usually used in two ways: for describing the state space of a system and for
describing operations which the system may perform. From that follows a
schema calculus. Another difference from VDM is the logics.

3 The Logics

The nine main chapters of this book comprise a dazzling, and even possibly
intimidating, range of approaches; and it will be clear that the work on which
this collection is based owes a debt to many researchers, over many years,
who have struggled to find appropriate concepts, together with their formal-
isation, suitable for the task of tackling issues in the general area of system
specification.
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There are two perspectives which are useful to bear in mind when reading
this book in its entirety, or more likely in selecting chapters to study in depth.
The first is that these are studies in applied mathematics; the second that
these are practical methods in computer science.

Applied mathematics is a term with a long pedigree and it has usually been
identified with applications in, for example, physics, economics and so forth.
A naive separation would place topics such as algebra and formal logic in the
realm of pure mathematics ; however it is not the content but the motivation
that differentiates applied from pure mathematics, and the chapters of this
book illustrate many areas in which more traditionally pure topics are set
to work in an applied setting. ASM, CafeOBJ and CASL are based within
algebra, the latter two securely located within category theory, an almost
quintessential example of purely abstract mathematics; DC and TLA+ make
use of modal logic; B, VDM and Z make use of set theory and (versions
of) predicate logic; RAISE draws on ideas from set theory, logic, algebra
and beyond. In all these too, the underlying formal structures are drawn
from traditional pure mathematics, much of it from developments during the
early part of the last century in the introspective realm of metamathematics:
initially introduced in order for mathematics to take a closer look at itself.

It may have come as something of a surprise to early pioneers in alge-
bra, set theory and logic to see how such abstract topics could be usefully
harnessed to an applications area; but work over the last 30 years or so has
demonstrated beyond question that these have become an appropriate basis
for formal computer science. These chapters are a testament to, and further
stage in, that developing history.

Excellent applied mathematics, however, does not come for free: one can-
not simply select existing mathematics off the shelf and expect it to be fit
for purpose. It is necessary to combine mathematical competence with a high
level of conceptual analysis and innovation. In this book there are numerous
examples of mathematical developments which have been necessary in order
to model what have been identified as the fundamental concepts in the appli-
cations’ areas, and one might select single examples from hosts of others in
the various chapters. For example:

• in ASM one notes the analysis of states as algebras and then program
statements as transformations of algebras;

• in B one notes the central concept of generalized substitution and its in-
terpretation within a calculus of weakest preconditions;

• in CafeOBJ ones notes the introduction of behavioural specification based
on coherent hidden algebra;

• in CASL one notes the use of the institution of many-and-sub-sorted alge-
bras ;

• in DC one notes the development of continuous-time interval temporal
logic and the introduction of the concept of durations ;
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• in RAISE one notes the development of the logic RSL with its treatment
of undefined terms, imperative and concurrent features;

• in TLA+ one notes the integration of set-theoretic notions with a version
of temporal logic which includes action formulae and invariance under
stuttering;

• in VDM one notes the development of the logic of partial functions allowing
reasoning in the presence of undefined terms ;

• in Z one notes the analysis of refinement and how it is analysed with
respect to the schema calculus.

These very few observations barely scratch the surface of the wealth of con-
ceptual novelty present within these nine frameworks, but serve to illustrate
the way in which they each introduce new conceptual zoology suitable for
tackling the issues they aim to address. In doing so, they must, and do, ex-
tend the mathematical framework on which they are based, whether that be
set theory, some variety of formal logic or a framework of algebraic discourse.
And the corollaries of that, of course, are developments of new mathematics.

Turning now to the second key point. However sophisticated the formal
treatment, these are intended to be practical methods for the specification
and development of systems. The chapters each address examples and appli-
cations in various ways and to differing extent. There are, here, a wealth of
case studies and examples, both of practical applications and of theoretical
infrastructure, all of which shed light on the applicability and fecundity of the
frameworks covered. It may be worth remembering that once a perfect tool
is developed, it will certainly stand the test of time. For example, consider
a chisel : it is an ancient and very simple tool; moreover, despite centuries of
technological development elsewhere, it is still in use today, essentially un-
changed, because of that simplicity and its fitness for purpose. It has, quite
simply, never been bettered. It is also a sobering experience to compare the
simplicity of the chisel with the complexity and beauty of the wood-carvings
which are possible when the tool lies in skilled and experienced hands. This is
a good analogy: we will want to show that our specification frameworks are as
simple and straightforward as possible, and develop skills in using them which
result in applications that are significantly more complex (at least combinato-
rially) than the frameworks themselves. Have we yet, as a community, achieved
that? Almost certainly not – but the challenge is there, and current work is
mindful of these considerations. System specification is a truly monumental
topic; it is very unlikely we can ever achieve the simplicity of the chisel for our
frameworks, but we aim for the contrast: that we can employ them to rigor-
ously, securely and dependably design the large and complex systems which
are increasingly required of us. And surely, in that complexity, is there also a
certain beauty.

How this area of formal specification will further develop in the future is
a very interesting question. One imagines and hopes that the readers of this
very volume will be among those making significant contributions towards
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answering that. Even if those future frameworks little resemble the ones pre-
sented here, we can be sure of one thing: their development will require the
good taste, conceptual innovation and mathematical sophistication that we
see exemplified in this volume.
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. . . we should have achieved a mathematical model of computation,

perhaps highly abstract in contrast with the concrete nature of paper

and register machines, but such that programming languages are merely

executable fragments of the theory . . .

Robin Milner [16]

Summary. Abstract State Machines (hencefort referred to as just ASM) were in-
troduced as “a computation model that is more powerful and more universal than
standard computation models” by Yuri Gurevich in 1985.

Here we provide some intuitive and motivating arguments, and characteristic
examples for (the elementary version of) ASM. The intuition of ASM as a formal
framework for “pseudocode” algorithms is highlighted. Generalizing variants of the
fundamental “sequential small-step” version of ASM are also considered.

Introduction

Many people find ASM difficult to understand. Most of these people are con-
ventionally educated computer scientists, and hence have ba set of implicit
or explicit assumptions and expectations about “yet another” specification
language or computation model. ASM challenge some of those assumptions
and expectations. It is this aspect that makes people struggle when trying
to understand ASM. If computer science education start out with ASM (and
there are many good reasons to do so), people would see the basic ideas of
ASM as the most simple and natural approach to the notion of “algorithm”.

This chapter addresses the conventionally educated computer scientist. To
meet his or her implicit and explicit assumptions, Part I of this presentation
addresses the intuition and foundations of ASM in great detail and various
aspects. Part II then focuses technical details of the most elementary class of
ASM. Part III considers various variants and extensions.
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I: Intuition and Foundations of ASM

Section 1 addresses the fundamental aspects that make ASM a technique quite
different from other techniques, to describe algorithms or, more generally,
discrete systems. Without going into detail, the central idea is highlighted,
and the ASM approach is embedded into the context of first-order logic and
computable functions.

Section 2 is devoted to some small examples. As the central idea of ASM
is, to some extent, independent of concrete syntactical representations, we
represent each example in a pseudocode notation, in a form that is particularly
intuitive for the respective algorithm. The translation of pseudocode to a
“syntactically correct” ASM is postponed to Sect. 5. This translation can itself
be conceived as part of the ASM formalism, because ASM can be considered
as a formal basis for pseudocode. As we restrict ourselves in this chapter to
a version of ASM that can be described by transition systems, we start the
section with this fundamental notion.

Section 3 starts with the motivation behind the semantic aspects of states.
The algorithms of Sect. 2 are used to exemplify how a pseudocode program
is applied to a state. Section 3 finishes with the problem of characterizing the
expressive power of pseudocode programs.

1 What Makes ASM so Unique?

1.1 A Basic Question

At first glance, an abstract state machine is just a set of conditional assign-
ment statements. Several extensions of the basic version of the ASM have
been suggested, including parallel, distributed and reactive ones. These con-
cepts are likewise not too new. Some versions use quantified variables, es-
sentially “∀x . . .” and “∃x . . .”. Quantified variables usually do not appear in
programming languages, but specification languages such as Z use quantifica-
tion very well. What, then, makes ASM so unique? In what sense are ASM “a
computation model that is more powerful and more universal than standard
computation models”, as Yuri Gurevich wrote in 1985 [12]?

1.2 The Central Idea of ASM

The central and new idea of ASM is easily described: it is the systematic way
in which symbols occurring in the syntactic representation of a program are re-
lated to the real-world items of a state. In fact, a state of an ASM may include
any real-world objects and functions. In particular, the ASM approach does
not assume a symbolic, bit-level representation of all components of a state.
Herein it differs from standard computational models – and most obviously to
Turing Machines – where a state is a (structured) collection of symbols. The
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designer or user of a Turing Machine or any (more involved) programming or
specification language may very well have in mind a particular meaning of a
symbol. Examples of such symbols include “1”, “∈”, “init” and “millisecond”.
And a model usually makes little sense without this kind of interpretation.
But conventional computation concentrates on the transformation of symbols,
not dwelling too deeply on what they stand for.

1.3 ASM in the Context of Set Theory and Logic

The manner in which ASM relate symbols to their interpretation is not new
at all. One may read the ASM approach as a recommendation just to take
seriously, what formal logic has revealed in the last century. Since Cantor’s
definition of a set as “any collection into a whole M of definite and separate
objects m of our intuition or our thought” [4], sets have entered mathemat-
ics in a clear and simple way. Tarski, in [20] suggested structures, including
functions and predicates over real world items, as the most general mathemat-
ical framework. First-order logic has been developed as a language to define
and to analyze such structures. In close correspondence to this line of devel-
opment, Gurevich suggested a further step, introducing algorithms over real
world items.

1.4 ASM and Computable Functions

The above considerations rose the question of implementation: in fact, many
algorithms are definable by ASM, but cannot be implemented. Furthermore,
many of them are not even intended to be implemented. Rather, they describe
procedures involving real-world items. Examples include the algorithms for
using a teller machine to withdraw money from one’s bank account, and the
procedure of pressing buttons on the walls and inside the lifts in a high-rise
building, in order to be transported to another floor.

From this perspective, ASM can be conceived of as the theory of pseu-
docode. In any case, ASM provide a specification language to describe the
steps of dynamic, discrete systems. Those systems include, in particular, im-
plementable systems.

Computability theory characterizes the computable functions as a subset
of all functions over the integers. Can the ASM-specifiable algorithms like-
wise be described as a subset of a potentially larger class of candidates? In
fact, Gurevich [13] provided such a characterization for the most elementary
class of ASM. Intuitively formulated, a discrete system can be represented
as a “sequential small-step ASM”, if the system exhibits global states and
proceeds in steps from state to state, and if, for each step S → S′, the fol-
lowing holds: to derive S′ from S, it suffices to explore a bounded amount of
information about S. (Details follow in Sect. 6.3.) For other classes of ASM,
similar characterizations are under investigation.
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1.5 The Future Role of ASM

In the above perspective, the theory of ASM contributes to the foundations
of informatics as a scientific discipline. At the end of the day it may turn
out that ASM will (together with various, so far unknown equivalent notions)
provide an adequate notion of “algorithms” (with the important subclass of
the “implementable” algorithms, i.e. the computable functions).

2 What Kind of Algorithms Do ASM Cover?

2.1 Transition Systems

Classical models of discrete systems assume global states and describe dy-
namic behaviour as steps

S → S′ (1)

from a state S to its successor state S′. We restrict ourselves in this chap-
ter to systems with this kind of behaviour. In technical terms, we consider
(initialized) transition systems.

A transition system

A = (states, init, F ) (2)

consists of a set states of “states”, init ⊆ states of “initial states”, and a
“next state function” F : states → states.

A run of a transition system is a sequence

S0S1S2 . . . (3)

of states Si with S0 an initial state and Si = F (Si−1) (i = 1, 2, . . .).
One might suggest that one should reduce the set states to the reachable

states, i.e. to those occurring in runs. But this set may be difficult to charac-
terize. As a matter of convenience, it is frequently useful to allow a larger set
of states.

The general framework of transition systems requires no specific properties
of the states. In particular, it is not required to represent all components of a
state symbolically. The forthcoming examples of – admittedly quite simple –
algorithms yield transition systems that dwell on this aspect.

This general version of transition systems is not new at all: in the first
volume of his seminal opus [14], Don Knuth introduced the notion of algo-
rithms. As a framework for the semantics of algorithms, Knuth suggested
computational methods. A computational method is essentially what we have
called a transition system in (2). Knuth additionally assumed terminal states
t with F (t) = t, and called a transition system A an algorithm if each run
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of A reaches a terminal state. The interesting aspect in Knuth’s definition is
that it comes without the requirement of F being “effective”. Quoting [14,
p 8]: “F might involve operations that mortal man can not always perform”.
Knuth defined effective computational methods as a special case: a computa-
tional method is effective iff it is essentially equivalent to a Turing Machine
or to any other mechanism for the computable functions. Nowadays, the term
“algorithm” is usually used to denote what Knuth called an “effective com-
putational method”.

As we have already done above, we shall use the term “transition system”
instead of “computational method”, and “effective transition system” instead
of “effective computational method”.

Transition systems have been generalized in several directions: non-termi-
nating computation sequences adequately describe the behaviour of reactive
systems; the next-state function F has been generalized to a relation R ⊆ Q×

Q, with computation sequences x0x1 . . . where (xi, xi+1) ∈ R. This represents
non-determinism. Additionally, one may require a choice of xi+1 such that
it follows a stochastic distribution or is fair. Some system models describe
a single behavior not as a sequence of states, but as a sequence of actions.
The sequence orders the actions along a time axis. One may even replace the
total order by a partial order, representing the cause–effect relations between
actions.

All these generalizations of effective transition systems can be reduced to
equivalent conventional effective transition systems by reasonable notions of
reduction and equivalence. Generalizations of this kind are intended to express
algorithmic ideas more conveniently. They are not intended to challenge the
established notion of effective computation.

We study non-effective transition systems in this chapter. The reader may
wonder whether there is anything interesting “beyond” the computable func-
tions. In fact, there is an exciting proper subclass of all transition systems,
called ‘Sequential Abstract State Machines’, that in turn properly contains
the effective transition systems.

Yet, to communicate algorithms, we have to represent them somehow. We
may allow any kind of pseudocode notation, whichever is most intuitive for the
respective algorithm. This kind of representation is related to the pseudocode
approach in Sect. 3.

Distributed systems do not, canonically, exhibit global states and steps.
Consequently, transition systems do not adequately represent their behaviour.
This kind of system will be glanced at in Part III of this chapter, together
with some other extensions of the basic formalism.

The rest of this section describes a series of algorithms, none of which is
implementable, but each will turn out to be representable in the framework
of ASM.
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2.2 Set Extension

Let augment be a function with two arguments: the first argument is a set
and the second argument is any item. The function augment then extends the
set by the item. More precisely, for a set M and an item m, define

augment(M, m) =def M ∪ {m}. (4)

Now we intend to construct an algorithm that extends any given set M

by two elements m and n, using the function augment. The idea is obvious:
in a sequence of two steps, we augment one element in each step. We write
this idea down in the usual style of “pseudocode”. To this end we introduce
three variables X , x and y, which in the initial state S0 are evaluated as M ,
m and n, respectively. Then, the pseudocode algorithm

P0: begin

X := augment(X ,x);
X := augment(X ,y);

end.

(5)

applied to S0 terminates in a state S in which X isevaluated as M ∪ {m, n}.
Notice that this algorithm can be applied to any set M and any elements m

and n. A bit-level representation of M , m and n is not required.

2.3 The Tangent Algorithm

In the geometrical plane assume a circle C with centre p, and let q be a point
outside C (see Fig. 1).

C

q p

Fig. 1. The problem of the tangent algorithm

We have to design an algorithm to construct one of the tangents of C

through q . Such an algorithm is well-known from high school. First, construct
the point halfway between p and q. Call it r. Then, construct a circle D

with centre r, passing through p (and, by construction, through q). The two
circles C and D intersect in two points. Pick out one of them; call it “s”. The
wanted tangent is the line through q and s. Figure 2 outlines this construction.
Figure 3 shows a corresponding pseudocode program.
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D

C

q pr

s

Fig. 2. The solution of the tangent algorithm

This algorithm employs three sets of data items, namely POINTS, CIRCLES
and LINES, and five basic operations,

halfway: POINTS × POINTS → POINTS,

circle: POINTS × POINTS → CIRCLES,

intersect: CIRCLES × CIRCLES → P(POINTS),

makeline: POINTS × POINTS → LINES,

pick: P(POINTS) → POINTS.

(6)

The tangent algorithm does not specify how points, circles and lines are rep-
resented, and how the operations produce their result. One choice was to
represent a point as a pair of real numbers

(
x

y

)
, a circle by its center and

its radius, and a line by any two points on it. In this case, the above four
operations (6) can be defined by well established formulas, e.g.

halfway
((

x1

y1

)
,
(
x2

y2

))
=

(
(x1+x2)/2

(y1+y2)/2

)
. (7)

The choice from high school was to represent a point as a black dot on a
white sheet of paper, a circle by its obvious curved line and a (straight) line
by one of its finite sections. Each of the four above operations (6) can then
be performed by pencil, rulers and a pair of compasses.

input(p,C, q);
if q outside C then

r := halfway(p, q);
D := circle(r, p);
M := intersect(C,D);
{|M| = 2}
s := pick(M);
l := makeline(q,s);
output(l);

Fig. 3. The tangent algorithm
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Observe that the above algorithm likewise applies to three-dimensional points,
with spheres replacing the circles.

2.4 The Bisection Algorithm

For continuous functions f : � → �, the bisection algorithm approximates
zeros, i.e. finds arguments x0 such that |f(x0)| < ε for some given bound ε.
This algorithm starts with two real numbers a and b such that f(a) and f(b)
are different from 0 and have different leading signs.

0

f

b’=
mean(a,b)

mean(a,b’)

step 2step 1

start

=a’a

b

Fig. 4. Step of bisection algorithm

When |f(a) − f(b)| > ε, two actions are executed. Firstly, the mean m of a

and b is computed. Secondly, if f(a) and f(m) have different leading signs, a

is set to m, otherwise b is set to m. Figure 4 outlines a typical step, and Fig. 5
shows a pseudocode program for this algorithm.

while |f(a) − f(b)| ≥ ε do

m := mean(a,b);
if sign(a) �= sign(m) then b := m

else a := m

Fig. 5. Pseudocode program for the bisection algorithm

2.5 The Halting-Problem Decision Algorithm

Let T be the set of all Turing machines. It is well known that T can be
enumerated, i.e. the sets T and � correspond bijectively. Now let f : � →

{0, 1} be defined by f(i) = 0 iff the ith Turing Machine terminates when
applied to the empty tape. It is well known that f is not computable (and
this is the only reason for selecting f ; any other non-computable function
would likewise do the job). Nevertheless, the pseudocode program
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input(i);

b := f(i);

output(b).

(8)

“computes” the function f .

2.6 A Cooking Recipe

As an – admittedly extreme – case, a cooking recipe may be considered as an
algorithm, too. An example is the following recipe for pasta carbonara:

A: Fry the pancetta bacon in the butter over medium-high heat until it
browns.

B: Heat the milk in a small saucepan.
C: Cook the pasta until ‘al dente’. Drain well, then return pasta to pot.
D: Upon termination of A and B, add the bacon and butter to the saucepan.

Stir well. Add the vinegar. Reduce heat to low and cook the sauce gently
for about 15 minutes.

E: Upon termination of C and D, add the sauce, the beaten eggs, and the
cheese to the pot. Stir well and serve.

The algorithm starts with three parallel branches A, B, C. A and B are single
actions and C is a sequence of three actions. Upon termination, A and B trigger
D. Finally, C and D trigger E.

2.7 Some General Observations

The reader may prefer a notion of an “algorithm” that would exclude some of
the behaviours described above, for various reasons. Certainly, none of these
algorithms is implementable. For example, the bisection algorithm of Sect. 2.4
applies to any continuous function f and any real numbers a, b and ε. But
only rare cases of f , a, b and ε are representable in a real computer without
causing precision problems. Yet, all of them can be handled in a formal setting.
Part II will provide the details of how this is done.

3 Pseudocode Programs and Their Semantics

The term “pseudocode” usually denotes a description of an algorithm, com-
posed of conventional keywords of programming languages such as the as-
signment symbol “:=”, “if then” and “while”, and symbols (mostly self-
explanatory) for actions and conditions. A number of examples of pseudocode
programs have been discussed in Sect. 2. Pseudocode programs allow one to
engagewith objects, functions and predicates on a level of detail and precision
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freely chosen by the modeller. This makes pseudocode programs particularly
understandable and simple.

In this section, we first discuss requirements for “faithful” models of al-
gorithms. Then we see that pseudocode programs – in whatever form – meet
these requirements. This is due to the particular style of formal semantics use
as argued in the rest of this section.

3.1 Faithful Modelling

When we are bound to concrete examples, we usually have a clear understand-
ing of what an “adequate” description of an algorithm could be: it should cover
all aspects we would like to emphasize and it should hide all aspects we would
prefer not to mention. Formulated more precisely, a really “faithful” modelling
technique represents

• each elementary object of the algorithm as an elementary object of the
formal presentation,

• each elementary operation of the algorithm as an elementary operation of
the formal presentation,

• each composed object of the algorithm as a formal composition of the
formal presentations of the corresponding objects,

• each composed operation of the algorithm as a formal composition of the
formal presentations of the corresponding operations,

• each state of the algorithm as a state of the formal presentation, and
• each step of the algorithm as a step of the formal presentation.

Formulated comprehensively, elementary and composed objects and oper-
ations, as well as states and steps of an algorithm and of its model should
correspond bijectively. This is the tightest conceivable relationship between
intuitive and formal presentations of algorithms.

Can this kind of faithful modelling be conceived of at all? Is there a mod-
elling technique that would achieve this goal for at least some reasonable class
of algorithms? Are there any general principles for constructing such models?
These are the questions to be discussed in the rest of this section.

3.2 Symbols and Their Interpretation in a State

The pseudocode programs in (5) and in Figs. 3 and 5 employ symbols that
stand for various items and functions. For example, X in (5) stands for any
initially given set, x and y stand for any items and “augment” for a func-
tion. The algorithm is executable only after interpreting the symbol “X” by
a concrete set, M , the symbols “x” and “y” by concrete items m and n

and “augment” by the function augment that augments an element to a set.
Hence, each initial state of an algorithm must provide an interpretation of
all symbols, except the key symbols such as begin, if etc. For example, let
Σ = {X, x, y, augment} be a set of symbols and let S be a state with
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XS = M, xS = m, yS = n and augment
S

= augment (9)

as defined in (4). The program (5) is applicable to this state. The first assign-
ment statement of (5), X := augment(X, x), then updates S, thus yielding a
new state, S′. This state differs from S only with respect to the interpretation
of X :

XS
′ = XS ∪ {m} = M ∪ {m}. (10)

Then the second assignment statement, X := augment(X, y), is executed,
yielding a state S′′ with

XS
′′ = XS

′ ∪ {n} = M ∪ {m} ∪ {n} = M ∪ {m, n}. (11)

3.3 Examples: the Bisection and Tangent Algorithms Revisited

The bisection algorithm of Sect. 2.4 can be understood according to the above
schema. On the basis of the symbol set Σ = {a, b, ε, m, f, mean, sign, <},
assume an initial state S where aS , bS , εS and mS are any real numbers,
fS : � → � any function, meanS : � × � → � with meanS(x, y) = (x +
y)/2, signS : � → {+,−}, with signS(x) = + iff x > 0, and <S ⊆ � × �

as usual. Assuming an initial state S0, the program of Fig. 5 generates a
sequence S0S1S2 . . . Sk of states, iteratively updating m, a and b, with finally
|fSk

(aSk
) − fSk

(bSk
)| < εSk

. Note that this holds for any real numbers aS0

and εS0
and any unary function fS0

over the real numbers.
The same procedure applies to the tangent algorithm of Sect. 2.3. Given

the symbol set Σ = {C, p, q, r, s, D, M, outside, halfway, circle, intersect,

pick, makeline} assume an initial state S such that CS is any circle with
centre pS , and qS is a point outside CS . Furthermore, for points a, b and circles
A, B, let outsideS(a, A) = true if a lies outside of A, let halfwayS(a, b) return
the point halfway between a and b, let circleS(a, b) be the (unique!) circle,
that has a as its centre and b on its circumference, let intersectS(A, B) be
the set of intersecting points of A and B, and let makelineS(A, B) be the
(unique!) line through a and b. For a set M of elements, let pickS(M) be a
non-deterministically chosen element of M . The symbols q, r, s, D, M may be
interpreted freely in the initial state S.

3.4 Applying a Pseudocode Program to a State

The above examples reveal a very simple schema: a pseudocode representation
P of an algorithm M consists of two kinds of symbols:

1. Key symbols such as begin, :=, end, ;, input, if, then, output, while,
do, and else (in the order of their occurrence in Sect. 2).

2. Constant and function symbols such as X, x, y in (5) and C, p, r, q, . . . in
Fig. 3.
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P can be applied to a state S, where S provides an interpretation σS for each
constant and each function symbol σ of P . Applying P to S produces a state
P (S), where the interpretations of some symbols σ have been updated.

The notion of a state of M deserves closer investigation: each constant
symbol and each function symbol can be interpreted by any item; virtually
“everything” may serve as an interpretation. The only restriction is the arity
of symbols: a constant symbol must be interpreted by an item, and a func-
tion symbol with arity n must be interpreted by a function of arity n. For
example, in (5) the symbol “augment” has arity 2 and so every state S of this
algorithm must provide a function augmentS which requires two arguments.
This restriction does not unduly limit the formalism: a state S (i.e. an inter-
pretation of the constant and function symbols) that violated this restriction
would spoil any attempt to define the application of P to S.

3.5 Pseudocode Algorithms

Every pseudocode program P has a finite set Σ of symbols to be interpreted
in a state and, vice versa, a state of P is an interpretation of all symbols in
Σ. Hence, there is an infinite set of states of P . An algorithm is not intended
to run on all states. The designer of an algorithm is free to choose the states
which the algorithm is intended for. In addition, the designer is free to choose
the initial states. In Sect. 6 we shall describe the motivation for some restrict-
ing requirements on the set of states and of initial states. For the time being,
we define a pseudocode algorithm M to be a triple

M = (states, init, P ) (12)

where P is a pseudocode program, applicable to each state S ∈ states and
returning a state P (S) ∈ states, and init ⊆ states.

For the sake of technical simplicity, we assume that the final states S can
be be modelled as fixed-point states, i.e., P (S) = S.

As P defines a function over the set states, the algorithms M of Sects. 2.2–
2.6 essentially define transition systems, as in (2), which is the transition
system of M, tr(M).

Summing up, the notions of pseudocode programs and pseudcode algorithms
remain deliberately vague: assuming a set Σ of symbols, a state is fixed by
interpreting all symbols in Σ, and the steps are described with the help of key
words and the symbols in Σ.

A class of pseudocode algorithms, called sequential small-step algorithms,
has been characterized by Gurevich [13]. Details will be given in Sect. 5.

II: The Formal Framework

The ASM approach is based on a few notions that were identified by Tarski [20]
as providing a most useful general conceptual basis for mathematics: the no-
tions of structures, signatures and their combination in Σ-structures. Any
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formalism employs symbols to represent objects that, in general, are not sym-
bols. Σ-structures provide a means to perform this kind of representation. Sec-
tion 4 presents the details. Σ-structures are the formal basis for Σ-programs,
i.e. pseudocode programs over a signature Σ, as will be defined in Sect. 5,
including the important subclass of sequential small-step ASM programs. Al-
gorithms based on such programs are investigated in Sect. 6.

4 Signatures and Structures

4.1 Structures

As explained above, a state S of a pseudocode program is a structure (some-
times also called an algebra), consisting of

• a set U , the universe of S,
• finitely many constants, namely the elements of U , and
• finitely many functions over U , of the form φ : Un

→ U ; n is the arity of
φ.

Constants can be conceived of as degenerate functions, with arity zero. So, a
structure S is usually written

S = (U, φ1, . . . , φk). (13)

If ni is the arity of the constant or function φi, the arity tuple (n1, . . . , nk) is
the type of S.

4.2 Homomorphism and Isomorphism

Some fundamental relationships among structures are homomorphisms and
isomorphisms.

Assume two structures R = (UR, ψ1, . . . , ψk) and S = (US , φ1, . . . , φk),
both of the same type (n1, . . . , nk). Assume furthermore a mapping h : UR →

US such that for all i = 1, . . . , k and all u1, . . . , uni
∈ UR, the following holds:

h(ψi(u1, . . . , uni
)) = φi(h(u1), . . . , h(uni

)). (14)

Then h is a homomorphism from R to S, written h : R → S.
Figure 6 shows the property of homomorphism in a diagrammatic form.
Now let R and S be structures of the same type, and let h : R → S be a

bijective homomorphism. Then h is called an isomorphism.
It is not difficult to show that the reverse function f−1 : US → UR of an

isomorphism f : R → S is again a homomorphism, f−1 : S → R. Hence,
it is reasonable to declare two structures R and S to be isomorphic, written
R 	 S, if there exists an isomorphism h : R → S.
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(u1, . . . , uni
) −−−−−→

ψi

ψi(u1, . . . , uni
)

?
?
yh · · ·

?
?
yh

?
?
yh

(h(u1),. . . ,h(uni
)) −−−−−→

φi

h(ψi(u1, . . . , uni
)) =

φi(h(u1), . . . , φi(h(uni
))

Fig. 6. The homomorphism property

4.3 Signatures and Ground Terms

The symbols occurring in a pseudocode program can be collected in a signa-
ture. Each function symbol is associated its arity and each constant symbol
is given an arity 0. A signature Σ with symbols f1, . . . , fl is usually written

Σ = (f1, . . . , fl, a1, . . . , al) (15)

whwew ai is the arity of fi (i = 1, . . . , l). (a1, . . . , al) is the type of Σ.
A signature Σ yields, canonically, the set TΣ of ground terms over Σ: TΣ

is the smallest set of sequences of symbols in Σ such that

• each constant symbol in Σ is an element of TΣ

• if t ∈ Σ with arity n and if t1, . . . , tn ∈ TΣ then f(t1, . . . , tn) ∈ TΣ.
(16)

TΣ is apparently infinite iff Σ contains at least one constant symbol and one
symbol with arity n ≥ 1.

Ground terms typically occur on the right-hand side of an assignment
statement, such as in “x := x + 1”. In the context of ASM, “x” is a constant
symbol and “+” a function symbol of arity 2. The ground term “+(x, 1)”
is written in the more convenient infix form “x + 1”. First order logic em-
ploys terms with additional symbols, called variables. The basic version of
ASM, considered here, does without variables. We shall see later that ground
terms, in their general form, may also occur as the left-side of an assignment
statement, i.e. an assignment may be of the form

f(t1, . . . , tn) := . . . .

This may be conceived of as an update of any array.

4.4 Σ-Structures

A structure S = (U, ψ1, . . . , ψk) of type (n1, . . . , nk) as in (13), “fits” to a
signature Σ = (f1, . . . , fl, a1, . . . , al) as in (17) if both have the same type,
i.e. if k = l and (n1, . . . , nk) = (a1, . . . , al). In this case, S is a Σ-structure.
The function φi is the interpretation of φi in S and we frequently write φi as
fiS

. Hence, S can be written

S = (U, f1S
, . . . , fkS

). (17)
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Each term t ∈ TΣ canonically denotes an element tS of the carrier of each
Σ-structure S, defined by induction over the structure of TΣ :

tS = fiS
if t = fi and ni = 0, (18)

tS = fiS
(t1S

, . . . , tnS
) if t = f(t1, . . . , tn). (19)

A signature Σ yields the set str(Σ) of all Σ-structures. This is a rich set,
including a variety of quite different structures. Vice versa, if S is a Σ-structure
as well as a Σ′-structure, the two signatures Σ and Σ′ are identical up to
bijective renaming of their symbols.

4.5 Two Lemmata on Σ-Structures

The following two lemmata will help us to characterize the expressive power
of ASM algorithms. The first lemma states that the homomorphism property
of Σ-structures extends to terms:

Lemma 1 (Homomorphism)

Let Σ be a signature, let R and S be two Σ-structures, and let h : R → S be
a homomorphism. Then holds h(tR) = tS for all t ∈ TΣ.

Proof

By induction over the structure of TΣ.

First case: t is a constant symbol. In this case the property holds according
to the definition of homomorphism (see (14) in Sect. 4.2).

Second case: t = f(t1, . . . , tn). The inductive hypothesis implies h(tiR
) = tiS

for i = 1, . . . , n. Then, again by definition of homomorphism,

h(tR) = h(f(t1, . . . , tn)R)
= h(fR(t1R

, . . . , tnR
))

= fS(h(t1R
), . . . , h(tnR

))
= fS(t1S

, . . . , tnS
)

= fS(t1, . . . , tn) = tS . �

The second lemma states that isomorphic Σ-structures can not be distin-
guished with the help of terms:

Lemma 2 (Indistinguishability)

Let Σ be a signature, let R and S be two Σ-structures, and let R 	 S. Then,
for all t, u ∈ TΣ, we have tR = uR iff tS = uS.

Proof

Let h : R → S be an isomorphism. According to the above lemma on homo-
morphism tR = uR iff h(tR) = h(uR) iff tS = uS. �
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5 Sequential Small-Step ASM Programs

Part I provided the intuition and Sect. 4 the formal means to define the syntax
and semantics of a special kind of pseudocode program P : given a signature
Σ, each state S of P is just a Σ-structure. The step function of P , providing
for each state S a successor state P (S), is syntactically represented with the
help of terms in TΣ, together with some key symbols such as if, then and
:=.

In this section we define a particularly simple version of such pseudocode
programs. We start with assignment statements that update constants and
functions. Then we proceed to sets of consistent statements and to condi-
tional statements, and finish with sequential, small-step ASM programs. The
semantics of such programs is rigorously defined in a mathematical setting.

5.1 Simple Assignment Statements

The simplest form of a program over a signature Σ is just an assignment
statement, of the form

f := t (20)

where f is a constant symbol in Σ and t ∈ TΣ.
Applied to a Σ-structure S, (20) yields the step

S
f :=t

−→ S′, (21)

where S′ updates the value of f : the constant symbol f gains tS as a new
value in S′, i.e.

fS
′ = tS , (22)

and the semantics of all other symbols remains untouched, i.e. gS
′ = gS for

each g ∈ Σ, g �= f . For example, for the signature

Σ = (c, f, 0, 1) (23)

and the Σ-structure

S = (�, 0, suc), (24)

we have cS = 0 and fS = suc. The step

S
c:=f(c)
−→ S′ (25)

yields cS
′ = 1 and fS

′ = suc.
As an exercise, the reader may show that (27) updates the value of each

term t ∈ TΣ; more precisely,

tS = n iff tS′ = n + 1. (26)
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5.2 Updates of Functions

The general form of the updates over a signature Σ is of the form

f(t1, . . . , tn) := t, (27)

with f ∈ Σ and t1, . . . , tn, t ∈ TΣ ; (20) is the special case for n = 0. fS may be
conceived of as a n-dimensional array, to be updated for one argument tuple.
A step

S
f(t1,...,tn):=t

−→ S′ (28)

updates fS at (t1S
, . . . , tnS

) by tS , yielding

fS
′(t1S

, . . . , tnS
) = tS . (29)

Hence, the right-hand side and the terms t1, . . . , tn denoting the arguments
of the array on the left-hand side are evaluated in the initial state, S. The
function f remains untouched for all other arguments, i.e.

fS
′(u1, . . . , un) = fS(u1, . . . , un) (30)

for all (u1, . . . , un) �= (t1S
, . . . , tnS

). Likewise, the semantics of all other func-
tion symbols remains, i.e.

gS
′ = gS (31)

for all g ∈ Σ, g �= f . As an example, we consider the signature Σ and the
Σ-structure S given in (23) and (24). The step

S
f(c):=c

−→ S′ (32)

yields cS = 0, and, hence, with (25),

fS
′(0) = fS

′(cS) = 0. (33)

For all i ≥ 1, fS(i) remains untouched, i.e.

fS
′(i) = fS(i) = suc(i) = i + 1. (34)

Therefore, the functions fS and fS
′ differ only for the argument 0.

As an exercise, the reader may show that (34) updates the value of all
terms t (except t = c):

tS′ = 0 (35)

holds for all terms t ∈ TΣ .
Summing up, in a step S → S′, an assignment statement selects in S one

constant, or one function for one argument tuple, and in S′ replaces it by
a new value from the universe of S. In particular, the universe of S′ must
coincide with the universe of S.

From the point of view of the terms, an update S
f(t1,...,tn):=t

−→ S′ potentially
yields fresh values for all terms u which include as a subterm any term of the
form f(v1, . . . , vn) with (v1S

, . . . , vnS
) = (t1S

, . . . , tnS
).
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5.3 Consistent Assignment Statements

A step S → S′ of an ASM program in general executes more than one assign-
ment statement. This is easily achieved, provided every two such assignments
are consistent, i.e. they do not try perform different updates of the same con-
stant, or of the same function at the same argument tuple. More precisely, two
assignment statements f(t1, . . . , tn) := t and f(u1, . . . , un) := u are consistent
at a state S if

(t1S
, . . . , tnS

) = (u1S
, . . . , unS

) implies tS = uS. (36)

(This includes the case of (20) with n = 0.)
This definition is easily generalized: a set Z of assignment statements is

consistent at a state S if the elements of Z are pairwise consistent at S.
To define the semantics of assignment statements formally, let Σ be a

signature and let Z be a set of assignment statements with terms in TΣ .
Furthermore let S be a Σ-structure and assume that Z is consistent at S.
Then S and Z together define a step

S
Z

−→ S′ (37)

where S′ is a Σ-structure, too, and the universe U of S′ is identical to the
universe of S.

For an n-ary symbol f ∈ Σ and an argument u ∈ Un, we give the following

Definition: in a state S, Z updates fS at u by v if Z includes an assignment
statement of the form f(t1, . . . , tn) := t with u = (t1S

, . . . , tnS
), and v = tS .

For S′ as in (37), the value of fS
′(u) is now given by

fS
′(u) =

{
v if Z at S updates fS(u) by v,

fS(u) otherwise.
(38)

5.4 Guards and Conditional Assignment Statements

ASM employ conditional assignment statements, of the form

if α then r, (39)

where r is an assignment statement and α is a Boolean expression. The term
α plays the role of a guard of R.

For a signature Σ, the guards over Σ are symbol sequences such that

• for all t, u ∈ TΣ, “t = u” is a guard over Σ and
• if α and β are guards over Σ, so are “α ∧ β” and “¬α”.
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Hence, we assume that each signature Σ is extended by the symbols =, ∧, ¬,
true and false. Each Σ-structure S is expected to interpret these symbols
as usual. This implies, for each guard α over Σ and each Σ-structure S,

αS ∈ {true, false}. (40)

Equation (39) is a conditional assignment statement over a signature Σ iff

• α is a guard over Σ and
• for r of the form f(t1, . . . , tn) := t, the following holds: f ∈ Σ, and

t1, . . . , tn, t ∈ TΣ.

5.5 Sequential Small-Step ASM Programs and Semantics

A sequential small-step ASM program P over a signature Σ is a set of con-
ditional assignment statements over Σ, as defined in Sect. 5.4. For each Σ-
structure S, the program P defines a successor structure S′, usually written
P (S), by a step

S
P

−→ S′. (41)

To define S′, let Z =def {r| ex. “if α then r” ∈ P and αS = true} and con-
struct S′ according to (38).

The term “sequential” maz be bewildering in the face of concurrently
executed statements; the term “lock step” was perhaps more intuitive. Fur-
thermore, “small-step” refers to the limited number of updates during a step:
the number of updates is bounded by the number of conditional statements.
Hence, the term “bounded” was perhaps more accurate. We shall, however,
follow tradition.

5.6 Simulation of Conventional Control Structures

The usual forms of pseudocode differ from sequential small-step ASM mainly
with respect to control: sequences, alternatives and iterations are eliminated
in ASM in favour of parallel execution of a set of conditional assignment state-
ments. That ASM can simulate conventional control structures is fairly obvi-
ous; Sect. 5.7 will show some examples. Vice versa, some additional constant
symbols can help us to simulate the ASM control structure by conventional
means.

This kind of simulation comes however with a price: one step of an ASM
program usually requires a sequence of steps in terms of conventional control
structures. This price is quite high in the context of ASM, because a decisive
aspect of ASM is the expressive power of their single steps, as discussed in
Sect. 3.1: a sequence S → S′′

→ S′ of two steps from S to S′ is not “as good
as” the single step S → S′.
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5.7 Examples

Section 2 presented some pseudocode programs. We may wonder how they
can be represented as ASM programs.

The set extension program of Sect. 2.2 is not an ASM program at first
glance: an ASM program cannot express sequential composition. This deficit
is easily overcome, however, by a well-known “trick”: we extend the initial
state by a fresh variable, l, and evaluate l as 0 in the initial state S0. We
reformulate (5) as

P2 : par if l = 0 then X := g(X, x);
if l = 0 then l := 1;
if l = 1 then X := g(X, y);
if l = 1 then l := 2

endpar.

The same technique can be applied to get rid of the sequential composition
in the tangent algorithm of Sect. 2.3.

The bisection algorithm of Sect. 2.4, formulated as an ASM, reads

if stop(a,b)=true then result:=a,

if ¬(stop(a,b)=true) ∧ f(mean(a,b))=0 then

result:=mean(a,b),

if ¬(stop(a,b)=true) ∧ ¬(f(mean(a,b))=0)

∧ eqsign(f(a),f(mean(a,b)))=true then a:=mean(a, b),

if ¬(stop(a,b)=true) ∧ ¬(f(mean(a,b))=0)

∧ eqsign(f(b),f(mean(a,b)))=true then b:=mean(a, b)

As a final example consider a system composed of four components:

prod: a producer to produce items,
send: a sender to send produced items to a buffer,
rec : a receiver to take items from the buffer,
cons: a consumer to consume items provided by the receiver.

We base the model of this system on a signature including the 0-ary symbols
x, y and buffer. Their values may represent items to be processed by the
system. Furthermore, the values of x and y may be undefined (represented by
x undef and y undef, respectively), and the buffer may be empty (represented
by b empty).

The components interact as follows: if the value of x is undefined, a fresh
value item is assigned to x (by prod), then forwarded to the empty buffer
(by send), removed from the buffer and assigned to y (by rec), and finally
consumed (by cons).

Applied to an initial state S0 with xS0
= x undefS0

, y
S0

= y undef
S0

and
bufferS0

= b empty
S0

, the following components define a sequential ASM
program with the behaviour described:
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prod =def { if x=x undef then x := item }

send =def if ¬(x=x undef) ∧ buffer=b empty then

{ buffer := x, x := x undef }

rec =def if ¬(buffer=b empty) ∧ y=y undef then

{ y := buffer, buffer := b empty }

cons =def { if ¬(y=y undef) then y := y undef }

Then

Γ = prod ∪ send ∪ rec ∪ cons (42)

is the required sequential ASM. Its behaviour is

S0

prod
−−−→ S1

send
−−−→ S2

prod
−−−→
rec

S3

send
−−−→
cons

S4

prod
−−−→
rec

S5 . . . , (43)

where each step is labelled by the components that have guards that evaluate
to true. For reasons that will become clear later on, we emphasize the order
of occurrence of the components, and thus write (43) as

prod send
rec cons

prod send prod

rec
... (44)

6 Properties of Sequential Small-Step ASM Programs

The semantics of the programs defined in Sect. 5.5 implies a series of proper-
ties of steps, to be considered here. Two of these properties (“steps preserve
universes” and “steps respect isomorphism”) are quite obvious. The third
one, “exploration is bounded”, is intuitively also simple, but requires a bit of
formalism.

In this section, we assume a sequential small-step ASM program P over a
signature Σ, and a Σ-structure S.

6.1 Steps Preserve Universes

The semantics of sequential small-step ASM programs, as defined in Sect. 5.5,
is based on (38) and (37). There, it is explicitly specified that

The universes of S and P (S) coincide. (45)
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6.2 Steps Respect Isomorphism

Let R be a Σ-structure, and let h : S → R be an isomorphism. The definitions
in Sect. 5.3, and, in particular, Sect. 3.5 imply, for a set Z of assignment state-
ments, that Z is consistent at S iff Z is consistent at R. Furthermore, for each
k-ary f ∈ Σ and each argument tuple (u1, . . . , uk) for fS , the set Z updates
fS(u1, . . . , uk) by v iff Z updates fR(h(u1), . . . , h(uk)) by h(v). Consequently,
referring to (38), f

P (S)(u1, . . . , uk) = v iff f
P (R)(h(u1), . . . , h(uk)) = h(v).

Taking this together with (41), it now follows that

If R 	 S then P (R) 	 P (S). (46)

6.3 Exploration Is Bounded

To properly understand the last property, we now reconsider the semantics of
ASM programs, as given in (37) and (38): P describes only the updates of a
state S, and does not care about the rest of S. In fact, the rest of S is just
adopted in P (S). Technically, an update of a step S → P (S) is given by three
parameters: a function symbol f ∈ Σ, an n-tuple u of arguments for fS , and
the new value, v. Formulated more formally, let Σ be a signature, let f be a
function symbol in Σ with arity n, let U be a universe, let u ∈ Un and let
v ∈ U . Then

(f,u, v) (47)

is a Σ-update over U . For a step S → P (S), the triple (47) may be used to
indicate that fS(u) is updated by v.

Each step of P yields a set of updates. This motivates the following defi-
nition: a Σ-update (f,u, v) over the universe U of S is a P-update of S iff

fS(u) �= f
P (S)(u) = v. (48)

Let

(P, S) (49)

denote the set of all P -updates of S. Now, let T0 ⊆ TΣ be the set of all
terms occurring in P . Let T be the subterm closure of T0, i.e. the terms in
T0 together with all their subterms. Let R and S be two Σ-structures that T

cannot distinguish, i.e., for all t ∈ T

tR = tS . (50)

Then P inevitably yields the same updates for both states:

(P, R) = (P, S). (51)
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7 Gurevich’s Theorem

We now search for a characterization of the expressive power of sequential
small-step ASM. We state this problem as a question about transition systems,
as considered in (2) and (12).

7.1 A Question and a Partial Solution

What requirements on a transition system A = (states, init, F ) would guar-
antee that F can be represented as a sequential small-step ASM program P as
defined in Sect. 5.5? It will turn out that, essentially, the properties discussed
in Sect. 6 provide such a set of requirements.

The first requirement for the above question is obvious: there must exist
a signature Σ such that states (and hence init) is a set of Σ-structures. The
properties of sequential small-step ASM, as discussed in Sect. 6, must hold for
F , and hence they provide another three requirements for the above question:
F preserves universes, i.e., for each state S ∈ states, the domains of S and
F (S) coincide. Furthermore, F respects isomorphisms, i.e., for each S ∈ states

and each R 	 S, F (R) 	 F (S). This requires F be well defined for each R

isomorphic to some S ∈ states. Consequently, we require states to be closed
under isomorphism, i.e. if S ∈ states and S 	 R, then R ∈ states. The last
requirement starts from the obvious observation that the required program P

essentially makes use of finitely many terms t ∈ TΣ. Together with (50) and
(51), this implies that there exists a finite set T ⊆ TΣ of terms such that two
states evolve with the same updates if they interpret all t ∈ T alike.

7.2 Some Properties of Transition Systems

The above informal discussion, together with Sect. 6, will now be rephrased
in a more formal setting. To this end, let A = (states, init, F ) be a transition
system.

A is signature-based iff there exists a signature Σ such that states is a set
of Σ-structures. If Σ is known, A is denoted as Σ-based.

In the rest of this section, we assume A to be Σ-based.

A preserves universes if, for each S ∈ states, the universes of S and of
F (S) coincide.

A is isomorphism-closed if, for each S ∈ states and each structure R 	 S,
R ∈ states.

A respects isomorphism iff, for each S ∈ states and each R 	 S, F (R) 	
F (S).

The last property requires the following definition: for a state S ∈ states, an
update of A at S is a triple (f,u, v) with f ∈ Σ, u ∈ Uk and v ∈ U , where k

is the arity of f , U is the carrier of S and fS(u) �= f
F (S)(u) = v. Let (S)
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denote the set of all updates at a state S ∈ states. The last property now
reads as follows:

A bounds exploration iff there exists a finite set T ⊆ TΣ of terms, such
that for all R, S ∈ states, the following holds: if tR = tS for all t ∈ TΣ, then
(R) = (S).

A is ASM-adapted iff A is signature-based, A preserves universes, A is
isomorphism-closed, A respects isomorphism and A bounds exploration.

7.3 Gurevich’s Theorem

It is intuitively quite obvious that the properties of Sect. 7.2 provide necessary
conditions for the question of Sect. 7.1: F can be represented as a sequential
small-step ASM program only if A is ASM-adapted.

As an amazing and beautiful result, Gurevich in [13] has proven that this
property is also sufficient! Hence we have the following theorem.

Theorem 1

Let A = (states, init,F ) be an ASM-adapted transition system. Then there
exists a sequential small-step ASM program P such that

F = P |states . (52)

The proof of this theorem is far from trivial. It has been examined critically
in [19].

III: Extensions

Not every algorithm is sequential or small-step. There are distributed, reac-
tive, and large-step algorithms. The ASM approach covers those algorithms
as generalizations of the version presented in Part II. We glance at some of
those versions in this part.

8 Sequential Large-Step ASM Algorithms

As explained in Sect. 5.5, the term “small-step” refers to the limited number
of updates in each step of an ASM program P : this number is bounded by
the number of assignment statements in P . Of course, there are algorithms
without such a bound. We present an example of such an algorithm and show
its representation in an extended version of an ASM program.
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8.1 An Example: Node Reachability

Let G be a directed graph and let root be a distinguished node of G. We seek
for an algorithm that computes a unary predicate R on the nodes of G, to
discern the nodes reachable from root.

Intuitively, this algorithm operates as follows. Initially, R(x) holds if and
only if x is the root. The following step is iterated until a fixed-point is reached
(i.e. a state identical to its successor state): for all arcs x → y with R(x) and
¬R(y), extend R by y.

The amount of work executed in one step is unbounded: in a state S, the
number of arcs x → y in G with R(x) and ¬R(y), is not limited. The algorithm
can therefore not be represented by a small-step ASM program.

8.2 Quantified Variables

The above node reachability algorithm can be presented with a standard tech-
nique of formal logic, namely quantified variables. The steps of the algorithm
can then be described by the program

do for all x, y, with Edge(x, y) ∧ R(x) ∧ ¬R(y)

R(y) := true.
(53)

Equation (53) is a large-step ASM program.
An algorithm is large-step not only if the amount of change fails to be

bounded. A step is also large if the number of items involved is bounded.
An example of an unbounded number of items involved is the following ASM
program that checks whether a given graph has isolated points:

if ∀x ∃y Edge(x, y) then output := false

else output := true
(54)

9 Non-deterministic and Reactive ASM

So far, we have assumed an ASM program P over a signature Σ to define
a unique successor state P (S) for each state, i.e. each Σ-structure S. This
generalizes to a set P (S) of successor states for non-deterministic programs
P . Non-determinism can be caused by various means, considered below.

9.1 Non-deterministic Semantics

One may change the semantic rule (38): in a state where more than one
assignment statement’s guard is evaluated as true, one may select one or a
subset of them for execution. Though possible in principle, this idea is fairly
bewildering for the reader used to the conventional approach and has therefore
rarely been used.
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9.2 The Operator “choose”

The “choose” operator is frequently useful. For example, let A = {a1, . . . , ak}

be a set of symbols. We require an algorithm to produce all symbol sequences
u ∈ A∗ such that, for v, w ∈ Σ∗,

u = vw, v �= w and |v| = |w|. (55)

The ASM program in Fig. 7 (with “choose” and “for all”) does the job, pro-
vided the “choose” operator is fairly applied, i.e., every candidate value is
eventually chosen.

choose n, i with i < n

choose a, b ∈ Σ with a �= b

v(i) := a

w(i) := b

forall j < n, j �= i

choose a, b ∈ Σ

v(j) := a

w(j) := b

Fig. 7. Application of choose operator

9.3 The Reactive Case

The last source of non-determinism is the case where the environment updates
a constant fS or a function fS for some argument tuple u, at a state S. This
is the case of reactive systems.

From the perspective of a program P , a step S → S′ then includes a
spontaneous change of the value of fS or fS(u), respectively, not caused by
P . Technically, this is a non-deterministic choice from a set of alternatives,
in general infinite: an elegant method to construct reactive ASM programs.
Details of this topic can be found in [2, 1], for example, and many other papers
published mainly by Blass and Gurevich.

9.4 Turbo Algorithms

As is frequently mentioned, the faithful-modelling requirement as discussed
in Sect. 3.1 is sensitive to the atomicity of steps. There are good reasons to
squeeze more than one action, in particular communicating actions of reactive
algorithms, into one step. This aspect has been addressed in many contribu-
tions, including [11, 3].
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10 Distributed ASM

Both small-step and large-step ASM algorithms describe a single run of an
algorithm, as a sequence S0S1 . . . of states Si. This is not adequate for dis-
tributed algorithms. As discovered by Petri in the 1960s [17] and discussed
later also by Pratt [18], Lamport [15] and Gurevich [11], a run of a distributed
algorithm is a partially ordered set of events, with a > b iff a is causally nec-
essary for b.

10.1 Distributed ASM Programs

This gives rise to the idea of a distributed version of ASM: a distributed ASM
is just a non-empty, finite set of ASM programs, all over the same signature Σ.
The programs are then called components of the distributed ASM, and every
Σ-structure forms a state of the distributed ASM. The components may be
executed concurrently if they involve stores with separate locations.

A proper definition of small-step distributed ASM can be found in [10] .
The general case of distributed ASM is discussed in [11].

10.2 An Example of a Distributed ASM

As an example, consider the producer/consumer system of Sect. 5.7:

D = {prod, send, rec, cons} (56)

is a distributed ASM. Notice that (56) differs decisively from the sequential
ASM in (42): a sequential ASM is a single set of conditional assignment state-
ments, while a distributed ASM is a family of sets of conditional assignment
statements. This implies a notion of distributed runs. The ASM program D

in (56) yields a partially ordered run of occurrences of its four components,
shown in Fig. 8.

send

prod

rec

cons

send

prod

rec

prod
...

...

Fig. 8. Partial order of component occurrences of a distributed run of the pro-
ducer/consumer ASM

It is illuminating to compare the partial order of the component occur-
rences, as outlined in Fig. 8, with the partial order of (44): in fact, the latter
is unnecessarily strict. This is due to the lockstep semantics of a sequential
ASM: a run is a sequence of steps, and its action occurrences are unordered
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if they belong to the same step. This yields partial orders with a transitive
non-order relation, such as (44). Figure 8 shows that, for a distributed run of a
distributed ASM, non-order of action occurrences is not necessarily transitive:
the second production occurs unordered with the first consumption, which in
turn occurs unordered with the second send. But the second production is
causally before the second send. This example shows that distributed ASM in
fact provide a substantial generalization of sequential ASM.

11 ASM as a Specification Language

In this chapter, we shall not evenattempt to glance at the large number of
application projects of ASM. Nor shall we discuss all the tools and techniques,
for example, for refinement and simulation, that support ASM as a specifica-
tion language. We concentrate on one fundamental aspect only, i.e., the role
plazed by constants and functions for various purposes in an algorithm.

11.1 Static Constants and Functions

Theory does not prevent any state S from interpreting the constant symbol
“2” by the Boolean value “true”, or the function symbol “

√
” as a function

that assigns each employee of a company his or her salary. But this is not what
the reader expects. There are a number of symbols with unique worldwide-
accepted interpretations, including the integer symbols “0”, . . . , “9”, used
to construct representations of integers and rational numbers, and function
symbols such as +, −,

√
and −1, used to denote the corresponding wellknown

functions. Some symbols have a generally agreed denotation only in specific
communities. It is of course reasonable to require the initial state S of an
algorithm to interpret such symbols according to their conventional denotation
and never to update them. In Sect. 5.4 we remarked that the symbols for
propositional logic such as “¬” and “∧” must be interpreted as usual, in
order to construct reasonable guards. A set of constants and functions is made
available this way and is denoted as static for obvious reasons.

More generally, we denote as “static” also constants and functions that are
fixed in the initial state and are never updated. They typically play the role
of an input to the algorithm. Typical examples are f and ε in the bisection
algorithm, C and p in the tangent algorithm and f in the halting-problem
decision algorithm.

Notice the generalized concept of “input” here: it may include entire func-
tions, such as f in Fig. 5 and (8), and hence, in general, infinite structures.

11.2 Constant Symbols as “Program Variables”

The non-static constants include, in particular, symbols which in conventional
programming languages would play the role of variables: such a symbol, x,
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gains some irrelevant value in the initial state. x is updated before being read,
i.e. an assignment statement with x on the left side is executed before an
assignment statement with x occurring in the term on its right side is exe-
cuted. Consequently, a constant symbol frequently plays the role of a program
variable, a frequent source of confusion for ASM beginners. In particular the
reader must not confuse this kind of constant with a quantified variable, as
introduced for large-step ASMs in Sect. 7.

11.3 Further Roles of Constants and Functions

A constant symbol occurring on the left but never on the right side of an
assignment statement may be used as an output variable for a reactive al-
gorithm. More generally, for the sake of clarity, one may explicitly declare a
constant symbol as an “output variable” if it is assumed to be read by the
environment.

12 Conclusion

This chapter is intended to show that the ASM approach indeed suggests a
reasonable notion of an “algorithm”, that is very adequate as a framework for
the modelling of systems. Implementable systems arise as the special case of
states with a bit-level representation for all components.

Two aspects in particular motivate the choice of ASM. Firstly, ASM fit
perfectly into the framework of general algebra and logic. The use of the
notion of structures, signatures, and Σ-structures to describe system states in
an abstract way is well established. Computer science employs those notions
in the context of algebraic specifications, to abstractly describe states. As
a (sequential) behaviour is a sequence of Σ-structures, it is very natural to
describe steps in terms of Σ-structures too.

Secondly, the definition of a sequential small-step ASM as a set of simul-
taneously executed set of conditional statements is motivated very well by
Gurevich’s theorem, as described in Sect. 7.3.

The idea of employing mathematical structures as components of stateswas
advocated in [5]: data spaces such as stacks, trees and all forms of data struc-
tures in Algol, Lisp and Fortran, together with corresponding operations, de-
fine virtual machines. ASM generalizes this to any kind of data space, via
algebras; [5] is restricted to structures that are implementable in a canonical
way.

Ganzinger [7] suggested that the state of a program P should be defined as
Σ-algebras, exactly as done in ASM. Ganzinger formally defines the semantics
of P to be a free construct, i.e. a mapping from a set of Σ-algebras to a set
of Σ-algebras. Reference [8] expands on this idea; it may be likewise applied
to ASM.
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The “state-as-algebra” paradigm [8] has been a basis for various lines of
research. Categorical constructs, as employed in [7], were also used in [21].
In [9], it was shown that the “state-as-algebra” paradigm was useful for de-
scribing the semantics of specification languages such as VDM, Z and B. The
authors of that paper advocated a combination of algebraic and imperative
specifications, of which ASM provided an example. A further example is the
“algebraic specification with implicit state” approach of [6].

Modern specification techniques such as Z, TLA and FOCUS follow logic-
based guidelines, such as “a specification is a (huge) logical expression”, “im-
plementation (refinement) is implication”, and “composition is conjunction”.
The ASM formalism was not designed along these guidelines, but it does not
contradict them. It might be useful to critically review those guidelines in the
light of ASM.

One may very well expect many related representations of algorithms to
arise, in particular further variants of non-deterministic, distributed interac-
tive algorithms and other variants, both small-step and large-step, together
with interesting characterizing theorems, in analogy to Gurevich’s theorem.
In the long term, we may get used to seeing this approach as an adequate
starting point for computer science curricula.
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reactive algorithms, 40
run of a transition system, 18

sequential small-step ASM program,
33

signature, 28
small-step, 38
structure, 27
successor structure, 33

transition system, 18
turbo algorithms, 40

update over a signature, 31
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1 Introduction

1.1 Overview of B

Classical B is a state-based method developed by Abrial for specifying, design-
ing and coding software systems. It is based on Zermelo–Fraenkel set theory
with the axiom of choice. Sets are used for data modelling, generalised substi-
tutions are used to describe state modifications, the refinement calculus is used
to relate models at varying levels of abstraction, and there are a number of
structuring mechanisms (machine, refinement and implementation) which are
used in the organisation of a development. The first version of the B method
is extensively described in The B Book [2]. It is supported by the Atelier B
tool [50] and by the B Toolkit [78].

Central to the classical B approach is the idea of a software operation
which will perform according to a given specification if called within a given
pre-condition. Subsequent to the formulation of the classical approach, Abrial
and others have developed a more general approach in which the notion of
event is fundamental. An event has a firing condition (a guard) as opposed
to a pre-condition. It may fire when its guard is true. Event-based models
have proved useful in requirements analysis, in modelling distributed systems
and in the discovery/design of both distributed and sequential programming
algorithms.

After extensive experience with B, current work by Abrial has proposed
a formulation of a second version of the method [4]. This distills experience
gained with the event-based approach and provides a general framework for
the development of discrete systems. Although this widens the scope of the
method, the mathematical foundations of both versions of the method are the
same.
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1.2 Proof-based Development

Proof-based development methods [2, 15, 86] integrate formal proof techniques
into the development of software systems. The main idea is to start with a
very abstract model of the system under development. Details are gradually
added to this first model by building a sequence of more concrete models.
The relationship between two successive models in this sequence is that of
refinement [2, 15, 17, 47]. The essence of the refinement relationship is that
it preserves already proved system properties including safety properties and
termination.

A development process gives rise to a number of proof obligations, which
guarantee its correctness. Such proof obligations are discharged by the proof
tool using automatic and interactive proof procedures supported by a proof
engine [50, 51].

At the most abstract level, it is obligatory to describe the static properties
of a model’s data by means of an invariant predicate. This gives rise to proof
obligations relating to the consistency of the model. These are required to
ensure that data properties which are claimed to be invariant are preserved
by the events or operations of the model. Each refinement step is associated
with a further invariant which relates the data of the more concrete model
to those of the abstract model and states any additional invariant proper-
ties of the (possibly richer) concrete data model. These invariants, so-called
gluing invariants are used in the formulation of the proof obligations of the
refinement.

The goal of a B development is to obtain a proved model. Since the devel-
opment process leads to a large number of proof obligations, the mastering
of proof complexity is a crucial issue. Even if a proof tool is available, its
effective power is limited by classical results over logical theories and we must
distribute the complexity of the proofs over the components of the current de-
velopment process, for example by refinement. Refinement has the potential
to decrease the complexity of the proof process whilst allowing for traceability
of requirements.

B models rarely need to make assumptions about the size of a system
being modelled, for example the number of nodes in a network. This is in
contrast to model-checking approaches [49]. The price to be paid is that we
face possibly complex mathematical theories and difficult proofs. The reuse
of developed models and the structuring mechanisms available in B help in
decreasing the complexity. Where B has been exercised on known difficult
problems, the result has often been a simpler proof development than has
been achieved by users of other more monolithic techniques [85].

1.3 Scope of Modelling in B

The scope of the B method concerns the complete process of software and
system development. Initially, the B method was restricted mainly to the de-
velopment of software systems [20, 66, 74] but a wider scope for the method
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has emerged with the incorporation of the event-based approach [3, 4, 13, 31,
33, 99] and is related to the systematic derivation of reactive distributed sys-
tems. Events are expressed simply in the rich syntax of the B language. Abrial
and Mussat [13] introduced elements to handle liveness properties. Refinement
in the event-based B method does not deal with fairness constraints but in-
troduces explicit counters to ensure the happening of abstract events, while
new events are introduced in the refined model. Among several case studies
developed in B, we can mention the METEOR project [20] for controlling
train traffic, the PCI protocol [36] and the IEEE 1394 Tree Identify Proto-
col [10]. Finally, B has been combined with CSP for handling communications
systems [30, 31], and has also been combined with action systems [33, 99].

The proposed second version of B can be compared to action systems [16],
UNITY programs [47] and TLA [71] specifications, but there is no notion of
abstract fairness like that in TLA or UNITY.

1.4 Related Techniques

The B method is a state-based method integrating set theory, predicate calcu-
lus and generalized substitution language. We now briefly compare with some
related notations.

Like Z [100] (see also the chapter by Henson et al. in this book [65]),
B is based on the ZF set theory; the two notations share the same roots,
but we can point to a number of interesting differences. Z expresses a state
change by use of before and after predicates, whereas the predicate transformer
semantics of B allows a notation which is closer to programming. Invariants
in Z are incorporated into operation descriptions and alter their meaning,
whereas an invariant in B is checked against the state changes described by
the operations and events to ensure consistency. Finally B makes a careful
distinction between the logical properties of pre-conditions and guards, which
are not clearly distinguished in Z.

The refinement calculus used in B for defining refinement between models
in the event-based B approach is very close to Back’s action systems, but tool
support for action systems appears to be less mechanized than that for B.

TLA+ [72] (see also the chapter by Merz in this book [83]) can be com-
pared to B, since it includes set theory with the ε operator of Hilbert. The
semantics of TLA temporal operators is expressed over traces of states whereas
the semantics of B actions is expressed in the weakest precondition calculus.
Both semantics are equivalent with respect to safety properties, but the trace
semantics of TLA+ allows an expression of fairness and eventuality properties
that is not directly available in B.

VDM [69] (see also the chapter by Fitzgerald in this book [58]) is a method
with similar objectives to classical B. Like B, it uses partial functions to model
data, which can lead to meaningless terms and predicates, for example when
a function is a applied outside its domain. VDM uses a special three-valued
logic to deal with indefiniteness. B retains classical two-valued logic, which
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simplifies proofs at the expense of requiring more care with indefiniteness.
Recent approaches to this problem will be mentioned later.

The ASM method [34, 62] (see also the chapter by Reisig in this book
[95]) and B share common objectives related to the design and analysis of
(software/hardware) systems. Both methods bridge the gap between human
understanding and formulation of real-world problems and the deployment
of their computer-based solutions. Each has a simple scientific foundation:
B is based on set theory, and the ASM method is based on the algebraic
framework with an abstract state change mechanism. An ASM is defined by a
signature, an abstract state, a finite collection of rules and a specific rule; rules
provide an operational style that is very useful for modelling specification and
programming mechanisms. Like B, ASM includes a refinement relation for the
incremental design of systems; the tool support of ASM is under development
but it allows one to verify and to analyse ASMs. In applications, B seems to
be more mature than ASM, even though the latter has several real successes
such as the validation [101] of Java and the Java Virtual Machine.

1.5 Summary of Chapter

The following sections provide a short description of event B:

• The B language and elements on the classical B method: syntax and se-
mantics of operations, events, assertions, predicates, machines, models.

• The B modelling language and a simple introductory example: event B,
refinement, proof-based development.

• The other sections illustrate the event B modelling method by case studies:
– sequential algorithms;
– combining coordination and refinement for sorting;
– spanning-trees algorithms;
– a distributed leader election algorithm.

• The final section concludes the chapter with some words on B modelling
techniques and ongoing research.

2 The B Language

2.1 The B Language for Sets, Predicates and Logical Structures

The development of a model starts with an analysis of its mathematical struc-
ture, i.e., sets, constants and properties over sets and constants, and we pro-
duce the mathematical landscape by requirements elicitation. However, the
statement of the mathematical properties can be expressed using various as-
sumed properties, for instance, a constant n may be a natural number and
may be required to be greater than 3, which is classically and formally written
as n ∈ N ∧ n ≥ 3, or a set of persons may be required not empty, which is
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classically and formally written as persons �= ∅. Abrial et al. [9] have devel-
oped a structure language which allows one to encode mathematical structures
and their accompanying theorems. Structures improve the possibility of mech-
anized proofs, but they are not yet in the current version of the B tools; there
is a close connection with structuring mechanisms and the algebraic struc-
tures [57], but the main difference is in the use of sets rather than of abstract
data types. The mathematical structures of B are built using the notation of
set theory, and we list the main notation used (and its meaning) below; the
complete notation is described in The B Book [2].

Sets and Predicates

Constants can be defined using first-order logic and the set-theoretical no-
tation of B. A set can be defined using either the comprehension schema
{ x | x ∈ s ∧ P (x)}, or the Cartesian product schema s × t or using opera-
tors over sets such power P(s), intersection ∩ and union ∪. y ∈ s is a predicate
which can sometimes be simplified either from y ∈ { x | x ∈ s ∧ P (x)}
into y ∈ s ∧ P (y), or from x �→ y ∈ s × t into x ∈ s ∧ y ∈ t, or
from t ∈ P(s) into ∀ x . ( x ∈ t ⇒ x ∈ s), where x is a fresh variable. A
pair is denoted by either ( x , y ) or x �→ y .

A relation over two sets s and t is an element of P(s × t); a relation r has
a domain dom(r) and a co-domain ran(r). A function f from the set s to the
set t is a relation such that each element of dom(f) is related to at most one
element of the set t.

A function f is either partial f ∈ A �→ B, or total f ∈ A → B→.
Then, we can define the term f(x) for every element x in dom(f) using the
choice function (f(x) = choice(f [{x}]) where f [{x}] is the subset of t, whose
elements are related to x by f . The choice function assumes that there exists
at least one element in the set, which is not the case for the ε operator which
can be applied to an empty set ∅ and returns some value. If x �→ y ∈ f then
y = f(x) and f(x), is well defined, only if f is a function and x is in dom(f).

We summarize in Table 1 the set-theoretical notation that can be used in
the writing of formal definitions related to constants. In fact, the modelling of
data is oriented towards sets, relations and functions; the task of the specifier
is to use the notation effectively.

A Simple Case Study

Since we have only a small amount of space for explaining the concepts of B,
we shall use a very simple case study, namely the development of models for
computing the factorial function; we can illustrate the expressivity of the B
language for predicates. Other case studies can be found in earlier publications
(see for instance, [2, 3, 8, 10, 11, 36, 40, 41]). When considering the definition of
a function, we can use various styles to characterize it. A function is mathe-
matically defined as a (binary) relation over two sets, called the source and
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Name Syntax Definition
Binary relation s ↔ t P(s × t)

Composition of relations r1; r2 {x, y |x ∈ a ∧ y ∈ b ∧
∃z.(z ∈ c ∧ x, z ∈ r1 ∧ z, y ∈ r2)}

Inverse relation r−1 {x, y|x ∈ P(a) ∧ y ∈ P(b) ∧ y, x ∈ r}
Domain dom(r) {a |a ∈ s ∧ ∃b.(b ∈ t ∧ a �→ b ∈ r)}
Range ran(r) dom(r−1)

Identity id(s) {x, y|x ∈ s ∧ y ∈ s ∧ x = y}
Restriction s � r id(s); r

Co-restriction r � s r; id(s)
Anti-restriction s �− r (dom(r) − s) � r

Anti-co-restriction r �− s r � (ran(r) − s)
Image r[w] ran(w � r)

Overriding q �− r (dom(r) �− q) ∪ r
Partial function s �→ t {r | r ∈ s ↔ t ∧ (r−1; r) ⊆id(t)}

Table 1. Set-theoretical notation

the target and it satisfies the functionality property. The set-theoretical frame-
work of B invites us to follow this method for defining functions; however, a
recursive definition of a given function is generally used. The recursive defi-
nition states that a given mathematical object exists and that it is the least
solution of a fixed-point equation. Hence, the first step of a B development
proves that the function defined by a relation is the least fixed-point of the
given equation. Properties of the function might be assumed, but we prefer
to advocate a style of fully proved development with respect to a minimal set
of assumptions. The first step enumerates a list of basic properties considered
as axioms and the final step reaches a point where both definitions are proved
to be equivalent.

First, we define the mathematical function factorial, in a classical way:
the first line states that factorial is a total function from N into N, and the
subsequent lines state that factorial satisfies a fixed-point equation and, by
default, this is assumed to be the least fixed-point:

factorial ∈ N −→ N ∧
factorial(0) = 1 ∧
∀n.(n ≥ 0 ⇒ factorial(n + 1) = (n + 1) × factorial(n))

factorial is a B constant and has B properties.
In previous work on B [38], we used this definition and wrote it as a B

property (a logical assumption or an axiom of the current theory) but nothing
tells us that the definition is consistent and that it defines an existing func-
tion. A solution is to define the factorial function using a fixed-point schema
such that the factorial function is the least fixed-point of the given equa-
tion over relations. The factorial function is the smallest relation satisfying
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some conditions and, especially, functionality; the functionality is stated as a
logical consequence of the B properties. The point is not new, but it allows
us to introduce students to some ideas that put together fixed-point theory,
set theory, theory of relations and functions, and the process of validation
by proof (mechanically done by a prover). The computation of the factorial
function starts with a definition of the factorial function which is carefully
and formally justified using the theorem prover. factorial is still a B constant
but it is defined differently.

The factorial function is a relation over natural numbers and it is defined
by its graph over pairs of natural numbers:

(AXIOMS OR B PROPERTIES)

factorial ∈ N ↔ N ∧
0 �→ 1 ∈ factorial ∧

∀(n, fn) ·
⎛

⎝
n �→ fn ∈ factorial

⇒
n + 1 �→ (n + 1) × fn ∈ factorial

⎞

⎠

The factorial function satisfies the fixed-point equation and is the least fixed-
point:

(AXIOMS OR B PROPERTIES)

∀f ·

⎛

⎜
⎜
⎜
⎜
⎝

f ∈ N ↔ N ∧
0 �→ 1 ∈ f ∧
∀(n, fn).(n �→ fn ∈ f ⇒ n + 1 �→ (n + 1) × fn ∈ f)

⇒
factorial ⊆ f

⎞

⎟
⎟
⎟
⎟
⎠

The statements above are B properties of the factorial function, and from
these B properties, we can derive the functionality of the resulting least fixed-
point: factorial is a function is a logical consequence of the new definition of
factorial:

(CONSEQUENCES OR B ASSERTIONS)

factorial ∈ N −→ N ∧
factorial(0) = 1 ∧
∀n.(n ∈ N ⇒ factorial(n + 1) = (n + 1) × factorial(n))

Now, factorial has been proved to be a function and no assumption concern-
ing the functionality has been left unspecified or simply an assumption. Proofs
are carried out using first-order predicate calculus together with set theory and
arithmetic. When we have proved that factorial is a function, this means that
every derived property can be effectively obtained by a mechanical process of
proof; the proof can be reused in another case study, if necessary. The proof is
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an application of the induction principle; every inductive property mentions
a property over values of the underlying structure, namely P(n); hence we
should quantify over predicates and derive theorems in higher-order logic [9].
Using a quantification over subsets of a set, we can get higher order theorems.
For instance, P(n) is represented by the set {n|n ∈ NATURAL ∧ P(n)},
and the inductive property can be stated as follows; here, the first expression
is given in the B language and the second expression (equivalent to the first is
given) in classical mathematical notation (succ denotes the successor function
defined over natural numbers):

B statement

∀P ·

⎛

⎜
⎜
⎜
⎜
⎝

P ⊆ N ∧
0 ∈ P ∧
succ[P ] ⊆ P

⇒
N ⊆ P )

⎞

⎟
⎟
⎟
⎟
⎠

classical logical statement

∀P ·

⎛

⎜
⎜
⎜
⎜
⎝

P(n) a property on N ∧
P(0) ∧
∀n ≥ 0 · (P(n) ⇒ P(n + 1))

⇒
∀n ≥ 0 · P(n)

⎞

⎟
⎟
⎟
⎟
⎠

The higher-order aspect is achieved by the use of set theory, which offers the
possibility to quantify over all the subsets of a set. Such quantification indeed
give s the possibility to climb up to higher-order in a way that is always
framed.

The structure language introduced by Abrial et al. [9] can be useful for
providing the ability to reuse already formally validated properties. It is then
clear that the first step of our modelling process is an analysis of the mathe-
matical landscape. An analysis of properties is essential when dealing with the
indefiniteness of expressions, and the work of Abrial et al. [9] and the doctoral
thesis of Burdy [29] propose different ways to deal with this question. For in-
stance, the existence of a function such as factorial may appear obvious, but
the technique of modelling might lead to silly models if no proof of definite-
ness is done. In the proof of the functionality of factorial, it is necessary to
instantiate the variable P in the inductive property by the following set:

{n|n ∈ N ∧ 0..n � factorial ∈ 0..n −→ N}

Now, we consider the structures in B used for organizing axioms, defini-
tions, theorems and theories.

Logical Structures in B

The B language of predicates, denoted BP, for expressing data and properties
combines set theory and first-order predicate calculus with a simple arithmetic
theory. The B environment can be used to derive theorems from axioms; B
provides a simple way to express axioms and theorems using abstract ma-
chines without variables. This is a way to use the underlying B prover and to
implement the proof process that we have described.
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An abstract machine has a name m; the clause SETS contains definitions of
the sets in the problem; and the clause CONSTANTS allows one to introduce
information related to the mathematical structure of the problem to be solved.

MACHINE
m

SETS
s

CONSTANTS
c

PROPERTIES
P (s, c)

ASSERTIONS
A(x)

END

The clause PROPERTIES contains the effective
definitions of constants: it is very important to
list carefully the properties of constants in a
way that can be easily used by a tool. The
clause ASSERTIONS contains the list of theo-
rems to be discharged by the proof engine. The
proof process is based on sequent calculus; the
prover provides (semi-)decision procedures [50]
for proving the validity of a given logical fact,
called a sequent and allows one to build the
proof interactively by applying possible rules
of sequent calculus.

For instance, the machine FACTORIAL_DEF introduces a new constant
called factorial satisfying the properties given above. The functionality of
factorial is derived from the assumptions in the clause ASSERTIONS.

MACHINE
FACTORIAL_DEF

CONSTANTS
factorial

PROPERTIES
factorial ∈ N ↔ N ∧
0 �→ 1 ∈ factorial ∧
∀(n, fn).(n �→ fn ∈ factorial ⇒ n + 1 �→ (n + 1) × fn ∈ factorial) ∧

∀f ·

⎛

⎜
⎜
⎜
⎜
⎝

f ∈ N ↔ N ∧
0 �→ 1 ∈ f ∧
∀(n, fn).(n �→ fn ∈ f ⇒ n + 1 �→ (n + 1) × fn ∈ f)

⇒
factorial ⊆ f

⎞

⎟
⎟
⎟
⎟
⎠

ASSERTIONS
factorial ∈ N −→ N ;
factorial(0) = 1 ;
∀n.(n ∈ N ⇒ factorial(n + 1) = (n + 1) × factorial(n))

END

The interactive prover breaks a sequent into simpler-to-prove sequents, but
the user must know the global structure of the final proof. BP allows us to
define the underlying mathematical structures required for a given problem;
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now we shall describe how to specify states and how to describe transitions
over states.

2.2 The B Language of Transitions

The B language is not restricted to classical set-theoretical notation and se-
quent calculus; it includes notation for defining transitions over states of the
model, called generalized substitutions. In its simple form, x := E(x), a gen-
eralized substitution looks like an assignment; the B language of generalized
substitutions called GSL (Generalized Substitution Language) (see Fig. 2)
contains syntactical structures for expressing different kinds of (state) transi-
tions. The generalized substitutions of GSL allow us to write operations in the
classical B approach [2]; a restriction of GSL leads to events in the event-based
B approach [4, 13]. In the following subsubsections, we address the semantic
issues of generalized substitutions and the differences between operations and
events.

Generalized Substitutions

Generalized substitutions provide a way to express transformations of the
state variables of a given model. In the construct x := E(x), x denotes a vector
of state variables of the model, and E(x) a vector of expressions of the same
size as the vector x. The interpretation we shall give here to this statement
is not however, that of an assignment statement. The class of generalized
substitutions contains the following possible forms of generalized substitution:

• x := E (assignment).
• skip (stuttering).
• P |S (precondition) (or pre P then S end).
• S�T (bounded choice) (or choice S1 or S2 END).
• P ⇒ S (guard) (or select (or when) P then S end).
• @z.S (unbounded choice).
• x :∈ S (set choice), x : R(x0, x), x : |R(x0, x) (generalized assignment).
• S1; S2 (sequencing).
• while B do S invariant J variant V end.

The meaning of a generalized substitution S is defined in the weakest-
precondition calculus [55, 56] by the predicate transformer λP ∈ BP.[S]P ,
where [S]P means that S establishes P . Intuitively, this means that every
accepted execution of S, starting from a state s satisfying [S]P , terminates
in a state satisfying P ; certain substitutions can be feasibly executed (or ac-
cepted for execution) by any physical computational device; this means also
that S terminates for every state of [S]P . The weakest-precondition opera-
tor has properties related to implication over predicates: λP ∈ BP.[S]P is
monotonic with respect to implication, and it is distributive with respect to
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the conjunction of predicates. The properties of the weakest-precondition op-
erator have been known, since the work of Dijkstra [55, 56] on the semantics
defined by predicate transformers. The definition of λP ∈ BP.[S]P is induc-
tively expressed over the syntax of B predicates and the syntax of generalized
substitutions. [S]P can be reduced to a B predicate, which is used by the
proof-obligations generator. Table 2 contains the inductive definition of [S]P .

Name Generalized substitution S [S]P

Assignment x := E P (E/x)

Skip skip P

Parallel composition x := E||y := F [x, y := E, F ]P

Non-deterministic choice x :∈ S ∀v.(v ∈ S ⇒ P (v/x))

Relational assignment x : R(x0, x) ∀v.(R(x0, v) ⇒ P (v/x))

Unbounded choice @x.S ∀x.[S]P

Bounded choice choice S1 or S2 end [S1]P ∧ [S2]P
(or equivalently S1[]S2)

Guard select G then T end G ⇒ [T ]P
(or equivalently G =⇒ S2)

Precondition pre G then T end G ∧ [T ]P
(or equivalently G|T )

Generalized guard any t where G ∀ t· ( G ⇒ [T ]P )
then T end

Sequential composition S; T [S][T ]P

Table 2. Definitions of GSL and [S]P

We say that two substitutions S1 and S2 are equivalent, denoted S1 = S2, if for
any predicate P of the B language, [S1]P ≡ [S2]P . This relation defines a way
to compare substitutions. Abrial [2] proved a theorem for the normalized form
related to any substitution; this proves that a substitution is characterized by
a precondition and a computation relation over variables.

Theorem 1. [2]
For any substitution S, there exist two predicates P and Q where x′ is not

free in P , such that S = P |@x′.(Q =⇒ x := x′).

This theorem tells us the importance of the precondition of a substitution,
which should be true when the substitution is applied to the current state,
otherwise the resulting state is not consistent with the transformation. Q
is a relation between the initial state x and the next state x′. In fact, a
substitution should be applied to a state satisfying the invariant and should
preserve it. Intuitively, this means that, when one applies the substitution,
one has to check that the initial state is correct. The weakest-precondition
operator allows us to define specific conditions over substitutions:
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• Aborted computations: abt(S)
def
= for any predicate R,¬[S]R; this defines

the set of states that cannot establish any predicate R and that are the
non-terminating states.

• Terminating computations: trm(S)
def
= ¬abt(S) this defines the termina-

tion condition for the substitution S.
• Miraculous computations: mir(S)

def
= for any predicate R, [S]R; this means

that among the states, some states may establish every predicate R, for
instance FALSE. These are called miraculous states, since they establish
a miracle.

• Feasible computations: fis(S)
def
= ¬mir(S). Miraculous states correspond

to non-feasible computations, and the feasibility condition ensures that the
computation is realistic.

Terminating computations and feasible computations play a central role in
the analysis of generalized substitutions. Tables 3 and 4 provide two lists of
rules for simplifying trm(S) and fis(S) into the B predicate language; the two
lists are not complete (see [2] for complete lists).

Generalized substitution S trm(S)
x := E TRUE

skip TRUE

x :∈ S TRUE

x : R(x0, x) TRUE

@x.S ∀x.trm(S)

choice S1 or S2 end trm(S1) ∧ trm(S2)
(or equivalently S1[]S2)

select G then T end G ⇒ trm(T )
(or equivalently G =⇒ S2)

pre G then T end G ∧ trm(T )
(or equivalently G|T )

any t where G then T end ∀ t· ( G ⇒ trm(T ) )

Table 3. Examples of definitions for trm(S)

For instance, fis(selectFALSE thenx := 0 end) is FALSE and mir(select
FALSE thenx := 0 end) is TRUE. The substitution selectFALSE thenx :=
0 end establishes any predicate and is not feasible. We cannot implement such
a substitution in a programming language.

A relational predicate can be defined using the weakest-precondition se-
mantics, namely prdx(S), by the expression ¬[S](x �= x′) which is the relation
characterizing the computations of S. Table 5 contains a list of definitions of
the predicate with respect to the syntax.

The next property is proved by Abrial and shows the relationship between
weakest-precondition and relational semantics. Predicates trm(S) and prdx(S)
are respectively defined in Tables 3 and 5, respectively.
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Generalized substitution S fis(S)
x := E TRUE

skip TRUE

x :∈ S S �= ∅
x : R(x0, x) ∃v.(R(x0, v)

@x.S ∃x.fis(S)

choice S1 or S2 end fis(S1) ∨ fis(S2)
(or equivalently S1[]S2)

select G then T end G ∧ fis(T )
(or equivalently G =⇒ S2)

pre G then T end G ⇒ fis(T )
(or equivalently G|T )

any t where G then T end ∃ t· ( G ∧ fis(T ) )

Table 4. Examples of definitions for fis(S)

Generalized substitution S prdx(S)

x := E x′ = E

skip x′ = x

x :∈ S x′ ∈ S

x : R(x0, x) R(x, x′)
@z.S ∃z.prdx(S) if z �= x′

choice S1 or S2 end prdx(S1) ∨ prdx(S2)
(or equivalently S1[]S2)

select G then T end G ∧ prdx(T )
(or equivalently G =⇒ S2)

pre G then T end G ⇒ prdx(T )
(or equivalently G|T )

any t where G then T end ∃ t· (G ∧ prdx(T ) )

Table 5. Examples of definitions for prdx(S)

Theorem 2. [2]
For any substitution S, we have: S = trm(S)|@x′.(prdx(S) =⇒ x := x′)

Both of the theorems above emphasize the roles of the precondition and the
relation in the semantic definition of a substitution. The refinement of two
substitutions can be defined simply using the weakest-precondition calculus
as follows: S is refined by T (written S � T ), if for any predicate P , [S]P ⇒
[T ]P . We can give an equivalent version of this refinement that shows that
it decreases the non-determinism. Let us define the following sets: pre(S) =
{x|x ∈ s ∧ trm(S)}, rel(S) = {x, x′|x ∈ s ∧ x′ ∈ s ∧ prdx(S)} and dom(S) =
{x|x ∈ s ∧ fis(S)}, where s is assumed to be the global set of states.

The refinement can be defined equivalently using the set-theoretical ver-
sion: S is refined by T if, and only if, pre(S) ⊆ pre(T ) and rel(T ) ⊆ rel(S).
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We can also use the previous notation and define equivalently the refinement
of two substitutions by the expression trm(S) ⇒ trm(T ) and prdx(T ) ⇒
prdx(S). The predicate prdx(S) relates S to a relation over x and x′; this
means that a substitution can be seen as something like a relation over pairs
of states.

The weakest-precondition semantics over generalized substitutions pro-
vides the semantic foundation for the generator of proof obligations; in the
following subsubsections we introduce operations and events, which are two
ways to use the B method.

Operations and Events

Generalized substitutions are used to construct operations of abstract ma-
chines or events of abstract models. Both of these notions will be detailed
in Sect. 3.1. However, we should explain the difference between them here.
An (abstract) machine is a structure with a part defining data (SETS, CON-
STANTS, and PROPERTIES), a part defining state (VARIABLES and INVARI-
ANT) and a part defining operations (OPERATIONS and INITIALISATION); it
gives its potential user the ability to only activate the operations, not to access
its state directly, and this aspect is very important for refining the machine by
making changes of variables and of operations, while keeping their names. An
operation has a precondition, and the precondition should be true when one
calls the operation. Operations are characterized by generalized substitutions,
and their semantics is based on the semantics of generalized substitutions (ei-
ther in the weakest-precondition-based style or in the relational style). This
means that the condition of preservation of the invariant (or proof obligation)
is written simply as follows:

I ∧ trm(O) ⇒ [O]I (1)

If one calls the operation when the precondition is false, any state can be
reached, and the invariant is not ensured. The style of programming is called
generous, but it assumes that an operation is always called when the precon-
dition is true. An operation can have input and output parameters and it is
called in a state satisfying the invariant, it is a passive object, since it requires
to be called to have an effect.

On the other hand, an event has a guard and is triggered in a state that
validates the guard. Both the operation and the event have a name, but an
event has no input and output parameters. An event may be observed or not
observed, and possible changes of variables should maintain the invariant of
the current model: this style is called defensive. Like an operation, an event
is characterized by a generalized substitution and can be defined by a rela-
tion over variables and primed variables: a before–after predicate, denoted
BA(e)(x, x′). An event is essentially a reactive object and reacts with respect
to its guard grd(e)(x). However, there is a restriction over the language GSL
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used for defining events and we authorize only three kinds of generalized sub-
stitution (see Table 6). In the definition of an event, three basic substitutions
are used to write an event (x := E(x), x : ∈ S(x), x : P (x0, x)), and the last
substitution is the normal form of the three. An event should be feasible, and
the feasibility is related to the feasibility of the generalized substitution of the
event: some next state must be reachable from the given state. Since events
are reactive objects, the related proof obligations should guarantee that the
current state satisfying the invariant will be feasible. Table 7 contains the def-
initions of the guards of events. We have left the classical abstract machines of
the B classical approach and are illustrating the modelling of systems through
events and models.

When using the relational style for defining the semantics of events, we use
the style advocated by Lamport [71] in TLA; an event is seen as a transforma-
tion between states before the transformation and states after the transforma-
tion. Lamport used the priming of variables to separate “before” values from
“after” values. Using this notation and supposing that x0 denotes the value of
x before the transition of an event, events can obtain a semantics defined over
the primed and unprimed variables in Table 6. The before-after predicate is
already defined in The B Book as the predicate prdx(S) defined for every sub-
stitution S [2, Sect. 2.2]. Merz introduces the TLA/TLA+ modelling language
in Chap. 8 of this volume ([83]).

Event : E Before-After Predicate
begin x : P (x0, x) end P (x, x′)

when G(x) then x : P (x0, x) end G(x) ∧ P (x, x′)
any t where G(t, x) ∃ t· ( G(t, x) ∧ P (x, x′, t) )
then x : P (x0, x, t) end

Table 6. Definitions of events and before–after predicates of events

Event : E Guard: grd(E)
begin S end TRUE

when G(x) then T end G(x)

any t where G(t, x) then T end ∃ t· G(t, x)

Table 7. Definition of events and guards of events

Any event e has a guard defining the enabledness condition over the current
state, and this guard expresses the existence of a next state. For instance, the
disjunction of all guards is used for strengthening the invariant of a B system
of events to include the freedom of the current model from deadlock. Before
we introduce B models, we give the expression stating the preservation of a
property (or proof obligation) by a given event e:

I(x) ⇒ [e] I(x) (2)
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or, equivalently, in a relational style,

I(x) ∧ BA(e)(x, x′) ⇒ I(x′) (3)

BA(e)(x, x′) is the before–after relation of the event e, and I(x) is a state
predicate over variables x. Equation (1) states the proof obligation of the
operation O using the weakest-precondition operator, and equation (3) defines
the proof obligation for the preservation of I(x), while e is observed. Since the
two approaches are semantically equivalent, the proof-obligations generator of
Atelier B can be reused for generating those assertions in the B environment.

The SELECT event is expressed by the previous notation for the WHEN
event; both are equivalent. However, the WHEN notation captures the idea
of reactivity of guarded events; B� [4, 67] provides other notation for com-
bining events. The event-B notation is enriched by the notation beginx :
| P (x0, x) end, which means that the value of the variable x is set to any value
such that P (x0, x) where x0 is the value of x before the event. In the next
subsection, we give details of abstract machines and abstract models, which
use operations and events.

3 B Models

3.1 Modelling Systems

The systems under consideration are software systems, control systems, pro-
tocols, sequential and distributed algorithms, operating systems and circuits;
they are generally very complex and have parts interacting with an envi-
ronment. A discrete abstraction of such a system constitutes an adequate
framework: such an abstraction is called a discrete model. A discrete model is
more generally known as a discrete transition system and provides a view of
the current system; the development of a model in B follows an incremental
process validated by the refinement. A system is modelled by a sequence of
models related by the refinement and managed in a project.

A project [2, 4] in B contains information for editing, proving, analysing,
mapping and exporting models or components. A B component has two sep-
arate forms: the first form concerns the development of software models, and
these B components are abstract machines, refinements and implementations ;
the second form is related to modelling reactive systems using the event-based
B approach, and the B components are simply called models. Each form cor-
responds to a specific approach to developing B components; the first form
is fully supported by the B tools [50, 78], and the second is partly supported
[50]. In the following subsubsections, we overview each approach based on the
same logical and mathematical concepts.
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Modelling Systems in the Classical B Approach

The B method [2] has historically been applied to software systems and has
helped in developing safe software for controlling trains [20]. The scope of
the method is not restricted to the specification step but includes facilities
for designing larger models or machines gathered together in a project. The
basic model is called an abstract machine and is defined in the A(bstract)
M(achine) N(otation) language. We describe an abstract machine in Table. 8.
An abstract machine encapsulates variables defining the state of the system;
the state should conform to the invariant and each operation should be called
when the current state satisfies the invariant. Each operation should preserve
the invariant when it is called.

An operation may have input/output parameters and only operations can
change state variables. An abstract machine looks like a desk calculator and
each time a user presses the button for an operation, it should be checked
that the precondition of the operation is true, otherwise no preservation of
the invariant can be ensured (for instance, division by zero). Structuring mech-
anisms will be reviewed in Sect. 3.1. An abstract machine has a name m, the
clause SETS contains definitions of sets, the clause constants allows one to
introduce information related to the mathematical structure of the problem
to be solved, and the clause PROPERTIES contains the effective definitions of
constants: it is very important to list carefully the properties of constants in
a way that can be easily used by the tool. We have not mentioned structuring
mechanisms such as sees, includes, extends, promotes, uses and imports, but
these can help in the management of proof obligations.

MACHINE
m

SETS
s

CONSTANTS
c

PROPERTIES
P (s, c)

VARIABLES
x

INVARIANT
I(x)

ASSERTIONS
A(x)

INITIALISATION
<substitution>

OPERATIONS
<list of operations>

END
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The second part of the abstract machine defines the dynamic aspects of state
variables and properties over variables using what is generally called an in-
ductive invariant , and using assertions generally called safety properties . The
invariant I(x) types the variable x, which is assumed to be initialized with
respect to the initial conditions and to be preserved by the operations (or
transitions) of the list of operations. Conditions of verification called proof
obligations are generated from the text of the model using the first part for
defining the mathematical theory and the second part is used to generate
proof obligations for the preservation (when the operation is called) of the
invariant and proof obligations stating the correctness of the safety properties
with respect to the invariant. Figure 8 contains an example of an abstract
machine with only one operation, setting the variable result to the value of
factorial(m), where m is a constant.

MACHINE
FACTORIAL_MAC

CONSTANTS
factorial, m

CONSTANTS
factorial

PROPERTIES
m ∈ N ∧
factorial ∈ N ↔ N ∧

∀f ·

⎛

⎜
⎜
⎜
⎜
⎝

f ∈ N ↔ N ∧
0 �→ 1 ∈ f ∧
∀(n, fn).(n �→ fn ∈ f ⇒ n + 1 �→ (n + 1) × fn ∈ f)

⇒
factorial ⊆ f

⎞

⎟
⎟
⎟
⎟
⎠

VARIABLES
result

INVARIANT
result ∈ N

ASSERTIONS
factorial ∈ N −→ N ;
factorial(0) = 1 ;
∀n.(n ∈ N ⇒ factorial(n + 1) = (n + 1) × factorial(n))

INITIALISATION
result :∈ N

OPERATIONS
computation = begin result := factorial(m) end

END

Table 8. An abstract machine for the computation of the factorial function
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Modelling Systems in the Event-based B Approach

Abstract machines are based on classical mechanisms such as calls of opera-
tions or input/output mechanisms. On the other hand, reactive systems react
to the environment with respect to external stimuli; the abstract models of
the event-based B approach are intended to integrate the reactivity to stimuli
by promoting events rather than operations. In contrast to operations, events
have no parameters, and there is no access to state variables. At most one
event is observed at any time in the system.

An (abstract) model is made up of a part defining mathematical struc-
tures related to the problem to be solved and a part containing elements
about state variables, transitions and (safety and invariance) properties of
the model. Proof obligations are generated from the model to ensure that the
properties hold effectively; this is called internal consistency of the model. A
model is assumed to be closed, which means that every possible change over
the state variables is defined by transitions; transitions correspond to events
observed by the specifier. A model m is defined by the following structure. A
model has a name m, the clause sets contains definitions of sets for the prob-
lem, the clause constants allows one to introduce information related to the
mathematical structure of the problem to be solved and the clause proper-
ties contains the effective definitions of constants: it is very important to list
carefully the properties of constants in a way that can be easily used by the
tool. Another point is the fact that sets and constants can be considered like
parameters, and some extensions of the B method exploit this aspect to intro-
duce parametrization techniques into the development process of B models.
The second part of the model defines the dynamic aspects of state variables
and properties over variables using an invariant, called generally the inductive
invariant, and using assertions called generally safety properties. The invari-
ant I(x) types the variable x, which is assumed to be initialized with respect
to the initial conditions and is preserved by events (or transitions) in the list
of events.

Conditions of verification called proof obligations are generated from the
text of the model, using the first part for defining the mathematical theory
and the second part is used to generate proof obligations for the preservation
of the invariant and proof obligations stating the correctness of the safety
properties with respect to the invariant. The predicate A(x) states properties
derivable from the model invariant. A model states that the state variables
are always in a given set of possible values defined by the invariant, and it
contains the only possible transitions operating over the state variables.

A model is not a program, and no control flow is related to it; however, it
requires validation. First, we we define the mathematics for stating sets, prop-
erties over sets, invariants and safety properties. The conditions of consistency
of the model are called proof obligations , and they express the preservation of
invariant properties and avoidance of deadlock.
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MODEL m
SETS s
CONSTANTS c
PROPERTIES P (s, c)
VARIABLES x
INVARIANT I(x)
ASSERTIONS A(x)
INITIALISATION

<substitution>
EVENTS

<list of events>
END

Proof obligation
(INV1) Init(x) ⇒ I(x)
(INV2) I(x) ∧ BA(e)(x, x′) ⇒ I(x′)
(DEAD) I(x) ⇒ (grd(e1) ∨ . . . grd(en))

e1, . . . , en is the list of events of the
model m. (INV1) states the initial condi-
tion which should establish the invariant.
(INV2) should be checked for every event
e of the model, where BA(e)(x, x′) is the
before–after predicate of e. (DEAD) is the
condition of freedom from deadlock: at
least one event is enabled.

The predicates in the clause ASSERTIONS should be implied by the predicates
of the clause INVARIANT. This condition is formalized simply as follows:

P (s, c) ∧ I(x) ⇒ A(x)

Finally, the substitution of an event must be feasible; an event is feasible
with respect to its guard and the invariant I(x) if there is always a possible
transition for this event or, equivalently, there exists a next value x′ satisfying
the before-after predicate of the event. The feasibility of the initialisation
event requires that at least one value exists for the predicate defining the
initial conditions. The feasibility of an event leads to readability of the form
of the event; recognition of the guard in the text of the event simplifies the
semantic reading of the event and the translation process of the tool: no
guard is hidden inside the event. We summarize the feasibility conditions in
the following table.

Event : E Feasibility : fis(E)

x : Init(x) ∃x · Init(x)

begin x : P (x0, x) end I(x) ⇒ ∃x′ · P (x, x′)
when G(x)
then x : P (x0, x) end I(x) ∧ G(x) ⇒ ∃x′ · P (x, x′)

any l where G(l, x)
then x : P (x0, x, l)end I(x) ∧ G(l, x) ⇒ ∃x′ · P (x, x′, l)

The proof obligations for a model are generated by the proof-obligations gen-
erator of the B environment; sequent calculus is used to state the validity
of the proof obligations in the current mathematical environment defined by
the constants and properties. Several proof techniques are available, but the
proof tool is not able to prove every proof obligation automatically, however,
interaction with the prover should allow one to prove every generated proof
obligation. We say that a model is internally consistent when every proof obli-
gation has been proved. A model uses only three kinds of events, whereas the
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generalized substitutions are richer; but the objective is to provide a simple
and powerful framework for modelling reactive systems. Since the consistency
of a model is defined, we should introduce a refinement of models using the
refinement of events defined like the refinement of substitution. We now recon-
sider the example of the factorial function and its computation, and propose
the model shown in Table 9. As you may notice, the abstract machine fac and
the abstract model fac are very close and the main difference is in the use
of events rather than operations: the event computation eventually appears
or is executed, because of the properties of the mathematical function called
factorial. The operation computation of the machine in Table 8 is passive,
but the event computation of the model in the Table 9 is reactive when it is
possible. Moreover, events may hide other ones and the refinement of models
will play a central role in the development process. We present in the next sub-
subsection some classical mechanisms for structuring developed components
of a specification.

Structuring Mechanisms of the B Method

In the last two subsubsections, we introduced B models following the clas-
sification into the two main categories abstract machines and models ; both
abstract machines and components are called components but they do not
deal with the same approach. We now give details of the structuring mech-
anisms of both approaches in order to achieve correctness with respect to
references to work on B.

Sharing B Components

The AMN notation provides clauses related to structuring mechanisms in com-
ponents such as abstract machines but also components such as refinements
or implementations. The B development process starts from basic compo-
nents, mainly abstract machines, and is a layered development; the goal is to
obtain implementation components through structuring mechanisms such as
INCLUDES, SEES, USES, EXTENDS, PROMOTES, IMPORTS and REFINES.
The clauses INCLUDES, SEES, USES, EXTENDS, PROMOTES, IMPORTS and
REFINES allow one to compose B components in the classical B approach, and
every clause leads to specific conditions for use. Several authors [28, 91] have
analysed the limits of existing B primitives for sharing data while refining and
composing B components; it is clear that the B primitives for structuring B
components can be used following strong conditions on the sharing of data
and operations. The limits are mainly due to the reuse of already proved B
components; reuse of variables, invariants, constants, properties and opera-
tions. In fact, the problem to be solved is the management of interferences
between components, and the seminal solution of Owicki and Gries [89] face a
combinatorial explosion of the number of proof obligations. The problem is to
compose components according to given constraints of correctness. The new
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MODEL
FACTORIAL_EV ENTS

CONSTANTS
factorial, m

CONSTANTS
factorial

PROPERTIES
m ∈ N ∧
factorial ∈ N ↔ N ∧
0 �→ 1 ∈ factorial ∧
∀(n, fn).(n �→ fn ∈ factorial ⇒ n + 1 �→ (n + 1) × fn ∈ factorial) ∧

∀f ·

⎛

⎜
⎜
⎜
⎜
⎝

f ∈ N ↔ N ∧
0 �→ 1 ∈ f ∧
∀(n, fn).(n �→ fn ∈ f ⇒ n + 1 �→ (n + 1) × fn ∈ f)

⇒
factorial ⊆ f

⎞

⎟
⎟
⎟
⎟
⎠

VARIABLES
result

INVARIANT
result ∈ N

ASSERTIONS
factorial ∈ N −→ N ;
factorial(0) = 1 ;
∀n.(n ∈ N ⇒ factorial(n + 1) = (n + 1) × factorial(n))

INITIALISATION
result :∈ N

EVENTS
computation = begin result := factorial(m) end

END

Table 9. Abstract model for the computation of the factorial function

event-based B approach considers a different way to cope with structuring
mechanisms and considers only two primitives: the REFINES primitive and
the DECOMPOSITION primitive.

B Classical Primitives for Combining Components

We focus on the meaning and use of five primitives for sharing data and
operations among B components, namely INCLUDES,SEES, USES, EXTENDS
and PROMOTES. Each primitive is related to a clause of the AMN notation
and allows access to data or operations of already developed components;
specific proof obligations state conditions for ensuring sound composition. A
structuring primitive makes accessed components visible to various degrees
from the accessing component.
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The INCLUDES primitive can be used in an abstract machine or in a
refinement; the included component allows the including component to modify
included variables by included operations; the included invariant is preserved
by the including component and is in fact used by the tool for deriving proofs
of proof obligations of the including component. The including component
cannot modify included variables, but it can use them with read access. No
interference is possible under those constraints. The USES primitives can only
appear in abstract machines, and the using machines have read-only access to
the used machine, which can be shared by other machines. Using machines can
refer to shared variables in their invariants, and the data of the used machine
are shared among using machines. When a machine uses another machine, the
current project must contain another machine including the using and the used
machines. The refinement is related to the including machine and the using
machine cannot be refined. The SEES primitive refers to an abstract machine
imported in another branch of the tree structure of the project and sets,
constants and variables can be consulted without change. Several machines
can see the same machine. Finally, the EXTENDS primitive can only be applied
to abstract machines, and only one machine can extend a given machine; the
EXTENDS primitive is equivalent to the INCLUDES primitive followed by
the PROMOTES primitive for every operation of the included machine. We
can illustrate an implementation, and we can show, for instance, that the
implementation in Table 10 implements (refines) the machine in Table 8. The
operation computation is refined or implemented by a “while” statement. The
proof obligations should take into account the termination of the operation
in the implementation: the variant establishes the termination. Specific proof
obligations are produced to check the absence of overflow of variables.

Organizing Components in a Project

The B development process is based on a structure defined by a collection of
components which are either abstract machines, refinements or implementa-
tions. An implementation corresponds to a stage of development leading to
the production of codes, when the language of substitutions is restricted to the
B0 language. The B0 language is a subset of the language of substitutions and
translation to C, C++ or ADA is possible with the help of tools. The links
between components are defined by the B primitives previously mentioned
and by the refinement.

When one is building a software system, the development starts from a
document which may be written in a semi-formal specification language; the
system is decomposed into subsystems and a model is progressively built us-
ing B primitives for composing B components. We emphasize the role of the
structuring primitives, since they allow one to distribute the global complex-
ity of the proofs. The B development process covers the classical life cycle:
requirements analysis, specification development, (formal) design and valida-
tion through the proof process, and implementation. Lano [73] has illustrated
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IMPLEMENTATION
FACTORIAL_IMP

REFINES
FACTORIAL_MAC

VALUES
m = 5

CONCRETE_VARIABLES
result, x

INVARIANT
x ∈ 0..n ∧
result = factorial(x)

ASSERTIONS
factorial(5) = 120 ∧
result ≤ 120

INITIALISATION
result := 1; x := 0

OPERATIONS
computation =

while x < m do
x := x + 1; fn := x × fn

invariant
x ∈ 0..m
result = factorial(x)
result ≤ factorial(m)

variant
m − x

end
END

Table 10. An implementation of the computation of the factorial function

an object-oriented approach to development, using B, and this identifies the
layered development paradigm using B primitives that we have already men-
tioned. Finally, implementations are B components that are close to real code;
in an implementation component, an operation can be refined by a while loop
and the checking should prove that the while loop terminates.

Structures for the Event-based B Approach

While the classical B approach is based on the component and structuring
primitives of B, the event-based B approach promotes two concepts: the re-
finement of models and the decomposition of models [4]. As we have already
mentioned, the classical B primitives have limits on the scope of their use; we
need, mainly, to manage the sharing data but without generating too many
proof obligations. So, the main idea of Abrial was not to compose, but to
decompose an initial model, and to refine the models obtained after the de-
composition step. The new proposed approach simplifies the B method and
focuses on the refinement. This means that a previous development in the clas-
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sical B approach can be replayed in the event-based B approach. Moreover,
the foundations of B remain useful and usable in the current environment of
Atelier B. In the next subsection, we describe the mathematical foundations
of B, and we illustrate the concepts of B in the event-based B approach.

Summary on Structuring Structuring Mechanisms

We have reviewed the structuring mechanisms of the classical B approach
and the new mechanisms proposed for the event-based B approach. While the
classical approach provides several mechanisms for structuring machines, only
two mechanisms support the event-based approach. In fact, the crucial point
is to compose abstract models or abstract machines; the limit of composition
is related to the production of a too high number of proof obligations. The
specifier wants to share state variables in read and write modes; the structur-
ing mechanisms of classical B do not allow the sharing of variables except in
read mode. Our work on the feature interaction problem [37] illustrates the
use of refinement for composing features; other approaches, based on the de-
tection of interaction by using a model checker on finite models, do not cope
with the global problem because of finite models. Finally, we think that the
choice of events with refinement provides a simple way to integrate proof into
the development of complex systems and conforms to the idea of viewing sys-
tems through different abstractions, thanks to the presence of stuttering [71].
We have not mentioned the clause DEFINITIONS, which provides a way to
introduce new definitions into a model and is a macro-expansion mechanism.

3.2 Proof-based Development in B

Refinement of B Models

The refinement of a formal model allows one to enrich a model by a step-by-
step approach. Refinement provides a way to construct stronger invariants and
also to add details in a model. It is also used to transform an abstract model
into a more concrete version by modifying the description of the states. This is
essentially done by extending the list of state variables (possibly suppressing
some of them), by refining each abstract event into a corresponding concrete
version and by adding new events. The abstract state variables x and the
concrete ones y are linked together by means of a gluing invariant J(x, y). A
number of proof obligations ensure that (1) each abstract event is correctly
refined by its corresponding concrete version, (2) each new event refines skip,
(3) no new event take control for ever and (4) relative freedom from deadlock
is preserved. We now give details of proof obligations of a refinement and
introduce the syntax of a refinement in Table 11.

A refinement has a name r; it is a model refining a model m in the clause
REFINES, and m can itself be a refinement. New sets, new constants and new
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REFINEMENT
r

REFINES
m

SETS
t

CONSTANTS
d

PROPERTIES
Q(t, d)

VARIABLES
y

INVARIANT
J(x, y)

VARIANT
V (y)

ASSERTIONS
B(y)

INITIALISATION
y : INIT (y)

EVENTS
<list of events>

END

Table 11. Syntax of a refinement model

properties can be declared in the clauses SETS, CONSTANTS and PROPER-
TIES. New variables y are declared in the clause variables and are the con-
crete variables; the variables x of the refined model m are called the abstract
variables. The gluing invariant defines a mapping between the abstract and
concrete variables; when a concrete event occurs, there must be a correspond-
ing event in the abstract model: the concrete model simulates the abstract
model. The clause VARIANT controls new events, which cannot take control
over other events of the system. In a refinement, new events may appear, and
they refine an event skip; events of the refined model can be strengthened,
and one needs to prove that the refined model does not contain more deadlock
configurations than does the refined one: if a guard is strengthened too much,
it can lead to a dead refined event.

The refinement r of a model m is a system; its trace semantics is based on
traces of states over variables x and y, and the projection of concrete traces
on abstract traces is a stuttering-free trace semantics of the abstract model.
The mapping between abstract and concrete traces was called a refinement
mapping by Lamport [71], and stuttering is the key concept for refining event
systems. When an event e of m is triggered, it modifies some variables y, and
the abstract event refining e modifies x. Proof obligations make precise the
relationship between the abstract model and the concrete model.
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In what follows, the abstract system is m and the concrete system is r;
INIT (y) denotes the initial condition of the concrete model; I(x) is the invari-
ant of the refined model m; BAC(y, y′) is the concrete before–after relation
of an event of the concrete system r, and BAA(x, x′) is the abstract before–
after relation of the corresponding event of the abstract system m; G1(x),
. . . , Gn(x) are the guards of the n abstract events of m; H1(y), . . . , Hk(y)
are the guards of k concrete events of r. Formally, the refinement of a model
is defined as follows:

• (REF1) INIT (y) ⇒ ∃x.(Init(x) ∧ J(x, y)) .

The initial conditions of the refinement model imply that there exists an ab-
stract value in the abstract model such that that value satisfies the initial
conditions of the abstract model and implies the new invariant of the refine-
ment model.

• (REF2) I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ ∃x′.(BAA(x, x′) ∧ J(x′, y′)) .

The invariant in the refinement model is preserved by the refined event, and
the activation of the refined event triggers the corresponding abstract event.

• (REF3) I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ J(x, y′) .

The invariant in the refinement model is preserved by the refined event but
the event of the refinement model is a new event which was not visible in the
abstract model; the new event refines skip.

• (REF4) I(x) ∧ J(x, y) ∧ (G1(x) ∨ . . . ∨ Gn(x)) ⇒ H1(y) ∨ . . . ∨ Hk(y) .

The guards of events in the refinement model are strengthened, and we have
to prove that the refinement model is not more blocked than the abstract
model.

• (REF5) I(x) ∧ J(x, y)) ⇒ V (y) ∈ N

and

• (REF6) I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ V (y′) < V (y) .

New events should not forever block abstract ones.
The refinement of models by refining events is close to the refinement

of action systems [15], in UNITY and in TLA, even if there is no explicit
semantics based on traces; one can consider the refinement of events to be
like a relation between abstract and concrete traces. Stuttering plays a central
role in the global process of development where new events can be added into
the refinement model. When one is refining a model, one can either refine an
existing event by strengthening the guard and/or the before–after predicate
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(removing non-determinism), or add a new event which is intended to refine
the skip event. When one is refining a model by another one, this means
that the set of traces of the refined model contains the traces of the resulting
model with respect to the stuttering relationship. Models and corresponding
refined models are defined and can be validated through the proofs of proof
obligations; the refinement supports proof-based development, and we shall
illustrate this by a case study on the development of a program for computing
the factorial function.

Proof-based Development in Action

The B language of predicates, the B language of events, the B language of
models and B refinement constitute the B method; however, the objectives
of the B method are to provide a framework for developing models and, fi-
nally programs. The development process is based on proofs and should be
validated by a tool. The current version of Atelier B groups B models into
projects; a project is a set of B models related to a given problem. The state-
ment of the problem is expressed in a mathematical framework defined by
constants, properties and structures, and the development of a problem starts
from a very high-level model which simply states the problem in an event-
based style. The proof tool is central in the B method, since it allows us to
write models and to validate step-by-step each decision of the development
process; it is an assistant used by the user to integrate decisions into mod-
els, particularly by refining them. The proof process is fundamental and the
interaction of the user in the proof process is a very critical point. We shall
examine the various aspects of the development with an example. The prob-
lem is to compute the value of the factorial function for a given item of data
n. We have already proved that the (mathematical) factorial function exists,
and we can reuse its definition and its properties. Three successive models
are provided by a development, namely Fac1 (the initial model stating in one
shot the computation of factorial(n)), Fac2 (a refinement of the model Fac1,
computing factorial(n)) step by step and Fac3 (completing the development
of an algorithm for factorial(n)).

We begin by writing a first model which rephrases the problem, and we
simply state that an event calculates the value factorial(n) where n is a
natural number. The model has only one event, and is a one shot model:

computation =
begin fn := factorial(n) end

Here, fn is the variable containing the value computed by the program; the
expression “one-shot” means that we show a solution just by assigning the
value of a mathematical function to fn. It is clear that this one shot event is
not satisfactory, since it does not describe the algorithmic process for comput-
ing the result. Proofs are not difficult, since they are based on the properties
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stated in the preliminary part of the ASM definition. Our next model will be
a refinement of Fac1. It will introduce an iterative process of computation
based on the mathematical definition of factorial. We therefore add a new
event prog, which extends the partial function under construction called fac
that contains a partial definition of the factorial function:

progress =
when n /∈ dom(fac) then

any x where
x ∈ N ∧ x ∈ dom(fac) ∧ x + 1 ∈ dom(fac)

then
fac(x + 1) := (x + 1) ∗ fac(x)

end
end

The initialisation is simply to set fac to the value for 0: fac := {0 �→ 1}
and there is a new event progress which simulates the progress by adding the
next pair in the function fac. Secondly, the event computation is refined by the
following event stating that the process stops when the fac variable is defined
for n.

computation =
when n ∈ dom(fac) then

fn := fac(n)
end

The computation is based on a calculation of the fixed point of the equa-
tion defining factorial and the ordering is the set inclusion over domains of
functions; fac is a variable satisfying the following invariant property:

fac ∈ N �→ N ∧ fac ⊆ factorial ∧
dom(fac) ⊆ 0..n ∧ dom(fac) �= ∅

fac is a relation over natural numbers and it contains a partial definition of the
factorial function; as long as n is not defined for fac, the computing process
adds a new pair in fac. The system is deadlock-free, since the disjunction
of the guards n ∈ dom(fac), or n /∈ dom(fac), is trivially true. The event
progress increases the domain of fac: dom(fac) ⊆ 0..n. The proof obligations
for the refinement are effectively proved by the proof tool:

n ∈ dom(fac) ∨
( n /∈ dom(fac) ∧
∃x.(x ∈ N ∧ x ∈ dom(fac) ∧ x + 1 /∈ dom(fac)))
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This model is more algorithmic than the first model and it can be refined
into a third model, called Fac3, closer to the classical algorithmic solution.
Two new variables are introduced: a variable i plays the role of an index, and
a variable fq is an accumulator. A gluing invariant defines relations between
old and new variables:

i ∈ N ∧ 0..i = dom(fac) ∧ fq = fac(i)

The two events of the second model are refined into the next two events.

computation =
when i = n then

fn := fq
end

progress =
when i �= n then

i := i + 1‖fq := (i + 1) ∗ fq
end

The proof obligations are completely discharged by the proof tool, and we
easily derive the algorithm by analysing the guards of the last model:

begin
i := 0‖fq := 1
while i �= n do

i := i + 1‖fq := (i + 1) ∗ fq
end ;

end

We can simplify the algorithm by removing the parallel operator and we trans-
form it as follows:

begin
i := 0;
fq := 1;
while i �= n do

i := i + 1;
fq := i ∗ fq;

end ;
end

Case studies can provide information about the development process. Var-
ious domains have been used for illustrating the event-based B approach: se-
quential programs [11, 41], distributed systems [8, 10, 36, 40], circuits [82, 93]
and information systems [44]. In the following sections, we illustrate the event-
B modelling method by means of case studies:

• sequential algorithms;
• combining coordination and refinement for sorting;
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• spanning-tree algorithms;
• a distributed leader election algorithm.

4 Sequential Algorithms

4.1 Primitive Recursive Functions

The Class of Primitive Recursive Functions

In computability theory [96], the primitive recursive functions constitute a
strict subclass of the general recursive functions, also called the class of com-
putable functions. Many computable functions are primitive recursive func-
tions such as addition, multiplication, exponentiation and the sign functions;
in fact, a primitive function corresponds to a bounded (for) loop, and we shall
show how to derive the (for) algorithm from the definition of the primitive
recursive function.

The primitive recursive functions are defined by initial functions (the 0-
place zero function ζ, the k-place projection function πi

k and the successor
function σ) and by two combining rules, namely the composition rule and the
primitive recursive rule. More precisely, we give the definitions of the functions
and rules as follows:

• ζ() = 0
• ∀i ∈ {1, . . . , k} : ∀x1, . . . , xk ∈ N : πi

k(x1, . . . , xk) = xi

• ∀x ∈ N : σ(n) = n + 1
• If g is an l-place function, if h1, . . . , hl are n-place functions and if the

function f is defined by:

∀x1, . . . , xn ∈ N : f(x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hl(xl, . . . , xn)),

then f is obtained from g and h1, . . . , hl by composition.
• If g is an l-place function, if h is an (l+2)-place function and if the function

f is defined by

∀x1, . . . , xl, x ∈ N

{
f(x1, . . . , xl, 0) = g(x1, . . . , xl)
f(x1, . . . , xl, x + 1) = h(x1, . . . , xl, x, f(x1, . . . , xl, x))

then f is obtained from g and h by primitive recursion.

A function f is primitive recursive, if it is an initial function or can be
generated from initial functions by some finite sequence of the operations of
composition and primitive recursion. A primitive recursive function is com-
puted by an iteration, and we shall now define a general framework for stating
the development of functions defined by primitive recursion using predicate
diagrams.
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Modelling the Computation of a Primitive Recursive Function

The first step is to define the mathematical function for computing the value
of f(u, v), where u and v are two natural numbers; the primitive recursive
rule is stated as follows:

• u, v, g, h, f are constants corresponding to values and functions.

CONSTANTS
u, v, g, h, f

• u, v, g, h are supposed to be given;
• g, h are total and are two primitive

recursive functions; and
• f is defined by a fixed-point-based

rule.

PROPERTIES
u ∈ N ∧ v ∈ N ∧
g ∈ N −→ N ∧ h ∈ N × N × N −→ N ∧
f ∈ N × N −→ N ∧
∀ (a, b). ( (a ∈ N ∧ b ∈ N) ⇒ (f(a, 0) = g(a))) ∧
∀ (a, b). ( (a ∈ N ∧ b ∈ N) ⇒ (f(a, b + 1) = h(a, b, f(a, b))))

From the characterization of the constants, the totality of f can be derived,
since both g and h are total. The reader should be very careful about the
functional notation f(a, 0), which is intended to mean a functional application,
but also the membership (a, 0) ∈ f when f has not yet been proved to be
functional. The system uses three variables: two variables are the input values
and the third one is the output value VARIABLES result.

The required properties are the invariance of the INVARIANT clause and
the partial correctness of the system with respect to the pre-conditions and
post-conditions of the computation of the function defined by the primitive
recursion rule. The invariant property is very simple to establish.

The INVARIANT clause is very simple for the first model and is in fact a
typing invariant. The first model has only one visible event, and other events
are hidden by the stuttering step; the computation event models or simulates
the computation of the resulting value, and simulates the end of a hidden
loop:

INVARIANT
result ∈ N

INITIALIZATION
result :∈ N

computation =
begin

result := f(u, v)
end

The loop appears in the following model, which is a refinement of primrec0:
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MODEL primrec0
CONSTANTS u, v, g, h, f
PROPERTIES

u ∈ N ∧ v ∈ N ∧
g ∈ N −→ N ∧ h ∈ N × N × N −→ N ∧
f ∈ N × N −→ N ∧
∀ (a, b). ( (a ∈ N ∧ b ∈ N) ⇒ (f(a, 0) = g(a))) ∧
∀ (a, b). ( (a ∈ N ∧ b ∈ N) ⇒ (f(a, b + 1) = h(a, b, f(a, b))))

VARIABLES
result

INVARIANT
result ∈ N

INITIALIZATION
result :∈ N

EVENTS
computation =

begin
result := f(u, v)

end
END

Iterative Computations from Primitive Recursion

The next model, primrec1 (see Table 12) is a refinement of primrec0; it
introduces a new event called step and step is simulating the progression of
an iterative process satisfying a loop invariant.
The new system has two visible events:

1. The first event, computation, is intended to model the end of the iteration,
and it concretizes the event computation.

2. The second event, step, is the visible underlying step of the previous stut-
tering step.

The computation process is organized by the two guards of the two events;
it leads us to the following algorithm, which captures the essence of the pre-
ceding B models. The final development includes two B models related by the
refinement relationship, and provides an algorithm for computing the speci-
fied function. The resulting algorithm is called F (Algorithm 1) and uses the
algorithms of g and h. The invariant is derived from the B model and does
not need further proofs. The development can be instantiated with respect to
functions g and h, which are assumed to be primitive recursive.
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REFINEMENT primrec1
REFINES primrec0
VARIABLES cx, cy, cresult, result
INVARIANT

cx ∈ N ∧ cy ∈ N ∧ cresult ∈ N ∧
cx = u ∧ 0 ≤ cy ∧ cy ≤ v ∧ cresult = f(cx, cy)

INITIALISATION
cx := u ‖ cy := 0 ‖ cresult := g(u) ‖ result :∈ N

EVENTS
computation =

when
v − cy = 0

then
result := cresult

end ;
step =

when
v − cy �= 0

then
cy := cy + 1 ‖
cresult := h(cx, cy, cresult)

end
END

Table 12. The model primrec1

Algorithm F

precondition : u, v ∈ N

postcondition : result = f(u, v)

local variables : cx, cy, cresult ∈ N

cx := u;
cy := 0;
cresult := G(u);
while cy ≤ v do

invariant : 0 ≤ cy ∧ cy ≤ v ∧ cx = u ∧ cresult = f [cx, cy]

cresult := H [cx, cy, cresult];
cy := cy + 1;

;
result := cresult;

Algorithm 1: F computes the primitive recursive function f
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Applying the Above Development
— Addition, Multiplication and Exponentiation

Addition

The mathematical function addition is defined by the following rules:

∀x, y ∈ N :

{
addition(x, 0) = π1

1(x)
addition(x, y + 1) = σ(addition(x, y)).

We assign to g the primitive recursive function ζ and to h the primitive recur-
sive function σ; the development of primrec can be replayed. The resulting
algorithm is given by substituting g and h by ζ and σ respectively. The algo-
rithm is denoted ADDITION (Algorithm 2).

Algorithm ADDITION

precondition : x, y ∈ N

postcondition : result = ADDITION(x, y)

local variables: cx, cy, cresult ∈ N

cx := x;
cy := 0;
cresult := π1

1(x);
while cy ≤ y do

invariant : 0 ≤ cy ∧ cy ≤ y ∧ cx = x∧
cresult = addition[cx, cy]

cresult := σ[cresult];
cy := cy + 1;

;
result := cresult;

Algorithm 2: ADDITION computes the primitive recursive function addition

Multiplication

The mathematical function multiplication is defined by the following rules:

∀x, y ∈ N :

{
multiplication(x, 0) = ζ()
multiplication(x, y + 1) = addition(x, multiplication(x, y)).

We assign to g the primitive recursive function ζ() and to h the primitive
recursive function addition; the development of primrec can be replayed. The
resulting algorithm is given by substituting g and h by π1

1 and addition
respectively. The algorithm is denoted MULTIPLICATION (Algorithm 3).
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Algorithm MULTIPLICATION

precondition : x, y ∈ N

postcondition : result = multiplication(x, y)

local variables: cx, cy, cresult ∈ N

cx := x;
cy := 0;
cresult := ζ();
while cy ≤ y do

Invariant : 0 ≤ cy ∧ cy ≤ y ∧ cx = x∧
cresult = multiplication[cx, cy]

cresult := addition[cx, cresult];
cy := cy + 1;

;
result := cresult;

Algorithm 3: MULTIPLICATION computes function multiplication

Exponentiation

The mathematical function exp is defined by the following rules:

∀x, y ∈ N :

{
exp(x, 0) = σ(ζ())
exp(x, y + 1) = multiplication(x, exp(x, y)).

We assign to g the primitive recursive function σ(ζ()) (since the composition
of two primitive recursive functions is still primitive recursive) and to h the
primitive recursive function multiplication; the primrec development can be
replayed. The resulting algorithm is given by substituting g and h respectively
by σ(ζ()) and multiplication. The algorithm is denoted EXP (Algorithm 4).

Algorithm EXP

precondition : x, y ∈ N

postcondition : result = exp(x, y)

local variables: cx, cy, cresult ∈ N

cx := x;
cy := 0;
cresult := σ(ζ());
while cy ≤ y do

Invariant : 0 ≤ cy ∧ cy ≤ y ∧ cx = x∧
cresult = exp[cx, cy]

cresult := MULTIPLICATION [cx, cresult];
cy := cy + 1;

;
result := cresult;

Algorithm 4: EXP computes the primitive recursive function exp
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4.2 Other Ways to Compute Addition and Multiplication

If we consider the development for the functions addition and multiplication,
we can reuse the first model in each case and improve the final resulting
algorithms. We assume that the mathematical functions are supported by the
B prover and that we do not need to define them. The proved models can be
reused in other developments and we are now going to refine both functions
in a different way.

Developing a New Multiplication Algorithm

The first model states the problem to be solved namely the multiplication of
two natural numbers; the second model provides the essence of the algorithmic
solution; and the last one implements naturals by sequences of digits. Let a
and b be two naturals. The problem is to compute the value of the expression
a∗, where ∗ is the mathematical function standing for natural multiplication.
The function multiplication is defined by an infix operator ∗. The first model
(see Table 13) is a one-shot model, computing the result in one step.

MODEL multiplication0
CONSTANTS

a, b
PROPERTIES

a ∈ N ∧ b ∈ N ∧
VARIABLES

x, y, m
INVARIANT

x ∈ N ∧ y ∈ N ∧
x = a ∧ y = b ∧ m ∈ N

INITIALISATION
x := a ‖ y := b ‖ m :∈ N

EVENTS
computation =

begin
m := a ∗ b

end
END

Table 13. The model multiplication0

Now, we need to take an idea and apply it to the model multiplication0.
There are several ways to define multiplication, for example either (a− 1) ∗ b
(a primitive recursive function) or a ∗ b = (2 ∗ a) ∗ (b/2). We have chosen the
second of these ways, since it is the faster one and is simple to implement. We
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define two new variables, namely cx and cy, to take care of the initial values
of a and b (a value-passing mechanism). The induction step will be driven by
B, which is strictly decreasing. The new variable M stores any value of cx
when cy is odd.

VARIABLES
cx, cy, x, y, M, m

INVARIANT
cx ∈ N ∧ cy ∈ N ∧ M ∈ N ∧
cx ∗ cy + M = x ∗ y

INITIALISATION
cx, cy, x, y, m :∈ (x = a ∧ y = b ∧ cx = a ∧ cy = b ∧ m ∈ N) ‖
M := 0

The event computation occurs, when cy is equal to 0. The gluing invariant
allows us to conclude that M contains the value of a ∗ b.

computation =
when

(cy = 0)
then

m := M
end

Two new events, prog1 and prog2, help in the progression of cy towards 0:

prog1 =
when

(cy �= 0) ∧ even(cy)
then

cx := cx ∗ 2 ‖ cy := cy/2
end

prog2 =
when

(cy �= 0) ∧ odd(cy)
then

cx := cx ∗ 2 ‖
cy := cy/2 ‖
M := M + cx

end

Where even(cy) = ∃x·(x ∈ N ∧ cy = 2∗x) and odd(cy) = ∃x·(x ∈ N ∧ cy =
2 ∗ x + 1). The proofs are not hard; Atelier B generated 18 proof obligations,
only 3 of which were discharged interactively. Finally, we obtain the model
multiplication1 in Table 14.
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REFINEMENT multiplication1
REFINES multiplication0
VARIABLES

cx, cy, x, y,M, m
INVARIANT

cx ∈ N ∧
cy ∈ N ∧
M ∈ N ∧
cx ∗ cy + M = x ∗ y

INITIALISATION
cx, cy, x, y,m :∈ (x = a ∧ y = b ∧ cx = a ∧ cy = b ∧ m ∈ N) ‖
M := 0

EVENTS
computation =

when (cy = 0)
then m := M
end

prog1 =
when (cy �= 0) ∧ even(cy)
then cx := cx ∗ 2 ‖ cy := cy/2
end

prog2 =
when (cy �= 0) ∧ odd(cy)
then

cx := cx ∗ 2 ‖
cy := cy/2 ‖
M := M + cx

end
END

Table 14. Refinement model multiplication1

A further refinement may lead to the implementation of natural numbers by
sequences of binary digits. Division and multiplication by two are implemented
by shifting binary digits. Also, one can derive the well-known Algorithm 5 on
the following page for computing the multiplication function.

Addition of Two Natural Numbers

The addition function can also be redeveloped. The development is decom-
posed into three steps. The first step writes a one-shot model (see Table 15
on the next page) that computes the required result in one step, namely the
addition of two natural numbers. Let a and b be two naturals. The problem
is to compute the value of the expression a + b, where + is the mathematical
function standing for the addition of naturals.

The definition of a + b using a/2 (and b/2) is based on the following
properties:
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New Algorithm MULTIPLICATION

precondition : a, b ∈ N

postcondition : m = multiplication(x, y)

local variables: cx, cy, x, y, m, M ∈ N

x := a;
y := b;
cx := x;
cy := y;
M := 0;
while cy �= 0 do

Invariant : 0 ≤ M ∧0 ≤ cy∧cy ≤ y∧cx∗cy+M = x∗y∧x = a∧y = b

if (cy �= 0) ∧ even(cy) then
cx := cx ∗ 2||cy := cy/2

;
if (cy �= 0) ∧ odd(cy) then

cx := cx ∗ 2||cy := cy/2||M := M + cx

;
;
m := M ;

Algorithm 5: New MULTIPLICATION computes the function multiplication

MODEL addition0
CONSTANTS

a, b
PROPERTIES

a ∈ N ∧
b ∈ N ∧

VARIABLES
x, y, result

INVARIANT
x ∈ N ∧ y ∈ N ∧ result ∈ N

x = a ∧ y = b
INITIALISATION

x := a ‖ y := b ‖ result :∈ N

EVENTS
computation =

begin
result := a + b

end
END

Table 15. The model addition0 for addition
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a b a + b

2 ∗ n 2 ∗ m 2 ∗ (n + m)

2 ∗ n 2 ∗ m + 1 2 ∗ (n + m) + 1

2 ∗ n + 1 2 ∗ m 2 ∗ (n + m) + 1

2 ∗ n + 1 2 ∗ m + 1 2 ∗ (n + m) + 2

Table 16. Four properties of of multiplication

Using these four properties, we try to obtain a general induction schema ver-
ified by variables; the four properties lead to the general form (a+ b) ∗C +P .
The discovery of this relation is based on an analysis of possible transfor-
mations over variables; Manna [79] has given hints for stating an inductive
assertion starting from properties over values of variables. The associativity
and commutativity of mathematical addition justify the form. Moreover, the
form can also be justified by the binary coding of A and B as follows:

(
n∑

i=0

Ai2
i

)

+

(
n∑

i=0

Bi2
i

)

=
n∑

i=0

(Ai + Bi) 2i, (4)

n∑

i=0

(Ai + Bi) 2i =

((
n∑

i=1

Ai2
i−1

)

+

(
n∑

i=1

Bi2
i−1

))

∗ 2 + (A0 + B0), (5)

(
n∑

i=0

Ai2
i

)

+

(
n∑

i=0

Bi2
i

)

=

((
n∑

i=1

Ai2
i−1

)

+

(
n∑

i=1

Bi2
i−1

))

∗2+(A0+B0).

(6)
Equation (6) tells us that we obtain a binary addition of the last digits of the
two numbers and that we have to store powers of 2 while computing. Two new
variables are introduced: C for storing the powers of 2, and P for storing the
partial result. We can derive the following invariant and initial conditions:

VARIABLES
A, B, P, a, b, p, C

INVARIANT
A ∈ N ∧ B ∈ N ∧ P ∈ N ∧ C ∈ N ∧
(A + B) ∗ C + P = a + b

INITIALISATION
a, b, A, B, p : (a ∈ N ∧ b ∈ N

∧ p ∈ N ∧ P ∈ N ∧ C ∈ N ∧ A = a ∧ B = b) ||
P, C := 0, 1
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add =
when

(B = 0) ∧ (A = 0)
then

p := P
end ;

The one-shot event of the previous
model is then refined by the next event;
the result is contained in variable P
when A and B are two variables con-
taining 0. Four new events are added
to the current model; each event corre-
sponds to a case of the properties given
in Table 16 on the preceding page.

Four new events are introduced in this model:

prog1 =
when

even(A) ∧ even(B)
then

A := A/2 || B := B/2 ||
C := 2 ∗ C

end ;

prog2 =
when

odd(A) ∧ even(B)
then

A := A/2 || B := B/2 ||
C := 2 ∗ C || P := C + P

end ;

prog3 =
when

even(A) ∧ odd(B)
then

A := A/2 || B := B/2 ||
C := 2 ∗ C || P := C + P

end ;

prog4 =
when

odd(A) ∧ odd(B)
then

A := A/2 || B := B/2 ||
C := 2 ∗ C || P := 2 ∗ C + P

end

We also have to code the basic operations for computing C + P , 2 ∗ C and
2 ∗ C + P . C + P is solved by storing a binary digit 1 in the corresponding
location. 2∗C is a shifting operation. 2∗C +P is solved by managing a carry.
Now, we can refine the current model.

Managing the Carry

The goal of the carry is to implement the basic operation 2 ∗ C + P ; P is
concretized by the store Q and the carry R.

VARIABLES
A, B, Q, R, a, b, p, C

INVARIANT
Q ∈ N ∧ R ∈ N ∧ (R = 0 ∨ R = 1) ∧ P = C ∗ R + Q

INITIALISATION
a, b, A, B, p : (a ∈ N ∧ b ∈ N ∧ C ∈ N ∧ A = a ∧ B = b) ||
p :∈∈ N

Q, R, C := 0, 0, 1
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The refined event add uses the new variables Q and C. The gluing invariant
maintains the relationship over P and the new variables:

add = when (B = 0) ∧ (A = 0) then p := C ∗ R + Q end ;

Events prog1, prog2, prog3 and prog4 are refined and modified by introducing
the two new variables. The new variables are modified according to P :

prog1 =
when even(A) ∧ even(B)
then

A := A/2||B := B/2||R := 0
Q := C ∗ R + Q||C := 2 ∗ C

end ;

prog4 =
when odd(A) ∧ odd(B)
then

A := A/2||B := B/2||R := 1
Q := C ∗ R + Q||C := 2 ∗ C

end

prog2 =
when odd(A) ∧ even(B)
then

A := A/2 || B := B/2 ||
ifR = 0 then Q := C + Q
end || C := 2 ∗ C

end ;

prog3 =
when even(A) ∧ odd(B)
then A := A/2 || B := B/2 ||

C := 2 ∗ C ||
ifR = 0 then Q := C + Q
end

end ;

This model was validated by the tool Atelier B [50], which generated 56 proof
obligations; 15 were discharged interactively. Details are incrementally added
here; each model provides a view of the computing function. The models are
related by the refinement relationship, and the last model can now be refined
to produce code.

Production of Code

The refinement process leads to basic operations over natural numbers that
can be implemented by operations over bits. The B language provides se-
quences but experience shows that proofs are harder when sequences are used
in a given model. We have used the following definitions of sequences:
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SETS bit = {ZERO, ONE}
CONSTANTS code
PROPERTIES

code ∈ N × Z −→ (Z �→ bit) ∧
∀k · (k ∈ Z ⇒ code(0, k) = ∅ ∧
∀(n, k) · (n ∈ N ∧ n �= 0 ∧ k ∈ Z ⇒

code(2 ∗ n, k) = {k �→ ZERO} ∪ code(n, k + 1)) ∧
∀(n, k) · (n ∈ N ∧ k ∈ Z ⇒

code(2 ∗ n + 1, k) = {k �→ ONE} ∪ code(n, k + 1))) ∧
∀(n, k, x) · (n ∈ N ∧ k ∈ Z ∧ x ∈ dom (code(n, k)) ⇒ x ≥ k)

The recursive definition was validated in our previous work [38] on the de-
velopment of recursive functions using the event-B method. We have defined
schemes that allow us to evaluate those functions. A sequence is coded by
an integer interval. For instance, consider our second model of multiplication:
here shifting of digits is implemented by an insertion of 0 at the head of the
sequence, and removing a bit at the head corresponds to multiplication by 2.
Questions about the re-usability and decomposition of systems remain to be
solved, and will be part of further work aimed at making the method more
practical.

VARIABLES
A, B, P, a, b, p, cA, cB, kA, kB

INVARIANT
kA ∈ Z ∧
kB ∈ Z ∧
cA ∈ Z �→ bit ∧
cA = code(A, kA) ∧
cB ∈ Z �→ bit ∧
cB = code(B, kB)

prog1 =
when (cB �= ∅) ∧ cB(kB) = ZERO then

if cA �= ∅ then cA := {kA − 1 �→ ZERO} ∪ cA || kA := kA − 1 end
|| cB := {kB} �− cB || kB := kB + 1 || A := 2 ∗ A || B := B/2

end
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prog2 =
when (cB �= ∅) ∧ cB(kB) = ONE then

if cA �= ∅ then
cA := {kA − 1 �→ ZERO} ∪ cA || kA := kA − 1

end ||
cB := {kB} �− cB || kB := kB + 1 ||
A := 2 ∗ A || B := B/2 || M := M + A

end

The coding allows us to implement the addition C + Q, since C is a power of
two and C is greater than Q:

code(C + Q, 0) = code(C, 0) �− code(Q, 0).

These properties (and others) were in fact proved in another B machine using
only PROPERTIES and ASSERTIONS clauses as in the work on structure [9].
Atelier B generated 10 proof obligations, which were discharged interactively.

We can give a refinement of addition, but only two events are really given.
Here cp is the code of p, cQ the code of Q and cC the code of C:

add =
when cB = ∅ ∧ cA = ∅ then

if R = 1 then cp := cC �− cQ
else cp := cQ
end

end

prog1 =
when cB(kB) �= ONE ∧ cA(kA) �= ONE then

cB := {kB} �− cB || kB := kB + 1 ||
cA := {kA} �− cA || kA := kA + 1||
cC := {0 �→ ZERO} ∪ shift(cC) || R := 0 ||
if R = 1 then cQ := cC �− cQ end

end

The function shift shifts any value of a sequence (to begin always with 0).
Atelier B generated 95 proof obligations, and 53 were discharged interactively,
but we can do better using assertion clauses.

A stronger refinement can now be obtained from the current developed
model. A coding on a finite sequence of bits (bs + 1) constrains the abstract
code to contain a bounded number of bits. We assume that the natural num-
bers a and b are codable, and we obtain a concrete code for the variables A
and B, namely CA and CB:
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CA, CB : (
CA ∈ 0..bs → bit ∧
CA = code(a, 0) ∪ ((0..bs) − dom (code(a, 0))) × {ZERO} ∧
CB ∈ 0..bs → bit ∧
CB = code(b, 0) ∪ ((0..bs) − dom (code(b, 0))) × {ZERO})

A variable K plays the role of kA and kB and the process halts, when k is
bs + 1. The gluing invariant for the variables A, B, p and Q (Cp and CQ are
the concrete code) is the following:

K ∈ 0..bs + 1 ∧ K = kA ∧ K = kB ∧ LO ∈ −1..K − 1 ∧
CA ∈ 0..bs → bit ∧
((K..bs) � CA) = cA ∪ ((K..bs) − dom (cA)) × {ZERO} ∧
CB ∈ 0..bs → bit ∧
((K..bs) � CB) = cB ∪ ((K..bs) − dom (cB)) × {ZERO} ∧
Cp ∈ 0..bs + 1 → bit ∧ CQ ∈ 0..bs → bit ∧
(0..LO � CQ = cQ) ∧ (LO ≥ 0 ⇒ CQ(LO) = ONE) ∧
∀i · (i ∈ (LO + 1)..bs ⇒ CQ(i) = ZERO)

where LO is a new variable; it is the position of the last ONE in CQ. Events
add and prog1 are refined in the following concrete events:

add =
when K = bs + 1 then

if R = 1 then Cp := CQ �−{bs + 1 �→ ONE}
else Cp := CQ �−{bs + 1 �→ ZERO}
end

end ;

prog1 =
when K ≤ bs ∧ CB(K) �= ONE ∧ CA(K) �= ONE then

K := K + 1 || R := 0 ||
if R = 1 then CQ(K) := ONE || LO := K end

end ;

We also have to express the fact that the coding of the result is in 0..bs+1 → bit
and that it might have an overflow. Multiplication by 2 (K := K +1), division
by 2 (K := K + 1) and addition (CQ(K) := ONE) are implemented using
this coding. Atelier B generated 81 proof obligations, and 25 were discharged
interactively.
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Properties of Models

In the model in Table 17 on the next page, we have proved all properties used
here on the abstract coding. Two induction theorems have also been proved
in this machine (the second and third assertions).

4.3 Design of Sequential Algorithms

The design of a sequential algorithm starts with a statement of the specifi-
cation of the algorithm; the specification of the algorithm is expressed by a
precondition over the input data, a postcondition over the output data and
a relation between the input and output data. An extension of the guarded
command language by Morgan [86] allows one to initiate a development by re-
finement according to a set of rules. However, no mechanical tool allows one to
check the refinement; the notation x : [pre, post] is intended to mean a state-
ment which is correct with respect to the pre-condition and post-condition.
This is exactly the case, when one starts an event-B development, since one
should then state a magical event which is correct with respect to the pre and
post conditions. If we consider x : [pre, post] and assume that x is free in pre
and post, x : [pre, post] is a statement which may modify x but only x, and
which satisfies the Hoare triple {pre} x : [pre, post] {post}.

An equivalent event is defined as follows:

event =
any z
where

pre(x) ∧ post(x, z)
then

x := z
end

In the above we have illustrated the event-B method by simple sequential algo-
rithms and have emphasized the possibility of reusing a previous development.
In the next section, we develop a sorting algorithm.

5 Combining Coordination and Refinement for Sorting

The coordination paradigm improves the development of concurrent/distri-
buted solutions because it provides a simple way to communicate between
processes via a data structure called a tuple space. The principles of coor-
dination and of event-driven system development can be fruitfully combined
to develop systems and to analyse the development of different solutions of
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MODEL Code
SETS bit = {ZERO, ONE}
CONSTANTS divtwo, code, power2, suc, shift, pred1
PROPERTIES
Definition of divtwo

divtwo ∈ N → N ∧ ∀x · (x ∈ N ⇒ divtwo(x) = x/2) ∧
Definition of suc (successor)

suc ∈ N → N ∧ ∀x · (x ∈ N ⇒ suc(x) = x + 1) ∧
Definition of code

code ∈ N × Z → (Z ↔ bit) ∧
∀k · (k ∈ Z ⇒ code(0, k) = ∅) ∧
∀(n, k) · (n ∈ N ∧ n �= 0 ∧ k ∈ Z ⇒

code(2 ∗ n, k) = {k �→ ZERO} ∪ code(n, k + 1)) ∧
∀(n, k) · (n ∈ N ∧ k ∈ Z ⇒

code(2 ∗ n + 1, k) = {k �→ ONE} ∪ code(n, k + 1)) ∧
Definition of power2 (2n), pred1 (predecessor) and shift (shift code)

power2 ∈ N → N ∧ power2(0) = 1 ∧
∀k · (k ∈ N ⇒ power2(k + 1) = 2 ∗ power2(k)) ∧
pred1 ∈ Z → Z ∧ ∀x · (x ∈ Z ⇒ pred1(x) = x − 1) ∧
shift ∈ (Z �→ bit) → (Z �→ bit) ∧ ∀y · (y ∈ Z �→ bit ⇒ shift(y) = (pred1; y))

ASSERTIONS
∀c · (c ∈ N ⇒ ∃y · (y ∈ N ∧ (c = 2 ∗ y ∨ c = 2 ∗ y + 1)));

A number c is odd or even
∀P · (P ⊆ N ∧ 0 ∈ P ∧ suc[P ] ⊆ P ⇒ N ⊆ P );

This is the recurrence theorem. P is the set of all value which satisfy a property
∀K · (K ⊆ N ∧ 0 ∈ K ∧ divtwo−1[K] ⊆ K ⇒ N ⊆ K);

This is another recurrence theorem, like P (n/2) ⇒ P (n) ..
∀(n, k, x) · (n ∈ N ∧ k ∈ Z ∧ x ∈ dom (code(n, k)) ⇒ x ≥ k);

All value in dom (code(n, k)) are greater than or equals to k

code ∈ N × Z → (Z �→ bit);

Now a code is a partial function
∀n · (n ∈ N ⇒ power2(n) > 0);

2n is always greater than 0

∀(n, c, k) · (n ∈ N ∧ c ∈ N ∧ power2(n) > c ∧ k ∈ Z ⇒
code(power2(n) + c, k) = code(power2(n), k) �− code(c, k));

This is our property for implementing addition
∀(n, k, x) · (n ∈ N ∧ k ∈ Z ∧ x ∈ dom (shift(code(n, k))) ⇒ x > k);
∀(n, k) · (n ∈ N ∧ k ∈ Z ⇒ shift(code(n, k)) = code(n, k + 1))

A useful property of shift (which is now a shift)
∀n · (n ∈ N ⇒ code(power2(n), 0) = (0..n − 1) × ZERO ∪ {n �→ ONE})

A property which evaluates the code of 2n

end

Table 17. Model for deriving proofs on the abstract coding
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a given problem. Benefits are inherited from both frameworks: the B event-
driven approach provides a refinement and the coordination framework pro-
vides a simple computation model. In this section, the sorting problem is
redeveloped in the B event-driven method using coordination principles for
the algorithms, and two programming paradigms are applied, i.e. merging and
splitting lists to be sorted.

5.1 Introduction

Overview

The coordination paradigm [45, 98] improves the development of concur-
rent/distributed solutions because it provides simple way to communicate
between processes via a data structure called a tuple space. Coordination
and event-driven system development can be fruitfully combined to construct
sequential recursive programs and to analyse the development of different
solutions of a given problem, in the present case the sorting problem. This
combination exploits the fundamental refinement relationship defined in the
B event-driven approach [10, 11, 36] and leads to a practical framework for
addressing the analysis of program development.

Coordination

The coordination paradigm appears in various programming environments,
such as LINDA [45, 98]. The main idea is simple: a collection of processes
or agents can cooperate, communicate and exchange data through a unique
structure called a tuple space. A tuple space is a heap that can contain items,
and processes are authorised to perform several operations, namely to put
an item in the tuple space, to withdraw an item and to consult the tuple
space. Implementation details are hidden. Any programming language can be
extended by specific operations related to the tuple space, as for instance in
the C LINDA environment, which extends the C programming language. The
coordination paradigm focuses on the development of activities that are in-
herently concurrent and are simply made coherent through the coordination
primitives. As soon as a coordination program is written, tools such as compil-
ers provide a translation to a lower level which manages communications; this
means that communications can be used without toil, since we do not have to
take care how communications are really implemented. The coordination com-
putation model has been developed in the GAMMA [18] model, and a kernel
of a methodology related to proof has been given; Chaudron [48] has defined a
refinement in a language of coordination for GAMMA close to the techniques
of bi-simulation. We do not define new refinements here. The CHAM (Chem-
ical Abstract Machine) is a chemical view of the coordination computation
model. However, even if GAMMA is intended to promote the methodological
aspects of program development, nothing has been clearly studied about its
relationship to the refinement of event systems.



96 Dominique Cansell and Dominique Méry

Integration of Coordination and Event-driven Systems

Event-driven systems are incrementally derived from a very abstract model
into a final concrete model through refinement steps. The B event-driven tech-
nique is based on the validation by proof of each refinement step, and it starts
with a system analysis where mathematical details are carefully analysed and
proved or disproved by the proof tool. The idea is to add the coordination
primitives as events which modify the tuple space and to get for free a refine-
ment in the coordination framework. A consequence is that it provides a way
to execute event-driven systems as a coordinated set of events and allows the
refinement of general coordinator structures. The present exercise focuses on
the use of both techniques for analysing the sorting problem; we apply two
main sorting paradigms namely splitting (Quick-sort) and merging. Finally,
we obtain a concrete model which is a sequential algorithm using a stack and
which gives a non-recursive algorithm in the Quick-sort family.

The coordination paradigm was introduced and implemented in LINDA [45,
98], and a C LINDA compiler was effectively developed. The original idea was
to synchronise processes or agents through a shared data space called a tu-
ple space, using specific primitives extending the programming language. The
programming language could be C, SML or a Prolog-like one; coordination
primitives manage communication among processes or agents. Coordination
is information-driven and makes interaction protocols simple and expressive.
For instance, the implementation of Galibert [60] provides a simple way to
program in C++ and to use a powerful, high-performance computer, namely
the Origin 2000 SGI. Here, we use coordination as a simple way to state
actions on data; it is a less structured approach, in contrast to classical pro-
gramming languages. Every abstract model (in the B event-based approach)
can be transformed into a coordinated program; however, we refine as much
as possible to obtain a sequential algorithm.

When one writes a coordinated program, one has to identify processes
or agents of the system; processes are expressed in a programming notation
and the coordination framework allows one to state communications between
processes through the tuple space. The coordination primitives include the
reading of a value in the tuple space, the writing of a value in the tuple space
and waiting for a value in the tuple space. Events play the role of actions of
agents or processes and cooperate in the global computation, if any.

5.2 A Well-known Case Study: the Sorting Problem

Sorting a list of values means that one aims to find a permutation of the values
such that the resulting list is sorted. We define two constants, f and m, with
the following properties:
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m ∈ N ∧
f ∈ 1..m � N

Here f stands for an abstract array which contains m natural numbers. All
elements of the list are different. The variable g, initially set to the initial
value f of the list, contains the sorted list in ascending order. The invariant
must state that values are preserved between g and f. The invariant holds at
the beginning, since g = f ; the unique event of the system is a sorting, and it
sorts in one step g:

INVARIANT
g ∈ 1..m −→ N ∧
ran(g) = ran(f)

sorting =
begin

g : N ∧
ran(g) = ran(f)∧
∀x.(x ∈ 1..m − 1 ⇒ g(x) ≤ g(x + 1))

end

We know that there is one (and only one) permutation into which the list can
be sorted. The sorting event is then enabled. The simplicity of the sorting
event allows us to derive the correctness of the abstract system. The sorting
is done in one step, which may seem to be magical. The abstract system is
refined into another event system which implements a sorting technique, such
as the Quick-sort or the merge sort technique. The main idea is to use the
coordination paradigm to remove the recursiveness of the solution. The first
abstract model is called BASIC-SORTING.

5.3 Applying Two Sorting Paradigms

The previous system is an abstract view of the sorting process. Sorting algo-
rithms are based on specific paradigms, leading to well-known solutions. In
our case, we consider two paradigms:

• merging two sorted lists to produce a sorted list. Merge sort
and insertion sort use the basic technique of merging two sorted lists; the
way in which sorted lists are combined may be different, and the sizes of
the two lists may be also different. The insertion sort combines a list con-
taining only one element with any other sorted list. The von Neumann sort
combines two lists that have the same size. Nevertheless, the basic tech-
nique is the merging of two sorted lists, and the global process increments
the size of the intermediate lists, which is a termination condition.

• splitting a list into two lists to obtain two partitioned lists.
In contrast, a list can be split into two lists such that the elements of the
first list are smaller than the elements of the second list; the famous Quick-
sort soring technique is an application of this paradigm. The introduction
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of the pivot is very important for the complexity of the sort. The selection
sort is another example of a sorting technique and is an extreme case of
the Quick-sort – i.e., the pivot is at the extreme “left” or “right”3 position
in the split list. The process converges to a list of one-element sorted lists,
which are correctly located.

The coordination paradigm provides us with a computation model, and we
use the event-driven paradigm for defining operations on the tuple space. The
data structures are supported by the tuple space. A list is defined as an interval
over the set of discrete values 1..m, where m is a constant of the problem. An
interval contains successive values, when non-empty. An interval is a subset
of 1..m with consecutive values, and the intervals are a partition of 1..m. The
invariant will be strengthened to take into account the properties of intervals
later.

For the moment, the following invariant says that the tuple space TS is
a partition of 1..m; operations on the tuple space are expressed by events
modifying the variable TS:

TS ⊆ P( 1..m )∧
∀I.(I ∈ TS ⇒ I �= ∅) ∧

∀(I, J).(
I ∈ TS ∧ J ∈ TS ∧ I �= J
⇒

I ∩ J = ∅
) ∧

∀i.(i ∈ 1..m ⇒ ∃I.(I ∈ TS ∧ i ∈ I))

The refinement of the current model BASIC_MODEL leads us either to
split intervals, or to combine intervals; we obtain two possible refined models:

• MERGE-SORT merges two intervals to produce an interval : the sorting
process will stop when only one interval remains in the tuple space.

• SPLIT-SORT splits an interval into two intervals : the splitting will stop
when no more splitting is possible.

We give no more details about the way the intervals are chosen, since these
details may appear later in the refinement process. Both models have to be
refined to detail the operations of merging and splitting. No implementation
detail addresses the problem of parallel execution, since the model is an ab-
stract model.

The Bottom-up Process MERGE-SORT

This bottom-up process combines intervals by maintaining the invariant of the
sorting problem. The merging of two intervals assumes that the restriction of
g on each interval is sorted. This property is added to the previous invariant,
3 For understanding the notions of “left” and “tight”, kindly visualise the list as a

left-to-right sequence of elements.



The event-B Modelling Method 99

∀(i, j).(i ∈ I ∧ j ∈ I ∧ i ≤ j ⇒ g(i) ≤ g(j)))

The initial conditions state that the tuple space contains only intervals with
one element; there is an interval for every possible value of 1..m; and g is set
to the initial value of the list to be sorted.

Init =
begin

g := f ‖ TS := {x|x ⊆ 1..m ∧ ∃i.(i ∈ 1..m ∧ x = i..i)}
end

We recall that the merge process stops when only one interval is in the tuple
space and it contains only 1..m. Using the invariant, we can prove that g is
sorted. The refined sorting event is

sorting =
when 1..m ∈ TS then

skip
end ;

The sorting process is specified in detail in a way that identifies intermediate
states of the variable g; these intermediate states state that the set of inter-
vals converges towards a unique interval modelling the sorted list. A progress
event is defined to model the computation of a merging step. The new event
merge_progress withdraws two intervals from TS and deposits a new inter-
val which is the merging of the two withdrawn intervals in TS. The merging of
two intervals decrements the number of intervals and helps in the convergence
of the process:
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merge_progress =
any I, J , gp where

I ∈ TS ∧
J ∈ TS ∧
I �= J ∧
gp ∈ I ∪ J −→ N ∧
ran(gp) = ran((I ∪ J) � g)
∀(i1, i2).(

i1 ∈ I ∪ J ∧
i2 ∈ I ∪ J ∧
i1 ≤ i2
⇒

gp(i1) ≤ gp(i2))
then

g := g �− gp ‖
TS := TS − {I, J} ∪ {I ∪ J}

end

This model is not yet the merging sort, since it is not efficiently implemented.
However, the essence of the merging sort is expressed in the current model.

Further refinements introduce details so as to obtain different sorting algo-
rithms based on the merging paradigm, such as the merging sort, the insertion
sort and the von Neumann sort. At this point, we are not really using an in-
terval, since I ∪ J is not necessarily an interval, but a further refinement will
be able to choose intervals adequately to satisfy that constraint.

The Top-down SPLIT-SORT

Quick-sort is based on a strategy of decomposition called splitting the list and,
the refinement of the model basic_sorting adds a new invariant expressing
the states of intervals resulting from splitting them. The final goal is to obtain
a tuple space containing only intervals with one element. Remember that the
Quick-sort splits an interval into two intervals in such a way that the elements
of the first interval are smaller than the elements of the second one. The
invariant is strengthened by the property that intervals can be sorted with
respect to their values:
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∀(I, J).(
I ∈ TS ∧ J ∈ TS ∧ I �= J
⇒

(∀(i, j).(
i ∈ I ∧ j ∈ J ∧ i < j
⇒

g(i) ≤ g(j))))

When two numbers are in an interval, the values between those two values
are also in that interval:

∀I.(
I ∈ TS
⇒

(∀(i, j).(
i ∈ I ∧ j ∈ I
⇒

i..j ⊆ I)))

The initial conditions satisfy the invariant by setting a unique interval in the
tuple space: only 1..m is in the tuple space.

The split process starts in a tuple space with only one interval, and halts
when every interval i..i (for every value i in 1..m) is in the tuple space. In
fact, no more splitting events are possible.

Init =
begin g := f ‖

TS := {1..m}
end

sorting =
when ∀i.(i ∈ 1..m ⇒ i..i ∈ TS)
then

skip
end ;

The progress of the global process is achieved by splitting intervals of the
tuple space for as long as possible; only intervals with at least two elements
can be split. The new event chooses a value called a pivot: it splits an interval
into two smaller ones and it updates g. Obviously, the way to update g is very
crucial for the implementation, as is the choice of the pivot. Selection sorting
is one possible refined model that can be derived, if the pivot is specially
chosen: here the pivot is the greatest or the smallest value of the interval:
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split_progress =
any I, k, gp, x where

I ∈ TS ∧ k ∈ I ∧ ∃j.(j ∈ I ∧ j > k) ∧ gp ∈ I −→ N ∧
x ∈ ran(gp) ∧ ran(gp) = ran(I � g) ∧
∀z.(z ∈ I ∧ z ≤ k ⇒ gp(z) ≤ x) ∧
∀z.(z ∈ I ∧ z > k ⇒ gp(z) ≥ x)

then
g := g �− gp ‖
TS := TS − {I} ∪ {{y|y ∈ I ∧ y ≤ k}, {y|y ∈ I ∧ y > k}}

end

This model has two main events; one event splits the intervals for as long as
there is at least one interval with two values, and there is also an event for
completing the process.

Duality of Sorting Models

The two models refine the basic model of the sorting problem; the tuple space
frees the designer from implementation details, and structures the computa-
tion process. In Fig 1, we summarize the refinement relationship between the
three models developed in the previous subsections.

split−sort

basic−sorting

merge−sort

Fig. 1. Development of sorting techniques

Two families of sorting techniques can be redeveloped, and we shall develop
the family of sorting techniques based on the split paradigm here. We do not
develop sorting algorithms of the merge family in this chapter.

5.4 Introducing a Pivot and an Index

Quick-sort splits arrays by choosing a pivot variable, and it then reorganizes
both intervals such that any value in the first interval is smaller than any
value in the second interval. The refinement described below defines a pivot
(piv) and a concrete index (k), which allows to split the current interval (I).
Two index variables, namely binf and bsup, define the middle part of an
interval. The middle part is not processed by the partitioning process. The
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partitioning algorithm is not used in our current process, since it can split the
current interval into three parts. The control of binf and bsup is fundamental:
we must have an increase of binf and e decrease of bsup. The new invariant
is enriched by statements about properties satisfied by the new variables,
namely piv, k, binf and bsup. The variable ToSplit detects the phase of the
partitioning process. It can contain three values: No, when no split phase is
running; Y es, if the partitioning process is progressing and End, when the
partitioning process for a given interval is completed.

The resulting invariant expresses intuitive properties over variables; the
proof assistant generates proof obligations for validating the refinement and
helps us to add details over variables that were missing. When one is develop-
ing abstract models, a proof assistant such as Atelier B is crucial, and avoids
the errors that may occur in brain-aided proofs. A proof helps us to choose
the correct index (k) to partition the resulting interval when the splitting
process stops (ToSplit = End). Explanations are necessary in order to read
and understand the invariant.

The first part of the model expresses typing information. I is the cur-
rent interval, which satisfies properties resulting from the guard of the
choice_interval event:

ToSplit ∈ {No, Y es, End} ∧ I ⊆ 1..m ∧ piv ∈ N ∧ binf ∈ 1..m ∧
bsup ∈ 1..m ∧ k ∈ N ∧
(ToSplit �= No ⇒ piv ∈ ran(I � g)) ∧
(ToSplit �= No ⇒ I ∈ TS) ∧
(ToSplit �= No ⇒ I − max(I) �= ∅) ∧
(ToSplit = Y es ⇒ binf ∈ I) ∧
(ToSplit = Y es ⇒ bsup ∈ I)

The splitting of the current interval into two intervals is made possible by
controlling the two variables binf and bsup. binf may increase and bsup
may decrease: left_partition can increase binf and right_partition can
decrease binf . Both events may possibly occur when binf < bsup and are
complementary with respect to guards. A swap event is enabled when both
left_partition and right_partition are no longer enabled and when the two
bounds are still satisfy the relationship binf < bsup. In this case, we must
decide the new bound k, which must split the interval into two non-empty
intervals:

(ToSplit = End ⇒ k ∈ I − {max(I)}).
If we choose binf − 1 or bsup, this values must be different from the initial
value of the greater bound. So, if this greater bound does not change, the
other bound must be less and the pivot is still in the first part:
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(ToSplit = Y es ∧ binf = min(I) ⇒
piv /∈ ran(bsup + 1..max(I) � g)) ∧

(ToSplit = Y es ∧ bsup = max(I) ⇒ binf < bsup) ∧
(ToSplit = Y es ∧ bsup = max(I) ⇒

piv /∈ ran(min(I)..binf − 1 � g)) ∧
(ToSplit = Y es ∧ bsup = max(I) ⇒ piv ∈ ran(I − {max(I)} � g)) ∧
(ToSplit = Y es ⇒ ∀z · ( z ∈ min(I)..binf − 1 ⇒ g(z) ≤ piv)) ∧
(ToSplit = Y es ⇒ ∀z · ( z ∈ (bsup + 1)..max(I) ⇒ g(z) ≥ piv)) ∧
(ToSplit = Y es ∧ bsup < binf ⇒ binf ≤ max(I)) ∧
(ToSplit = Y es ∧ bsup ≤ binf ⇒ (binf = bsup ∨ binf = bsup + 1)) ∧
(binf = bsup ⇒ bsup < max(I)) ∧
(ToSplit = End ⇒ k ∈ I − {max(I)}) ∧
(ToSplit = End ⇒ ∀z · ( z ∈ min(I)..k ⇒ g(z) ≤ piv)) ∧
(ToSplit = End ⇒ ∀z · ( z ∈ k + 1..max(I) ⇒ g(z) ≥ piv))

Safety properties can be proved from the invariant and are stated in the clause
ASSERTIONS of the B machine. These properties are useful for validating the
system itself:

(ToSplit = Y es ⇒ I − max(I) = min(I)..max(I) − 1) ∧
(ToSplit = Y es ⇒ min(I)..max(I) ⊆ I) ∧
(ToSplit = Y es ⇒ binf..bsup ⊆ I))

The invariant can be proved to be satisfied by the refined events and we list
the refined events; the first one is the initialisation event, called Init. The tuple
space contains only one interval, namely 1..m, and the splitting process is not
running in the initialisation state:

Init =
begin

g := f ‖ TS := {1..m} ‖ I := ∅ ‖ ToSplit := No ‖
piv :∈ N ‖binf :∈ 1..m ‖ bsup :∈ 1..m ‖ k :∈ 1..m

end

The event sorting does not change; the guard of split_progress is very simple.
When the partition process is finished (ToSplit = End), k is the index result
for the partition (see the description of the event partition):
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split_progress =
when

ToSplit = End
then

ToSplit := Y es ‖
TS := TS − {I} ∪ {{y|y ∈ I ∧ y ≤ k}, {y|y ∈ I ∧ y > k}}

end ;

We now introduce five new events. The first one, namely tchoice_interval,
chooses an interval (not a singleton) in the tuple space and initializes both
index and the pivot. After the activation of this event, we can cut the current
interval (ToSplit = Y es):

choice_interval =
any J, PIV where

ToSplit = No ∧ J ∈ TS ∧
PIV ∈ ran((J − max(J)) � g) ∧ min(J) < max(J)

then
ToSplit := Y es ‖I := J ‖
piv := PIV ‖binf := min(J) ‖bsup := max(J)

end ;

The three next events move the index so as to leave an element less than the
pivot before binf and greater than the pivot after bsup:

left_partition =
when

ToSplit = Y es ∧
binf < bsup ∧
g(binf) < piv

then
binf := binf + 1

end ;

right_partition =
when

ToSplit = Y es ∧
binf < bsup ∧
g(binf) ≥ piv ∧
g(bsup) > piv

then
bsup := bsup − 1

end ;

swap =
when

ToSplit = Y es ∧ binf < bsup ∧
g(binf) ≥ piv ∧ g(bsup) ≤ piv

then
binf, bsup := binf + 1, bsup− 1‖
g := g �− {binf �→ g(bsup)} �− {bsup �→ g(binf)}

end ;
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The last one stops the partitioning process and defines the index k, which
makes progress possible (see event split_progress).

partition =
when

ToSplit = Y es ∧ binf ≥ bsup
then

ToSplit := End ‖
if binf = bsup then

if g(binf) ≤ piv then
k := binf

else
k := binf − 1

end
else

k := bsup
end

end ;

5.5 A Set of Bounds and a Concrete Pivot

The goal of the refinement described next is to implement the tuple space by
use of a set of initial bounds from every interval in the abstract tuple space.
Initially, we tried to introduce this implementation in the first refinement but
it led us to a unique proof obligation, whose proof was very long. Hence, we
have found another abstraction, which produces more proof obligations than
does the initial choice, but they were easier to prove.

The implementation of the pivot is the middle of the chosen interval and
now, the choice is deterministic. The relationship between pairs of bounds of
the new tuple space TB and the tuple space TS is stated by a gluing invariant
and the relationship is a one-to-one relation:

TB ⊆ 1..m + 1 ∧

∀ (a, b) ·
⎛

⎝

(
a ∈ TB ∧ b ∈ TB ∧
a < b ∧ a + 1..b − 1 ∩ TB = ∅

)

⇒ a..b − 1 ∈ TS

⎞

⎠

We add two new variables, namely A and B, which are the bounds of the
current abstract interval I, and they satisfy the following gluing invariant:
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ToSplit = Y es ⇒
⎛

⎝
A ∈ TB ∧ B ∈ TB ∧
A < B ∧ A + 1..B − 1 ∩ TB = ∅ ∧
A..B − 1 = I

⎞

⎠ ∧

ToSplit = End ⇒
⎛

⎝
A ∈ TB ∧ B ∈ TB ∧
A < B ∧ A + 1..B − 1 ∩ TB = ∅ ∧
A..B − 1 = I

⎞

⎠

Two new safety properties can be derived from the current invariant:

∀I · ( I ∈ TS ⇒ min(I) ∈ TB ∧ max(I) + 1 ∈ TB);

∀ (a, b, c) ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a ∈ TB ∧ b ∈ TB ∧ c ∈ TB ∧
a < b ∧ b < c ∧
a + 1..b − 1 ∩ TB = ∅ ∧
b + 1..c − 1 ∩ TB = ∅

⇒
∀ (x, y) · (x ∈ a..b − 1 ∧ y ∈ b..c − 1 ⇒ g(x) ≤ g(y))

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

We refine only two events. The event split_progress adds the unique value
k + 1 in the concrete tuple space (TB):

split_progress =
when ToSplit = End then

ToSplit := No ‖
TB := TB ∪ {k + 1}

end ;

The event choice_interval initializes the concrete bounds A and B of the
abstract interval I. It chooses the pivot as the value g((a + b − 1)/2) at the
middle of the chosen interval:

choice_interval =
any a, b, p where

ToSplit = No ∧ a ∈ TB ∧ b ∈ TB ∧
a < b − 1 ∧
a + 1..b − 1 ∩ TB = ∅ ∧
p = g((a + b − 1)/2)

then
ToSplit := Y es ‖ A := a ‖ B := b ‖
piv := p ‖ binf := a ‖ bsup := b − 1

end ;
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5.6 Implementation of the Tuple Space by a Stack

In the next step, we use a stack for implementing the tuple space; it is clear
that the current abstract model might be implemented directly in a coordi-
nation language such as C LINDA, for instance. However, we recall that the
coordination paradigm is a methodological support for development.

In this refinement, we implement the tuple space by a stack. We use three
new variables TA, top, and S, which stand for the old variable TB. S (single)
contains all bounds intervals which are singletons and which were on the top
of the stack TA. All bounds in TB are single (∈ S) or in the co-domain of TA
and vice versa, according to our gluing invariant. Two consecutive bounds in
TB are given by two consecutive indices of the stack (an array). The concrete
tuple space TA is sorted; top is the dimension of TA. Notice that top is always
between 1 and m + 1. No stack overflow can occur:

top ∈ 1..m + 1 ∧
TA ∈ 1..top → 1..m + 1 ∧
S ⊆ TB ∧
TB = ran(TA) ∪ S ∧

∀(i, j) ·

⎛

⎜
⎜
⎜
⎜
⎝

i ∈ dom(TA) ∧
j ∈ dom(TA) ∧
i < j ∧

⇒
TA(i) < TA(j))

⎞

⎟
⎟
⎟
⎟
⎠

When S is empty, the greater bound in the co-domain of TA is m+1 and, when
S is not empty, it contains consecutive indices from m + 1, and the greater
bound in the co-domain of TA and the minimum of S are consecutive. Using
this technical invariant, it is easier to prove the previous gluing invariant:

(S = ∅ ⇒ max(ran(TA)) = m + 1) ∧
(S �= ∅ ⇒ S = min(S)..m + 1) ∧
(S �= ∅ ⇒ max(ran(TA)) + 1 = min(S)) ∧

The following properties can be proved from the invariant:

(ToSplit �= No ⇒ (top �→ B) ∈ TA) ∧
(ToSplit �= No ⇒ (top − 1 �→ A) ∈ TA) ∧
(ToSplit �= No ⇒ top > 1) ∧
(ToSplit �= No ⇒ top ≤ m)
TA : 1..top � 1..m + 1 ∧
max(ran(TA)) = TA(top) ∧
ran(TA) ∩ S = ∅ ∧
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∀(h, n) ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n : 1..m + 1 ∧
h : 1..n � 1..n ∧

∀(x, y) ·

⎛

⎜
⎜
⎜
⎜
⎝

x ∈ 1..n ∧
y ∈ 1..n ∧
x < y ∧

⇒
h(x) < h(y))

⎞

⎟
⎟
⎟
⎟
⎠

⇒
h = id(1..n)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The last property is very important for proving that there is no run stack
overflow on our stack. It expresses the fact that the unique increasing into
function between 1..m+1 and 1..m+1 is the identity. We have proved this in
another B machine with other preliminary lemmas such as previous assertions.
The initial event is written starting from the previous one:

Init =
begin

g := f ‖TA := {1 �→ 1, 2 �→ m + 1} ‖S := ∅ ‖top := 2 ‖
ToSplit := No ‖A, B := m + 1, 1 ‖piv :∈ N ‖
binf :∈ 1..m ‖bsup :∈ 1..m ‖k :∈ 1..m

end

Only three old events change. Now, the guard of sorting is top = 1: remember
that the proof of the refinement assumes that in this case all intervals are
singletons. The implementation is very close:

sorting =
when top = 1 then

skip
end ;

split_progress =
when ToSplit = End then

ToSplit := No ‖
top := top + 1 ‖
TA := (TA �− {top �→ k + 1}) �− {top + 1 �→ B}

end ;

The event which chooses the interval is now deterministic. The bounds of the
chosen interval are on the top of the stack TA. Notice that the chosen interval
is not a singleton (TA(top − 1) + 1 �= TA(top). The singleton on the top of
the stack is removed by a new event as follows:
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choice_interval =
when

top > 1 ∧
(TA(top − 1) + 1/ = TA(top)) ∧
ToSplit = No

then
ToSplit := Y es ‖

A, B, piv, binf, bsup : |

⎛

⎜
⎜
⎜
⎜
⎝

A = TA(top − 1) ∧
B = TA(top) ∧
piv = g((A + B − 1)/2) ∧
binf = A ∧
bsup = B − 1

⎞

⎟
⎟
⎟
⎟
⎠

end ;

The new event, called elim_single, eliminates every singleton on the top of the
stack:

elim_single =
when

top > 1 ∧
TA(top − 1) + 1 = TA(top) ∧
ToSplit = No

then
S := S ∪ {TA(top)} ‖
top := top − 1 ‖
TA := 1..top − 1 � TA

end ;

All guards of the above system are very simple to implement and all events
are deterministic. We can easily derive from this system an iterative program
using array and loops. The set of singletons S is not important in this im-
plementation. If anyone should wish to use it, it can be stored in TA from
index m in decreasing order. The iterative version of the algorithm is given in
Table 18.

5.7 Conclusion

The iterative algorithm is three times faster than Quick-sort; it was obtained
by combining the coordination paradigm and the event-driven paradigm. Ev-
ery abstract model can be implemented by a coordination program, but we
have used the coordination paradigm as a computation model, and refinement
allows us to transit from the coordination model to the classical sequential
model. Moreover, it provides us with a way to develop a splitting algorithm
without any use of recursion. Our experience shows that coordination gives
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begin
g := f ; TA[1] := 1; TA[2] := m + 1; top := 2;
/ � ToSplit = No � /
while top �= 1 do

while top > 1 ∧ TA[top − 1] + 1 = TA[top] do
top := top − 1

od ;
if top > 1 then

A := TA[top − 1];
B := TA[top];
binf := A;
bsup := B − 1;
piv := g[(binf + bsup)div2];
/ � ToSplit = Y es � /
while (binf < bsup) do

while binf < bsup ∧ g[binf ] < piv do
binf := binf + 1

od ;
while binf < bsup ∧ g[bsup] > piv do

bsup := bsup − 1
od ;
if binf < bsup then

temp := g[binf ];
g[binf ] := g[bsup];
g[bsup] := temp;
binf := binf + 1;
bsup := bsup − 1

end
od ;
if binf = bsup then

if g[binf ] ≤ piv then
k := binf

else
k := binf − 1

end
else

k := bsup
end ;
/ � ToSplit = End � /
TA[top] := k + 1; top := top + 1; TA[top] := B
/ � ToSplit = No � /

end
od
end

Table 18. A correct iterative program
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us a simple way to think about the activity of events, and it helps in explain-
ing what is really happening when, for instance, a paradigm is applied for
sorting. We have not, however, completely explored the “promised land” of
coordination, and we have not compared our work with the use of refinement
for coordination.

6 Spanning-tree Algorithms

6.1 Introduction

Graph algorithms and graph-theoretical problems provide a challenging bat-
tlefield for the incremental development of proved models. The B event-based
approach implements an incremental and proved development of abstract
models, which are translated into algorithms; we focus our methodology here
on the minimum-spanning-tree problem and on Prim’s algorithm. The cor-
rectness of the resulting solution is based on properties over trees, and we
show how the greedy strategy is efficient in this case. We compare some prop-
erties proven mechanically with the properties found in a classical textbook
on algorithms. This section analyses the proof-based development of minimal-
panning-tree algorithms, and Prim’s algorithm in particular [92] is produced
at the end.

6.2 The Minimum-panning-tree Problem

The minimum-spanning-tree problem or minimal-spanning-tree problem, is
the problem of finding a minimum spanning tree with respect to a connected
graph. The literature contains several algorithmic solutions such as Prim’s
algorithm [92] and Kruskal’s algorithm [70]. Both of these algorithms imple-
ment the greedy method. Typically, we assume that a cost function is related
to every edge, and the problem is to infer a globally minimum spanning tree
which covers the initial graph. The cost function returns integer values. The
minimal-spanning-tree problem is strongly related to practical problems such
as the optimisation of circuitry, and the greedy strategy advocates making
the choice that is the best one at that moment; it does not always guarantee
optimality, but certain greedy strategies do indeed yield a minimal-spanning-
tree.

Prim’s algorithm is easy to explain, and it underlies mathematical prop-
erties related to graph theory and, especially, the general theory of trees. We
consider two kinds of solution; the first kind is called a generic algorithm be-
cause it does not use a cost function. This first, generic solution allows us to
develop a second solution: the minimal-spanning-tree.

Let us summarize how Prim’s algorithm works. The state of the algorithm
during execution contains two sets of nodes of the current graph. The first
set of nodes, equipped with a restriction of a relation over the global set of
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nodes, defines the current spanning tree, starting from a special node called
the root of the spanning tree. The second set of nodes is the complement of
the first set. The acyclicity of the spanning tree must be preserved when a new
edge is added to the current spanning tree, and the basic computation step
consists of taking an edge between a node in the current spanning tree and a
node in the other set. This choice leads to maintaining the acyclicity of the
current spanning tree with the new node added, since the two sets of nodes are
disjoint. The process is repeated until the set of remaining, unchosen nodes is
empty. The final computed tree is a spanning-tree computed by the generic
algorithm. Now, if one adds the cost function, one obtains Prim’s algorithm
by modifying the choice of the new node and edge to be added to the current
spanning tree. In fact, the minimum edge is chosen and the final spanning
tree is then the minimum spanning tree. However, the addition of the cost
function is a refinement of the generic solution.

The generic minimal-spanning-tree algorithm without a cost function is
sketched as follows:

• Precondition. An undirected connected graph, g, over a set of nodes ND
and a node r.

• Initial step. tr_nodes (the current set of nodes) contains only r and is
included in ND, and tr (the current set of edges) is empty.

• Computation step. If ND − tr_nodes is not empty, then choose a node x
in tr_nodes and a node y in ND − tr_nodes such that the link (x, y) is
in g with the minimum cost and add it to tr; then add y to tr_nodes and
(x, y) to tr

• Termination step. If ND− tr_nodes is empty (ND = tr_nodes), then tr
is a minimum spanning tree on ND.

• Postcondition (ND, tr) is a minimum spanning tree.

Termination of the algorithm is ensured by decreasing the set ND−tr_nodes.
The genericity of the solution leads us to the refinement by introducing the
cost function in the computation step. We have a clear, simple, abstract view
of the problem and of the solution. We can, in fact, state the problem in the
B event-based framework. It remains to prove the optimality of the resulting
spanning tree; this can be derived using tools and models. Before starting the
modelling, we recall the B-event-based modelling technique.

6.3 Development of a Spanning-tree Algorithm

Formal Specification of the Spanning-tree Problem

First we define the elements of the current graph, namely g over the set of
nodes ND. The graph is assumed to be undirected, which is modelled by the
symmetry of the relation of the graph. Node r is the root of the resulting tree,
and we obtain the following B definitions:
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g ⊆ ND × ND ∧
g = g−1 ∧
r ∈ ND

Termination of the algorithm is clearly related to the properties of the current
graph; the existence of the spanning tree is based on the connectivity of the
graph. The modelling of a tree uses the acyclicity of the graph. A tree is
defined by a root r, a node r ∈ ND and a parent function t (each node has
an unique parent node, except for the root): t ∈ ND − {r} −→ ND. A
tree is an acyclic graph. A cycle c in a finite graph t built on a set ND is a
subset of ND whose elements are members of the inverse image of c under
t, formally, c ⊆ t−1[c]. To fulfil the requirement of acyclicity, the only set c
that enjoys this property is necessarily the empty set. We formalize this by
the left predicate that follows, which can be proved to be equivalent to the
one on the right, which can be used as an induction rule:

∀c · (
c ⊆ ND ∧
c ⊆ t−1 [c]

⇒
c = ∅ )

⇔

∀q · (
q ⊆ ND ∧
r ∈ q ∧
t−1 [q] ⊆ q

⇒
ND = q )

We have proved the equivalence using Atelier B. We can now define a spanning
tree (rooted at r and with the parent function t) of a graph g as one whose
parent function is included in g, formally

spanning (t, g) =⎛

⎝
t ∈ ND − {r} −→ ND ∧
∀q · ( q ⊆ ND ∧ r ∈ q ∧ t−1 [q] ⊆ q ⇒ ND = q ) ∧
t ⊆ g

⎞

⎠

Now we can define the set tree (g) of all spanning trees (with root r) of the
graph g, formally

tree (g) = {t|spanning (t, g)}

We define the property of being a connected graph by connected(g):

connected (g) =(
g ∈ ND ↔ ND ∧
∀S · (S ⊆ ND ∧ r ∈ S ∧ g [S] ⊆ S ⇒ ND = S )

)
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The graph g and the node r are two global constants of our problem and
must satisfy the properties stated above. Moreover, we assert that there is
at least one solution to our problem. The optimality of the solution will be
analysed later, when we introduce the cost function. Now, we build the first
model, which computes the solution in one shot. The event span corresponds
to producing a spanning tree among the non-empty set of possible spanning
trees for g. The variable st contains the resulting spanning tree:

span =
begin

st :∈ tree(g)
end

st ∈ ND ↔ ND

The invariant is very simple and is only a type invariant; the initialization
establishes the invariant.

The current model is in fact the specification of the simple spanning-tree
problem; we have not yet mentioned the cost function. The next step is to
refine the current model into a simple spanning-tree algorithm.

Development of a Simple Spanning-tree Algorithm

The second model introduces a new event, which gradually computes the
spanning tree by constructing it in a progressive way. The new event adds a
new edge to the current tree tr which partly spans g. The chosen edge is such
that the first component of the pair of nodes is in tr_nodes and the second is
in remaining_nodes. These two new variables partition the set of nodes, and
we obtain the following new properties to add to the invariant of the current
model:

tr_nodes ⊆ ND ∧
remaining_nodes ⊆ ND ∧
tr_nodes ∪ remaining_nodes = ND ∧
tr_nodes ∩ remaining_nodes = ∅

A new event, progress, simulates the computation step of the current solution
by choosing a pair maintaining the updated invariant:
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progress =
select

remaining_nodes �= ∅
then

any x, y where
x, y ∈ g ∧ x, y ∈ tr_nodes × remaining_nodes

then
tr := tr ∪ {y �→ x} ||
tr_nodes := tr_nodes ∪ {y} ||
remaining_nodes := remaining_nodes − {y}

end
end

The event span is refined simply by modifying the guard of the previous in-
stance of the event in the abstract model. The event is triggered when the set
of remaining nodes is empty: the variable st contains a spanning tree for the
graph g:

span =
select

remaining_nodes = ∅
then

st := tr
end

The invariant of the new model states the properties of the two new variables
and relates them to previous ones:

tr_nodes ⊆ ND ∧
remaining_nodes ⊆ ND ∧
tr_nodes ∪ remaining_nodes = ND ∧
tr_nodes ∩ remaining_nodes = ∅ ∧
tr ∈ tr_nodes − {r} −→ tr_nodes ∧
∀q · ( q ⊆ tr_nodes ∧ r ∈ q ∧ tr−1 [q] ⊆ q ⇒ tr_nodes = q )

The following initialization establishes the invariant:

tr := ∅ ||
tr_nodes := {r} ||
remaining_nodes := ND − {r}

The absence of deadlock is expressed simply as follows:
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remaining_nodes = ∅ ∨
remaining_nodes �= ∅ ∧
∃(x, y).

(
x, y ∈ g ∧
x, y ∈ tr_nodes × remaining_nodes

)

We have obtained a simple iterative solution to the simple minimal-spanning-
tree problem; the solution follows the sketch of the algorithm given in [53] in
the subsection describing the generic algorithm. We can derive the algorithm
in Table 19 from the current model.

algorithm generic_MST
begin tr := ∅;

tr_nodes = {r};
while remaining_nodes �= ∅ do

let x, y where
x, y ∈ g ∧ x, y ∈ tr_nodes × remaining_nodes

then
tr := tr ∪ {y �→ x};
tr_nodes := tr_nodes ∪ {y};
remaining_nodes := remaining_nodes − {y}

end
end_while
st := tr end

Table 19. Derived MST algorithm

The next step refines the current model into a model where the cost function
is effectively used.

A Proof View of the Spanning-tree Algorithm

The model above computes a spanning tree when the graph is connected.
This algorithm looks like a proof of existence of a spanning tree; the following
lemma allows us to prove that the set of spanning trees is not empty, and
hence a minimum spanning tree exists.

Theorem 3. (Existence of a spanning tree.)
connected (g) ⇒ tree (g) �= ∅

However, this lemma requires us to construct a tree from a hypothesis related
to the connectivity of the graph. Hence, we must prove an initial inductive
theorem on finite sets, which will include the existence of a tree. We suppose
that the set ND is finite and there exists a function from ND to 1..n, where
n is the cardinality of ND.

Theorem 4. (An inductive theorem on finite sets.)
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∀P · (
P ⊆ P(ND) ∧
∅ ∈ P ∧
∀A · (A ∈ P ∧ A �= ND ⇒ ∃a · ( a ∈ ND − A ∧ A ∪ {a} ∈ P ))

⇒
ND ∈ P )

We can use the previous theorem with the set

{A|A ⊆ ND ∧ ∃f ·

⎛

⎜
⎜
⎜
⎜
⎝

f ∈ A − {r} −→ A ∧
f ⊆ g ∧

∀S ·
⎛

⎝
S ⊆ ND ∧ r ∈ S ∧ f−1[S] ⊆ S
⇒
A ⊆ S

⎞

⎠

⎞

⎟
⎟
⎟
⎟
⎠
}

to prove that the set of spanning trees of g is not empty.

6.4 Development of Prim’s Algorithm

The cost function is defined on the set of edges and is extended over the global
set of possible pairs of nodes:

cost : g −→ Z ∧
∀(x, y) · (x, y ∈ g ⇒ cost(x �→ y) = cost(y �→ x)) ∧
Cost : P(g) −→ Z ∧
Cost({}) = 0 ∧

∀(s, x, y) ·
⎛

⎝
s ∈ P(g) ∧ x, y ∈ g − s
⇒
Cost(s ∪ {x �→ y}) = Cost(s) + cost(x �→ y)

⎞

⎠

We have proved that tree(g) is not empty, since the graph g is connected;
mst_set(g), containing every minimum spanning tree of the graph g, is defined
as follows:

mst_set(g) =
{mst|mst ∈ tree(g) ∧ ∀tr · (tr ∈ tree(g) ⇒ Cost(mst) ≤ Cost(tr))}

The set mst_set(g) is clearly not empty. The first “one-shot” model is refined
into the new model, which contains only one event span. We strengthen the
definition of the choice of the resulting tree by strengthening the condition over
the set and by choosing a candidate in the set of possible minimal-spanning-
tree trees:
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span =
begin

st :∈ mst_set(g)
end

The second model gradually computes the spanning tree by adding a new
edge to the current tree “under construction” tr spanning a part of g. The
tree tr is defined over the set of nodes already treated, called tr_nodes. The
event progress is modified to handle the minimality criterion: the guard is
modified to integrate the choice of the minimum edge from the remaining
possible edges.

progress =
select

remaining_nodes �= ∅
then

any x, y where
x, y ∈ g ∧ x, y ∈ tr_nodes × remaining_nodes ∧
∀(a, b) · (a ∈ tr_nodes ∧

b ∈ remaining_nodes ∧
a, b ∈ g

⇒
cost(y �→ x) ≤ cost(b �→ a))

then
tr := tr ∪ {y �→ x} ||
tr_nodes := tr_nodes ∪ {y} ||
remaining_nodes := remaining_nodes − {y}

end
end

The event span remains unchanged:

span =
select

remaining_nodes = ∅
then

st := tr
end

The invariant includes the invariant of the refined model of the generic refine-
ment, and we add that the current spanning tree tr is a part of a minimum
spanning tree of the graph g:

∃T · (T ∈ mst_set(g) ∧ tr ⊆ T )
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This invariant implies that after completion, when the event span occurs, the
current spanning tree tr is finally a minimal one. Since tree(g) is not empty,
then mst_set(g) is not empty and a tree can be chosen in this non-empty
set to prove that a minimal-spanning-tree exists (this minimal-spanning-tree
contains ∅). So the invariant holds for the initialization, using Theorem 3. The
difficult task is to prove that the event progress maintains the invariant. We
can take the minimum spanning tree given by the invariant if y �→ x is in this
tree. Otherwise we must provide another minimum tree which includes the
current one and the new edge y �→ x.

In fact, textbooks provide algorithms implementing greedy strategy; we
refer our explanations to the book by Cormen et al. [53] for our explanation.
These authors proved a theorem that asserts that the choice of the two edges
is made following a given requirement, namely a safe edge (a safe edge is an
edge that allows the progress of the algorithm). We recall the theorem:

Theorem 5. (Theorem 24.1 of [53, p. 501])
Let g be a connected, undirected graph on ND (the set of nodes) with a

real-valued weight function cost defined on g (the edges). Let tr be a subset of
g that is included in some minimum spanning tree for g, let (tr_nodes, ND−
tr_nodes) be any cut of g that respects tr_nodes, and let (x, y) be a light edge
crossing (tr_nodes, ND − tr_nodes). Then edge (x, y) is safe for tr_nodes.

Let us explain the notions of a cut, crossing and a light edge. A cut (tr_nodes,
ND − tr_nodes)) of an undirected graph g is a partition of ND. An edge
(x, y) crosses the cut (tr_nodes, ND− tr_nodes) if one of its endpoints is in
tr_nodes and the other is in ND− tr_nodes. An edge is a light edge crossing
a cut if its weight is the minimum of any edge crossing the cut. A light edge
is not unique.

Proof. Let T be a minimum spanning tree that includes tr, and assume that
T does not contain the light edge (x, y), since if it does, we have finished. We
shall construct another minimum spanning tree T ′ that includes tr ∪ {(x, y)}
by using a cut-and-paste technique, thereby showing that (x, y) is a safe edge
for tr. The edge (x, y) forms a cycle with the edges on the path p from x to y in
T . Since x and y are on opposite sides of the cut (tr_nodes, ND−tr_nodes),
there is at least one edge in T on the path p that also crosses the cut. Let (a, b)
be any such edge. The edge (a, b) is not in tr, because the cut respects tr. Since
(a,b) is on the unique path from x to y in T , removing (a, b) breaks T into
two components. Adding (x, y) reconnects them to form a new spanning tree
T ′ = T − {(a, b)} ∪ {(x, y)}. We next show that T ′ is a minimum spanning
tree. Since (x, y) is a light edge crossing (tr_nodes, ND−tr_nodes) and (a, b)
also crosses this cut, cost(x, y) ≤ cost(a, b). Therefore,

Cost(T ′) = Cost(T ) − cost(a, b) + cost(x, y)
≤ Cost(T )
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But T is a minimum spanning tree, so that Cost(T ) ≤ Cost(T ′); thus, T ′ must
be a minimum spanning tree also. It remains to show that (x, y) is actually
a safe edge for tr. We have tr ⊆ T ′, since tr ⊆ T and (a, b) /∈ tr ; thus,
tr ∪ {(x, y)} ⊆ T ′. Consequently, since T ′ is a minimum spanning tree, (x, y)
is safe for tr. �

We have to prove that the property above has in fact been incorporated into
the B proof engine. However, this is not a simple exercise of translation but
a complete formulation of some aspects of graph theory; moreover, the proof
has been completely mechanized, as we shall show in the next subsection.
Let us compare the theorem and our formulation. The pair (tr_nodes, ND−
tr_nodes) is a cut in the left part of the implication; the restriction of the
tree f to the set of nodes tr_nodes is a tree rooted at r; and (x, y) crosses
the cut. Those assumptions imply that there exists a spanning tree sp rooted
at r that is minimum on tr_nodes and such that there exists a light cut (a, b)
preserving the minimality property. Hence, we express this property formally
and it will be proved separately:

∀(T, tr_nodes, x, y) · (
tr_nodes ⊆ ND ∧ y ∈ ND ∧ atree(r, ND, T )
r ∈ tr_nodes ∧ x ∈ tr_nodes ∧ (y /∈ tr_nodes) ∧
atree(r, tr_nodes, (tr_nodes − {r} � T � tr_nodes)) ∧
∀S · (S ⊆ ND ∧ y ∈ S ∧ T [S] ⊆ S ⇒ S ∩ tr_nodes �= ∅)

⇒
∃(a, b, T ′) · (

a, b ∈ T ∧ a /∈ tr_nodes ∧ b ∈ tr_nodes ∧
atree(r, ND, T ′) ∧
T ′ ⊆ (T ∪ T−1 − {b �→ a, a �→ b}) ∪ {y �→ x} ∧
Cost(T ′) = Cost(T ) − cost(b �→ a) + cost(y �→ x) ∧
y �→ x ∈ T ′ ∧
(tr_nodes − {r} � T � tr_nodes) ⊆ T ′))

Here we have introduced a predicate atree(root, nodes, tree) stating that a
structure tree is a tree on the set nodes and whose root is root:

atree(root, nodes, tree) =⎛

⎝
root ∈ nodes ∧
tree ∈ nodes − {root} −→ nodes ∧
∀q · ( q ⊆ nodes ∧ root ∈ q ∧ tree−1 [q] ⊆ q ⇒ nodes = q )

⎞

⎠

The above property is the key result for ensuring the optimality of the greedy
strategy in this process. In the next subsection, we give details of the proof of
our theorem.
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6.5 On A Theory of Trees

As we have mentioned previously, trees play a central role in the justification
of the algorithm; the optimality of the greedy strategy is based mainly on
the proof of the theorem used by Cormen et al. [53]. We now need to give
details of a theory of trees and the intermediate lemmas required for deriving
the theorem. Both the development of the tree identification protocol IEEE
1394 [10] and the development of recursive functions [38] require proofs related
to the closure of relations; we apply the same technique for the closure of a
function defining a tree.

Let (T, r) be a tree defined by a tree function T and a root r; they satisfy
the following axioms atree(r, ND, T ). The closure cl of T−1 is the smallest
relation that contains id(ND) and is stable by application of T−1, that is,

cl ∈ ND ↔ ND ∧
id(ND) ⊆ cl ∧
(cl; T−1) ⊆ cl ∧
∀r · (

r ∈ ND ↔ ND ∧
id(ND) ⊆ r ∧
(r; T−1) ⊆ r ∧

⇒
cl ⊆ r)

Useful properties of this closure can be derived from those definitions; for
instance, the closure is a fixed-point; the root r is connected to every node of
the connected component; and the closure is transitive. We summarize these
properties using our notation:

cl = id(ND) ∪ (cl; T−1);
r × ND ⊆ cl;
(T−1; cl) ⊆ cl;
(cl; cl) ⊆ cl;
T ∩ cl = ∅;
cl ∩ cl−1 ⊆ id(ND);

Theorem 6. (Concatenation of two separate trees.)

Let T1, r1, N1, T2, r2, N2, x be such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

atree(r1, N1, T1),
atree(r2, N2, T2),
N1 ∩ N2 = ∅,
N1 ∪ N2 = ND,
x ∈ N1.

Then atree(r1, ND, T1 ∪ T2 ∪ {r2 �→ x}).
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Proof Sketch. The proof is made up of several steps. The first step proves
that the concatenation is a total function over the set N1 ∪ N2. The second
step leads to a more technical task, where we have to prove the inductive
property over trees using a splitting of the inductive variable S ( S ∩ N1 and
S ∩ N2). �

Theorem 7. (Subtree property.)
Let (T, r) be a tree on ND (atree(r, ND, T )) and let b be a node in ND. Then
atree(b, cl[{b}], (cl[{b}]− {b} � T )).

Proof Sketch: The main difficulty is related to the inductive part. We must
prove that, if S ⊆ cl[{b}], b ∈ S and (cl[{b}] − {b} � T )−1[S] ⊆ S, then
cl[{b}] ⊆ S. We use the inductive property on T with the set S ∪ ND −
cl[{b}]. �

Theorem 8. (Complement of a subtree.)
Let (T, r) be a tree on ND and let b be a node in ND. Then atree(r, ND −
cl[{b}], (cl[{b}] �−T )).

Proof Sketch: We have to prove that if S ⊆ ND − cl[{b}], b ∈ S and
(cl[{b}] �−T )−1[S] ⊆ S, then ND − cl[{b}] ⊆ S. A hint is to use the
inductive property on T with the set S ∪ cl[{b}]. �

Now, we must characterize the subtree, where we have reversed the edge
between y to the root b. Let subtree(T, b) be the subtree of T with b as root
(this is cl[{b}]− {b}� T ). This following function seems to be a good choice:

(cl−1[{y}] �− subtree(T, b)) ∪ (cl−1[{y}] � subtree(T, b))−1

(cl−1[{y}] � subtree(T, b))−1 is exactly all reverse edges. cl−1[{y}] is the set
of all parents of y.

Theorem 9. (The reverse edge from y to b produces a tree.)

Let b, y be such that:
{

b ∈ ND
y ∈ cl[{b}] , then

atree(y, cl[{b}], (cl−1[{y}] �− subtree(T, b)) ∪ (cl−1[{y}] � subtree(T, b))−1).

Proof Sketch. In this case we must use an induction on the tree cl[{b}],
and sometimes use a second induction with the inductive property in the
hypothesis.�

Theorem 10. (Existence of a spanning tree.)

Let a, b, x, y be such that

⎧
⎨

⎩

b, a ∈ T,
y ∈ cl[{b}],
x : ND − cl[{b}].

Then there exists a tree T ′ such that
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T ′ ⊆ (T ∪ T−1 − {a �→ b, b �→ a}) ∪ {y �→ x},
atree(r, ND, T ′),
Cost(T ′) = Cost(T ) − cost(b �→ a) + cost(y �→ x),
y �→ x ∈ T ′,
cl[{b}] �−T ⊆ T ′.

Proof Sketch: T ′ is obtained by concatenation of the two trees identified in
the two previous theorems. The two trees are linked by the edge y �→ x. �.

Finally, we have to prove the existence of an edge b �→ a which is safe in the
sense of the greedy strategy.

Theorem 11. (Existence of b �→ a.)

Let tr_nodes, y by such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

tr_nodes ⊆ ND,
y ∈ ND − tr_nodes,
r ∈ tr_nodes,

∀S ·
⎛

⎝
S ⊆ ND ∧ y ∈ S ∧ T [S] ⊆ S
⇒
S ∩ tr_nodes �= ∅

⎞

⎠ .

Then there exist a and b such that

⎧
⎪⎪⎨

⎪⎪⎩

a ∈ tr_nodes,
b �→ a ∈ T,
b /∈ tr_nodes,
b ∈ cl−1[{y}].

The property of the existence of a minimum spanning tree can now be de-
rived using theorems, and the proof of the property has then been completely
mechanized. The development of Prim’s algorithm leads us to state and to
prove properties over trees. The inductive definition of trees helps in deriving
intermediate lemmas asserting that the growing tree converges to the minimal-
spanning-tree, according to the greedy strategy. The resulting algorithm has
been completely proved and we can partially reuse currently developed models
to obtain Dijkstra’s or Kruskal’s algorithm. The greedy strategy is not always
efficient, however, and the optimality of the resulting algorithm is proved in
[53, Theorem 24.1]. The greedy method is based on optimisation criteria, and
we have developed a collection of models [42] which can be instantiated when
the greedy strategy is applicable and when some optimisation criterion is sat-
isfied.

7 Design of Distributed Algorithms by Refinement

Developing distributed algorithms can be made simpler and safer by the use
of refinement techniques. Refinement allows one to gradually develop a dis-
tributed algorithm step by step, and to tackle complex problems such as the
PCI transaction ordering problem [36] or the IEEE 1394 [10]. The B event-
based method [4] provides a framework that integrates refinement for deriving
models solving distributed problems.
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The systems under consideration with our technique are general software
systems, control systems, protocols, sequential and distributed algorithms, op-
erating systems and circuits; these are generally very complex and have parts
interacting with an environment. A discrete abstraction of such a system con-
stitutes an adequate framework: such an abstraction is called a discrete model.
A discrete model is more generally known as a discrete transition system and
provides a view of the current system; the development of a model in B fol-
lows an incremental process validated by refinement. A system is modelled
by a sequence of models related by refinement and managed in a project. We
limit the scope of our work here to distributed algorithms modelled under the
local computation rule [46] for graphs, and we specialize the proof obligations
with respect to the target of the development process which is a distributed
algorithm fitting safety and liveness requirements.

The goal of the IEEE 1394 protocol is to elect in a finite time a specific
node, called the leader , in a network made of various nodes linked by com-
munication channels. Once the leader has been elected, each non-leader node
in the network should have a well-defined way to communicate with it. This
election of the leader has to be done in a distributed and non-deterministic
way. The development presented below partially replays the development of
the IEEE 1394 protocol, but the resulting algorithm is not the IEEE 1394 pro-
tocol. In fact, we present the development of a distributed leader election, and
we partially reuse the models of the development of the IEEE 1394 protocol:
the first, second and third models are reused from our paper [10], and the
problem of contention is solved by assigning a static priority to each site. The
resulting algorithm is derived from the last B model in the sequence.

7.1 The Basic Mathematical Structure

Before considering details of the protocol, we shall give a very solid definition
of the main topology of the network. It is essentially formalized by means of
a set ND of nodes subject to the following assumptions:

1. The network is represented by a graph g built on ND.
2. The links between the nodes are bidirectional.
3. A node is not directly connected to itself:

1. g ⊆ ND × ND
2. g = g−1

3. id(ND) ∩ g = ∅

Item 2 above is formally represented by a symmetric graph whose domain
(and thus co-domain too) corresponds to the entire finite set of nodes. The
symmetry of the graph is due to the representation of the non-oriented graph
by pairs of nodes and the link x-y is represented by the two pairs x �→ y and
y �→ x. Item 3 is rendered by saying that the graph is not reflexive.
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There are two other very important properties of the graph: it is connected
and acyclic. Both of these properties are formalized by claiming that the
relation between each node and the spanning trees of the graph having that
node as a root is total and functional. In other words, each node in the graph
can be associated with one and exactly one tree rooted at that node and
spanning the graph. We can model a tree by a root r, which is a node, i.e.,
r ∈ ND, and a parent function t (each node has a unique parent node, except
for the root): t ∈ ND−{r} −→ ND. The tree is an acyclic graph. A cycle
c in a finite graph t built on a set N < D is a subset of ND whose elements
are members of the inverse image of c under t; formally, c ⊆ t−1[c]. To fulfil
the requirement of acyclicity, the only set c that enjoys this property is thus
the empty set. This can be formalized by the left predicate that follows, which
can be proved to be equivalent to the one on the right, and which can be used
as an induction rule:

∀c · ( c ⊆ ND ∧ c ⊆ t−1 [c] ⇒ c = ∅ )

� i.e., ⇔
∀q · ( q ⊆ ND ∧ r ∈ q ∧ t−1 [q] ⊆ q ⇒ ND = q )

We have proved the equivalence using the tools B4free-with-Click’n’Prove [51]
and Atelier B [50]. We can now define a spanning tree (with root r and parent
function t) of a graph g as one whose parent function is included in g; formally,

spanning (r, t, g) =⎛

⎜
⎜
⎝

r ∈ ND ∧
t ∈ ND − {r} −→ ND ∧
∀q · ( q ⊆ ND ∧ r ∈ q ∧ t−1 [q] ⊆ q ⇒ ND = q ) ∧
t ⊆ g

⎞

⎟
⎟
⎠

As mentioned above, each node in the graph can be associated with exactly
one tree that is rooted at that node and spans the graph. For this purpose,
we define the following total function f connecting each node r of the graph
with its spanning tree f(r):

f ∈ ND → (ND �→ ND)

∀(r, t) ·

⎛

⎜
⎜
⎝

r ∈ ND ∧
t ∈ ND �→ ND

⇒
t = f(r) ⇔ spanning (r, t, g)

⎞

⎟
⎟
⎠

The graph g and the function f are thus two global constants of the problem.
Since g and f are not instantiated, we do not have to deal with the size
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of the network, and automatic techniques based on model checking are not
helpful for understanding how the algorithm workings. The special issue [52]
presented a collection of verification techniques using model checking and the
size of the network is clearly a practical bound. In contrast verification using
PVS [54] and I/O automata is more adequate than model checking, but the
invariants and proofs remain very difficult to understand. This is why we
advocate the use of refinement, which provides an incremental way to derive
both the algorithm and the proof. Moreover, refinement allows us to derive
a election distributed algorithm for new leader, which is not possible in the
verification-oriented approach.

7.2 The First Model, leaderelection0: the One-shot Election

Given the basic mathematical structure developed in the previous section,
the essence of the abstract algorithm implemented by the protocol is very
simple: it consists in building gradually (and non-deterministically) one of
the spanning trees of the graph. Once this has been done, the root of that tree
is the elected leader, and the communication structure between the other nodes
and the leader is obviously the spanning tree itself . The protocol, considered
globally, thus has two variables: (1) the future spanning tree, sp, and (2)
the future leader ld. The gradual construction of the spanning tree simulates
induction steps.

The first formal model of the development contains the definitions and
properties of the two global constants (the above graph g and function f ,
together with their properties), and the definitions of two global variables sp
and ld, typed in a very loose way: sp is a binary relation built on ND and
ld is a node. The dynamic aspect of the protocol consists essentially made of
one event, called elect, which claims what the result of the protocol is, when it
is completed . In other words, at this level, there is no protocol, just the for-
mal definition of its intended result, namely a spanning tree sp and its root ld:

elect =
begin

ld, sp : spanning (ld, sp, g)
end

As can be seen, the election is done in one step. In other words, the spanning
tree appears at once. The analogy of someone closing and opening their eyes
can be used here to explain the process of election at this very abstract level.

7.3 Refining the First Model leaderelection0

In this section, we present two successive refinements of the previous initial
model. In the first refinement, we obtain the essence of a distributed algorithm.



128 Dominique Cansell and Dominique Méry

MODEL
leaderelection0

SETS
ND

CONSTANTS
g, f

DEFINITIONS
spanning(r, t, g) =⎛

⎜
⎜
⎝

r ∈ ND ∧
t ∈ ND − {r} −→ ND ∧
∀q · ( q ⊆ ND ∧ r ∈ q ∧ t−1 [q] ⊆ q ⇒ ND = q ) ∧
t ⊆ g

⎞

⎟
⎟
⎠

PROPERTIES
g ⊆ ND × ND ∧ g = g−1 ∧ id(ND) ∩ g = ∅ ∧ f ∈ ND → (ND �→ ND)

∀(r, t) ·

⎛

⎜
⎜
⎝

r ∈ ND ∧
t ∈ ND �→ ND

⇒
t = f(r) ⇔ spanning (r, t, g)

⎞

⎟
⎟
⎠

VARIABLES
ld, ts

INVARIANT
ld ∈ ND ∧ sp ∈ ND �→ ND

ASSERTIONS
∀x · (x ∈ ND ⇒ f(x) ∩ f(x)−1 = ∅)

INITIALISATION
ld :∈ ND ‖ sp :∈ ND �→ ND

EVENTS
elect =

begin
ld, sp : spanning (ld, sp, g)

end
END

Table 20. 1st model, leaderelection0, of the distributed leader election algorithm

In the second refinement, we introduce some communication mechanisms be-
tween the nodes.

First Refinement leaderelection1

— Gradual Construction of a Spanning Tree

In the first model leaderelection0 (Table 20) the construction of the spanning
tree was performed in one shot. Of course, in a more realistic (concrete) for-
malization, this is not the case any more. In fact, the tree is constructed on a
step-by-step basis. For this purpose, a new variable, called tr, and a new event,
called progress, are introduced. The variable tr represents a sub-graph of g, it
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is made of several trees (it is thus a forest) which will gradually converge to
the final tree, which we intend to build eventually. This convergence is per-
formed by the event progress. This event involves two nodes x and y, which are
neighbours in the graph g. Moreover, x and y are assume to be both outside
the domain of tr. In other words, neither of them has a parent in tr. However,
the node x is the parent of all its other neighbours (if any) in g. This last con-
dition can be formalized by means of the predicate g[{x}] = tr−1[{x}] ∪ {y}
since the set of neighbours of x in g is g[{x}] while the set of sons of x in tr is
tr−1[{x}]. When these conditions are fulfilled, then the event progress can be
enabled and its action has the effect of making the node y the parent of x in
tr. The abstract event elect is now refined. Its new version is concerned with a
node x which happens to be the parent of all its neighbours in g. This condi-
tion is formalized by the predicate g[{x}] = tr−1[{x}]. When this condition
is fulfilled, the action of elect makes x the leader ld and tr the spanning tree
sp. The following are the formal representations of these events:

progress =
any x, y where

x, y ∈ g ∧ x /∈ dom(tr) ∧ y /∈ dom(tr)
∧ g[{x}] = tr−1[{x}] ∪ {y}

then
tr := tr ∪ {x �→ y}

end

elect =
any x where

x ∈ ND ∧
g[{x}] = tr−1[{x}]

then
ld, sp := x, tr

end

The new event progress clearly refines skip, since it only updates the
variable tr, which is a new variable in this refinement with no existence
in the abstraction. Notice also that progress clearly decreases the quantity
card(g)− card(tr). The situation is far less clear concerning the refinement of
the event elect. We have to prove that when its guard is true, then tr is indeed
a spanning tree of the graph g, whose root is precisely x. Formally, this leads
to proving the following:

∀x · (x ∈ ND ∧ g[{x}] = tr−1[{x}] ⇒ spanning (x, tr, g) )

According to the definition of the constant function f , the above property is
clearly equivalent to

∀x · (x ∈ ND ∧ g[{x}] = tr−1[{x}] ⇒ tr = f(x) )

This means that tr and f(x) should have the same domain, namely ND−{x},
and that for all n in ND − {x}, tr(n) is equal to f(x)(n). This amounts to
proving the following:
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ND = {x} ∪ {n |n ∈ ND − {x} ∧ f(x)(n) = tr(n) }

This is done using the inductive property associated with each spanning tree
f(x). Notice that we also need the following invariants:

tr ∈ ND �→ ND
dom (tr) � (tr ∪ tr−1) = dom (tr) � g
tr ∩ tr−1 = ∅

This new model (Table 21) although more concrete than the previous one, is
nevertheless still an abstraction of the real protocol: it just explains how the
leader can be eventually elected by the gradual transformation of the forest
tr into a unique tree spanning the graph g.

Second Refinement, leaderelection2

— Introducing Communication Channels

In the previous refinement, the event progress was still very abstract: as soon
as two nodes x and y with the required properties were detected, the corre-
sponding action took place immediately. In other words, y became the parent
of x in one shot. In the real protocol, things are not so “magic”: once a node x
has detected that it is the parent of all its neighbours except one, y, it sends a
request to y in order to ask it to become its parent. Node y then acknowledges
this request and, finally, node x establishes a parent connection with node y.
This connection, which is thus established in three distributed steps, is clearly
closer to what happens in the real protocol. We shall see, however, in the next
refinement that what we have just described is not yet the final word. But
let us formalize this for the moment. In order to do so, we need to define at
least two new variables: req, to handle the requests, and ack, to handle the
acknowledgements. req is a partial function from ND to itself. When a pair
x �→ y belongs to req, this means that node x has send a request to node
y asking it to become its parent: the functionality of req is due to the fact
that x has only one parent. Clearly, req is also included in the graph g. When
node y sends an acknowledgement to x this is because y has already received
a request from x: ack is thus a partial function included in req:

req ∈ ND �→ ND
req ⊆ g
ack ⊆ req
tr ⊆ ack
ack ∩ ack−1 = ∅

Notice that when a pair x �→ y belongs to ack, it means that y has sent an
acknowledgment to x (clearly y can send several acknowledgements since it
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REFINEMENT
leaderelection1

REFINES
leaderelection0

VARIABLES
ld, ts, tr

INVARIANT
tr ∈ ND �→ ND
dom (tr) � (tr ∪ tr−1) = dom (tr) � g
tr ∩ tr−1 = ∅

ASSERTIONS
∀x · ( x ∈ ND ∧ g[{x}] = tr−1[{x}] ⇒ tr = f(x) )

INITIALISATION
ld :∈ ND ‖ sp :∈ ND �→ ND ‖ tr := ∅

EVENTS
progress =

any x, y where
x, y ∈ g ∧ x /∈ dom(tr) ∧ y /∈ dom(tr)
∧ g[{x}] = tr−1[{x}] ∪ {y}

then
tr := tr ∪ {x �→ y}

end ;
elect =

any x where
x ∈ ND ∧
g[{x}] = tr−1[{x}]

then
ld, sp := x, tr

end
END

Table 21. 2nd model, leaderelection1, of the distributed leader election algorithm

might be the parent of several nodes). It is also clear that it is not possible in
this case for the pair y �→ x to belong to ack.

The final connection between x and y is still represented by the function tr.
Thus tr is included in ack. All this can be formalized as shown. Two new events
are defined in order to manage requests and acknowledgements: send_req, and
send_ack. As we shall see, the event progress is modified, whereas the event
elect is left unchanged. Here are the new events and the refined version of
progress:
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send_req =
any x, y where

x, y ∈ g ∧ y, x /∈ ack ∧
x /∈ dom (req) ∧
g[{x}] = tr−1[{x}] ∪ {y}

then
req := req ∪ {x �→ y}

end

send_ack =
any x, y where

x, y ∈ req ∧
x, y /∈ ack ∧
y /∈ dom (req)

then
ack := ack ∪ {x �→ y}

end

progress =
any x, y where

x, y ∈ ack ∧
x /∈ dom (tr)

then
tr := tr ∪ {x �→ y}

end

The event send_req is enabled when a node x discovers that it is the parent
of all its neighbours except one y: g[{x}] = tr−1[{x}] ∪ {y}. Notice that, as
expected, this condition is exactly the one that allowed the event progress in
the previous model to be enabled. Moreover, x must not have already sent a
request to any node: x /∈ dom (req). Finally, x must not have already sent an
acknowledgement to node y: y, x /∈ ack. When these conditions are fulfilled,
then the pair x �→ y is added to req. The event send_ack is enabled when a
node y receives a request from node x; moreover y must not have already sent
an acknowledgement to node x: x, y ∈ req and x, y /∈ ack. Finally, node y must
not have sent a request to any node: y /∈ dom (req) (we shall see very soon
what happens when this condition does not hold). When these conditions
are fulfilled, node y sends an acknowledgement to node x: the pair x �→ y
is thus added to ack. The event progress is enabled when a node x receives
an acknowledgement from node y: x, y ∈ ack. Moreover node x has not yet
established any parent connection: x /∈ dom (tr). When these conditions are
fulfilled, the connection is established: the pair x �→ y is added to tr.

The events send_req and send_ack clearly refine skip. Moreover their ac-
tions increment the cardinals of req and ack, respectively (these cardinals are
bounded by that d g). It remains for us to prove that the new version of the
event progress is a correct refinement of its abstraction. The actions being
the same, it just remains for us to prove that the concrete guard implies the
abstract one. This amounts to proving the following left predicate, which is
added as an invariant:
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∀ (x, y) ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x, y ∈ ack ∧
x /∈ dom (tr)

⇒
x, y ∈ g ∧
x /∈ dom(tr) ∧
y /∈ dom(tr) ∧
g[{x}] = tr−1[{x}] ∪ {y}

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∀ (x, y) ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x, y ∈ req ∧
x, y /∈ ack

⇒
x, y ∈ g ∧
x /∈ dom(tr) ∧
y /∈ dom(tr) ∧
g[{x}] = tr−1[{x}] ∪ {y}

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

When we try to prove that the left predicate is maintained by the event
send_ack, we find that the right predicate above must also be proved. It is
thus added as a new invariant, which, this time, can easily be proved to be
maintained by all events.

The problem of contention.

The guard of the event send_ack above contains the condition y /∈ dom (req).
If this condition does not hold when the other two guarding conditions hold,
that is x, y ∈ req and x, y /∈ ack hold, then clearly x has sent a request to
y and y has sent a request to x: each one of them wants the other to be
its parent! This problem is called the contention problem. In this case, no
acknowledgements should be sent, since then each node x and y would be the
parent of the other. In the real protocol the problem is solved by means of
timers. As soon as a node y discovers a contention with node x, it waits for a
very short delay in order to be certain that the other node x has also discovered
the problem. The very short delay in question is at least equal to the message
transfer time between nodes (such a time is supposed to be bounded). After
this, each node randomly chooses (with probability 1/2) to wait for either a
short or a long delay (the difference between the two is at least twice the
message transfer time). After the chosen delay has passed, each node sends a
new request to the other if it is in a situation to do so. Clearly, if both nodes
choose the same delay, the contention situation will reappear. However, if they
do not choose the same delay, then the one with the larger delay becomes the
parent of the other: when it wakes up, it discovers the request from the other
but it has not itself already sent its own request, it can therefore send an
acknowledgement and thus become the parent. According to the law of large
numbers, the probability for both nodes to choose the same delay indefinitely
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is null. Thus, at some point, they will (in probability) choose different delays
and one of them will thus become the parent of the other. Rather than to
reuse the complete IEEE 1394 development [10], we have reused a part of
the development and developed a new solution for solving the contention
problem; the new algorithm was discovered after a misunderstanding of the
initial IEEE 1394 solution.

When two nodes are in contention (and at most two nodes can be in
contention, it has been proved mechanically and formally), both nodes cannot
send an acknowledgement to the other node; one of them should not be able
to send this acknowledgement and the other one must do it. The main idea
is to introduce a unique counter called ctr, and this means that each node is
uniquely identified and must be identifiable. In a real network, one can assume
that pieces of equipment might be uniquely identified by a unique address, for
instance, but it not the general rule. The IEEE 1394 protocol does not make
any assumption about the identification of nodes.

ctr ∈ ND � N

The corresponding new event is called solve_cnt. As in the case of send_ack,
the action of this event adds the pair x �→ y to ack:

solve_cnt =
any x, y where

x, y ∈ req − ack ∧ y ∈ dom (req) ∧ ctr(x) < ctr(y)
then

ack := ack ∪ {x �→ y}
end

The two differences with respect to the guard of the event send_ack concern
the condition y ∈ dom (req), which is true in solve_cnt and false in send_ack,
and the guard ctr(x) < ctr(y) is added to the event solve_cnt. Since ctr is an
injection, the two nodes x and y cannot both trigger this event. The proof of
the invariant requires the following extra invariants:

∀ (x, y) ·

⎛

⎜
⎜
⎝

x, y ∈ req − ack ∧
y ∈ dom (req)

⇒
y, x ∈ req

⎞

⎟
⎟
⎠

∀ (x, y) ·

⎛

⎜
⎜
⎜
⎜
⎝

x, y ∈ req − ack ∧
y ∈ dom (req) ∧
ctr(x) < ctr(y)

⇒
x, y /∈ ack

⎞

⎟
⎟
⎟
⎟
⎠



The event-B Modelling Method 135

∀ (x, y, z) ·

⎛

⎜
⎜
⎜
⎜
⎝

x, y ∈ req ∧
z ∈ g[{x}] ∧
z �= y

⇒
z, x ∈ tr

⎞

⎟
⎟
⎟
⎟
⎠

The complete formalization of the solution of the real IEEE 1394 protocol
(involving the timers and the random choices) has not been addressed, neither
in the current development nor in [10]. Further work on the integration of
timers needs to be done.

7.4 Final Refinements: Localization

In the previous refinement (Table 22) the guards of the various events were
defined in terms of global constants or variables such as g, tr, req and ack.
A closer look at this refinement shows that these constants or variables are
used in expressions of the following form: g−1[{x}], tr−1[{x}], ack−1[{x}],
dom (req) and dom (tr). These forms dictate the kind of data refinement that
we now undertake.

The fourth, fifth and sixth models progressively introduce local informa-
tion, which is related to abstract global values. These models are shown in
Tables 23–25; the model leaderelection5 introduces message communications
(TR, REQ, ACK).

We declare five new variables nb (for “neighbours”), ch (for “children”), ac
(for “acknowledged”), dr (for “domain of req”), and dt (for “domain of tr”).
The following are the declarations of these variables, together with simple
definitions of them in terms of the global variables:

nb ∈ ND → P(ND)
ch ∈ ND → P(ND)
ac ∈ ND → P(ND)
dr ⊆ ND
dt ⊆ ND

∀x · (x ∈ ND ⇒ nb(x) = g−1[{x}] )
∀x · (x ∈ ND ⇒ ch(x) ⊆ tr−1[{x}] )
∀x · (x ∈ ND ⇒ ac(x) = ack−1[{x}] )
dr = dom (req)
dt = dom (tr)

Given a node x, the sets nb(x), ch(x) and ac(x) are assumed to be stored
locally within the node. As the varying sets ch(x) and ac(x) are subsets of
the constant set nb(x), it is certainly possible to refine their encoding further.
Likewise, the two sets dr and dt still appear to be global, but they can clearly
be encoded locally in each node by means of local Boolean variables.

It is worth noticing that the definition of the variable ch above is not
given in terms of an equality, rather in terms of an inclusion (and thus it is
not really a definition). This is due to the fact that the set ch(y) cannot be
updated while the event progress is taking place: this is because this event can
act only on its local data. A new event in leaderelection3, receive_cnf (for
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REFINEMENT leaderelection2
REFINES leaderelection1
CONSTANTS

ctr
PROPERTIES
ctr ∈ ND � N

VARIABLES
ld, ts, tr, req, ack

INVARIANT
req ∈ ND �→ ND
req ⊆ g
ack ⊆ req
tr ⊆ ack
ack ∩ ack−1 = ∅
∀ (x, y)·⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x, y ∈ ack ∧
x /∈ dom (tr)

⇒
x, y ∈ g ∧
x /∈ dom(tr) ∧
y /∈ dom(tr) ∧
g[{x}] = tr−1[{x}] ∪ {y}

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∀ (x, y)·⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x, y ∈ req ∧
x, y /∈ ack

⇒
x, y ∈ g ∧
x /∈ dom(tr) ∧
y /∈ dom(tr) ∧
g[{x}] = tr−1[{x}] ∪ {y}

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∀ (x, y) ·

⎛

⎜
⎜
⎝

x, y ∈ req − ack ∧
y ∈ dom (req)

⇒
y, x ∈ req

⎞

⎟
⎟
⎠

∀ (x, y) ·

⎛

⎜
⎜
⎜
⎜
⎝

x, y ∈ req − ack ∧
y ∈ dom (req) ∧
ctr(x) < ctr(y)

⇒
x, y /∈ ack

⎞

⎟
⎟
⎟
⎟
⎠

∀ (x, y, z) ·

⎛

⎜
⎜
⎜
⎜
⎝

x, y ∈ req ∧
z ∈ g[{x}] ∧
z �= y

⇒
z, x ∈ tr

⎞

⎟
⎟
⎟
⎟
⎠

ASSERTIONS
id(ND) ∩ ack = ∅
id(ND) ∩ req = ∅
id(ND) ∩ tr = ∅

INITIALISATION
ld :∈ ND ‖ tr := ∅ ‖ack := ∅ ‖
sp :∈ ND �→ ND ‖req := ∅

EVENTS
send_req =

any x, y where
x, y ∈ g ∧ y, x /∈ ack ∧
x /∈ dom (req) ∧
g[{x}] = tr−1[{x}] ∪ {y}

then
req := req ∪ {x �→ y}

end ;
send_ack =

any x, y where
x, y ∈ req ∧
x, y /∈ ack ∧
y /∈ dom (req)

then
ack := ack ∪ {x �→ y}

end ;
solve_cnt =

any x, y where
x, y ∈ req − ack ∧
y ∈ dom (req) ∧
ctr(x) < ctr(y)

then
ack := ack ∪ {x �→ y}

end ;
progress =

any x, y where
x, y ∈ ack ∧ x /∈ dom (tr)

then
tr := tr ∪ {x �→ y}

end ;
elect =

any x where
x ∈ ND ∧
g[{x}] = tr−1[{x}]

then
ld, sp := x, tr

end
END

Table 22. 3rd model, leaderelection2 of the distributed leader election algorithm
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REFINEMENT
leaderelection3

REFINES
leaderelection2

CONSTANTS
nb

PROPERTIES
nb ∈ ND → P(ND)
∀x · ( x ∈ ND ⇒ nb(x) = g−1[{x}] )

VARIABLES
ld, ts, tr, req, ack, ch

INVARIANT
ch ∈ ND → P(ND)
∀x · ( x ∈ ND ⇒ ch(x) ⊆ tr−1[{x}] )

INITIALISATION
ld :∈ ND ‖ch = ND × {∅}
tr := ∅ ‖req := ∅ ‖ack := ∅

EVENTS
elect =

any x where
x ∈ ND ∧
nb(x) = ch(x)

then
ld := x

end
send_req =

any x, y where
x, y ∈ g ∧ y, x /∈ ack ∧
x /∈ dom (req) ∧
nb(x) = ch(x) ∪ {y}

then
req := req ∪ {x �→ y}

end ;
receive_cnf =

any x, y where
x, y ∈ tr ∧
x /∈ ch(y)

then
ch(y) := ch(y) ∪ {x}

end
END

Table 23. 4th model, leaderelection3, of the distributed leader election algorithm
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REFINEMENT
leaderelection4

REFINES
leaderelection3

VARIABLES
ld, ts, tr, req, ack, ch, dr, ac, dt

INVARIANT
ac ∈ ND → P(ND)
dr ⊆ ND
dt ⊆ ND
∀x · ( x ∈ ND ⇒ ac(x) = ack−1[{x}] )
dr = dom (req)
dt = dom (tr)

INITIALISATION
ld :∈ ND ‖ch = ND × {∅}
tr := ∅ ‖req := ∅ ‖ack := ∅ ‖

ac = ND × {∅} ‖dr := ∅ ‖dt := ∅ ‖
EVENTS
send_req =

any x, y where
x ∈ ND − dr ∧ y ∈ ND − ac(x) ∧ nb(x) = ch(x) ∪ {y}

then
req := req ∪ {x �→ y} ‖ dr := dr ∪ {x}

end
send_ack =

any x, y where
x, y ∈ req ∧ x /∈ ac(y) ∧ y /∈ dr

then
ack := ack ∪ {x �→ y} ‖ ac(y) := ac(y) ∪ {x}

end
solve_cnt =

any x, y where
x, y ∈ req ∧
x /∈ ac(y) ∧ y ∈ dr ∧ ctr(x) < ctr(y)

then
ack := ack ∪ {x �→ y} ‖ ac(y) := ac(y) ∪ {x}

end
progress =

any x, y where
x, y ∈ ack ∧ x /∈ dt

then
tr := tr ∪ {x �→ y} ‖ dt := dt ∪ {x}

end
END

Table 24. 5th model, leaderelection4, of the distributed leader election algorithm
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REFINEMENT leaderelection5
REFINES leaderelection4
VARIABLES

ld, ts, TR,REQ, ACK, ch, dr, ac, dt
INVARIANT

REQ ∈ ND × ND ∧ req = REQ ∪ ack ∧ REQ ∩ ack = ∅
ACK ∈ ND × ND ∧ ack = ACK ∪ tr ∧ ACK ∩ tr = ∅
TR ∈ ND × ND ∧ TR ⊆ tr ∧ ∀(x, y) · ( x, y ∈ TR ⇒ x /∈ ch(y))

INITIALISATION
ld :∈ ND ‖ch = ND × {∅} ‖ac = ND × {∅} ‖dr := ∅ ‖dt := ∅ ‖
TR := ∅ ‖ REQ := ∅ ‖ACK := ∅

EVENTS
send_req = Local node x

any x, y where
x ∈ ND − dr ∧ y ∈ ND − ac(x) ∧ nb(x) = ch(x) ∪ {y}

then
REQ := REQ ∪ {x �→ y} ‖ dr := dr ∪ {x}

end
send_ack = Local node y

any x, y where
x, y ∈ REQ ∧ y /∈ dr

then
REQ := REQ −; {x �→ y} ‖ ACK := ACK ∪ {x �→ y} ‖
ac(y) := ac(y) ∪ {x}

end
solve_cnt = Local node y

any x, y where
x, y ∈ REQ ∧ y ∈ dr ∧ ctr(x) < ctr(y)

then
REQ := REQ −; {x �→ y} ‖ ACK := ACK ∪ {x �→ y} ‖
ac(y) := ac(y) ∪ {x}

end
progress = Local node x

any x, y where
x, y ∈ ACK

then
ACK := ACK − {x �→ y} ‖ TR := TR ∪ {x �→ y} ‖ dt := dt ∪ {x}

end
receive_cnf = Local node y

any x, y where
x, y ∈ TR

then
TR := TR −; {x �→ y} ‖ ch(y) := ch(y) ∪ {x}

end
END

Table 25. 6th model, leaderelection5, of the distributed leader election algorithm
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receive confirmation) is thus necessary to update the set ch(y). The following
are the refinement of the various events:

elect =
any x where

x ∈ ND ∧
nb(x) = ch(x)

then
ld := x

end

send_req =
any x, y where

x ∈ ND − dr ∧
y ∈ ND − ac(x) ∧
nb(x) = ch(x) ∪ {y}

then
req := req ∪ {x �→ y} ‖
dr := dr ∪ {x}

end

send_ack =
any x, y where

x, y ∈ req ∧
x /∈ ac(y) ∧
y /∈ dr

then
ack := ack ∪ {x �→ y} ‖
ac(y) := ac(y) ∪ {x}

end

solve_cnt =
any x, y where

x, y ∈ req ∧
x /∈ ac(y) ∧
y ∈ dr ∧
ctr(x) < ctr(y)

then
ack := ack ∪ {x �→ y} ‖
ac(y) := ac(y) ∪ {x}

end

progress =
any x, y where

x, y ∈ ack ∧
x /∈ dt

then
tr := tr ∪ {x �→ y} ‖
dt := dt ∪ {x}

end

receive_cnf =
any x, y where

x, y ∈ tr ∧
x /∈ ch(y)

then
ch(y) := ch(y) ∪ {x}

end

The Proofs that these events correctly refine their respective abstractions are
technically trivial. We now give, in the following table, the local node in charge
of each event as encoded above:

event node
elect x

send_req x
send_ack y
solve_cnt y

progress x
receive_cnf y
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The reader may be surprised to see formulas such as req := req ∪ {x �→ y}
and x, y ∈ req. They correspond in fact to writing and reading operations
done by corresponding local nodes, as explained in the following table:

formula explanation
req := req ∪ {x �→ y} x sends a request to y

x, y ∈ req y reads a request from x
ack := ack ∪ {x �→ y} y sends an acknowledgement to x

%hline x, y ∈ ack x reads an acknowledgement from y
tr := tr ∪ {x �→ y} x sends a confirmation to y

x, y ∈ tr y reads a confirmation from y

The total number of proofs (all done mechanically with Atelier B [50] and
B4free with Click’n’Prove [51]) was to 106, where 24 required an easy interac-
tion. The proofs help us to understand the contention problem and the role of
graph properties in the correctness of the solution. The refinements gradually
introduce the various invariants of the system. No assumption is made about
the size of the network. The proofs led us to the discovery of the confirmation
event in order to obtain the complete correctness, and we chose to introduce
a priority mechanism to solve the contention problem, which was not the
solution for the IEEE 1394 protocol: a new distributed algorithm for leader
election is proposed. ACK, REQ and TR model communication channels;
they contain messages that currently have been sent but not yet received. We
give the algorithm for the local node x below; x sends messages to another
node y. We assume that each site has a unique number and that ctr is defined
by this assignment:
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Leader Election Algorithm
Local Node x ∈ ND
Local variables nb, ch, ac ⊆ ND, ld ∈ ND, dr, dt ∈ Bool

if nb = ch then ld := x fi
if mes(y, ack) ∈ ACK

then
send(mes(x, tr), y) ‖ dt := dt ∪ {y} ‖
ACK := ACK − {mes(y, ack)} fi

if ¬dr ∧ y /∈ ac ∧ nb = ch ∪ {y}
then

send(mes(x, req), y) ‖ dr := TRUE fi
if mes(y, req) ∈ REQ ∧ ¬dr
then

send(mes(x, ack), y) ‖ ac := ac ∪ {y} ‖
REQ := REQ − {mes(y, req)} fi

if mes(y, req) ∈ REQ ∧ dr ∧ ctr(y) < ctr(x)
then

send(mes(x, ack), y) ‖ ac := ac ∪ {y} ‖
REQ := REQ − {mes(y, req)} fi

if mes(y, tr) ∈ TR
then

ch := ch ∪ {y} ‖ TR := TR − {mes(y, tr)} fi

We have used programming-like notation for modelling message communica-
tions (see model leaderelection5 in Table 25). The meaning of each commu-
nication primitive is, in detail,

• send(mes(x, req), y) adds the message mes(x, req) to REQ;
• send(mes(x, ack), y) adds the message mes(x, req) to ACK;
• send(mes(x, tr), y) adds the message mes(x, req) to TR.

Our algorithm is correct with respect to the invariant of the development; we
have not mentioned the question of termination. Termination can be derived
if one assumes a minimal fairness for each site: if a site can trigger an event,
it will eventually trigger it, as long as it remains enabled.

8 Conclusion

B has a large community of users whose contributions go beyond the scope of
this document; we have focused on the event-B approach to illustrate the foun-
dations of B. Before we conclude our text, we must complete the B landscape
with an outline of work on B and with B.
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8.1 Work on B and with B

The series of conferences [22–24, 26, 63, 102] on B (in association with the Z
community) and books [2, 59, 64, 73, 99] on B demonstrate the strong activity
in this field. The expressivity of the B language has led to three kinds of
work using the concepts of B: extension of the B method, combination of
B with other approaches and applications of B. We have already mentioned
applications of the B method in the introduction and, now, we sketch the
extensions of B and proposals to integrate B with other methods.

Extending the B Method

The concept of ab event as introduced into B by Abrial [3], acts on the
global state space of the system and has no parameters; Papatsaras and Stod-
dart [90], have contrasted this global style of development with one based
on interacting components which communicate by means of shared events;
parameters in events are permitted. The parametrisation of events was also
considered by Butler and Walden [33], who were implementing action systems
in B AMN.

Events may or may not happen, and new modalities are required to manage
them; the language of assertions of B is becoming too poor to express tempo-
ral properties such as liveness, for instance. Abrial and Mussat [13] introduced
modalities into abstract systems and developed proof obligations related to
liveness properties; Méry [81] showed how the concepts of B could easily be
used to deal with liveness and fairness properties. Bellegarde et al. [21] anal-
ysed extension of B using the LTL logic, and its impact on the refinement
of event systems. There are problems related to the refinement of systems
while maintaining liveness and even fairness properties; this is difficult and
in many cases not possible, because the refinement maintains previously vali-
dated properties of the abstract model and it cannot maintain every liveness
property.

Recently, McIver et al. [80] and Morgan et al. [87] have extended the gen-
eralized substitution language to handle probability in B; an abstract proba-
bilistic choice is added to B operators. A methodology for using this extension
has been proposed.

Combining B with Other Formalisms

The limited expressivity of the B language has inspired work on several pro-
posals. Butler [31] investigated a mixed language including B AMN and CSP,
where CSP is used to structure abstract machines; this idea was exploited by
Schneider and Treharne [97, 103], who used it to control B machines.

Since diagrammatic formalisms offer a visual representation of models, an
integration of B with UML was performed by Butler and Snook [32] and by
Le Dang and Souquières [75–77]; B provides a semantic framework for UML



144 Dominique Cansell and Dominique Méry

components and allows one to analyse UML models. An interesting problem
would be to study the impact of B refinement on UML models.

Mikhailov and Butler [84] combined the theorem proving and model check-
ing; they focused on the B method, a theorem-proving tool associated with it,
and the Alloy specification notation and its model checker Alloy Constraint
Analyser. Software development in B can be assisted using Alloy, and Alloy
can be used for verifying the refinement of abstract specifications.

8.2 On the Proof Process

The proof process is supported by a proof assistant which is either a part of an
environment called Atelier B [50], or an environment called Click’n’Prove [7].
A free version is available [51]. Work on theories and reusing theories has been
addressed by Abrial et al. in [9].

8.3 Final Remarks

The design of (software) systems is an activity based on logico-mathematical
concepts such as set-theoretical definitions; it gives rise to proof obligations
that capture the essence of its correctness. The use of theoretical concepts is
due mainly to the requirements for safety and quality in the developed sys-
tems; it appears that mathematics can help in improving the quality of soft-
ware systems. B is a method that can help designers to construct safer systems
and it provides a realistic framework for developing pragmatic engineering.
Mathematical theories [9] can be derived from scratch or reused; in forthcom-
ing work, mechanisms for re-usability of developments will demonstrate the
increasing power of the application of B in realistic case studies [8, 10, 40].
The available tools are already very helpful and will evolve towards a tool
set for developing systems. The proof tool is probably a crucial element in
the B approach, and recent developments of the prover, combined with refine-
ment, validate the applicability of the B method for deriving correct reactive
systems from abstract specifications. Another promising point is the introduc-
tion of patterns into the event-B methodology. In [4], Abrial described new B
method related to B events. The European Union project RODIN [67, 94] is
aimed at creating a methodology and supporting open tool platform for the
cost-effective rigorous development of dependable complex software systems
and services, using especially the event-B method; it will provide a suitable
framework for further work on event-B.
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BAA(x, x′), 73
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BA(e)(x, x′), 60, 62
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[S]P , 56
skip, 56
�, 56
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�− , 52
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∩, 51
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∅, 51
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↔, 52
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�, 52
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prdx(S), 58
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x : R(x0, x), 56
grd(e)(x), 60
DEFINITIONS, 71
ASSERTIONS, 55, 63
CONSTANTS, 55, 63
EVENTS, 66, 72
INITIALISATION, 63
INVARIANT, 63
MACHINE, 55, 63
MODEL, 66
OPERATIONS, 63
PROPERTIES, 55, 63
REFINEMENT, 72
REFINES, 72
SETS, 55, 63
VARIABLES, 63
VARIANT, 72
dom(S), 59
pre(S), 59
rel(S), 59
abt, 58
dom, 51, 52
fis, 58
id(s), 52
mir, 58
ran, 51, 52
trm, 58

Concept Index

epsilon operator, 51
(semi-)decision procedures, 55
choice function, 51
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aborted computations, 58
abstract

machine, 55, 60
model, 60, 65, 72

abstraction, 62
algorithm, 76
anti-co-restriction, 52
anti-restriction, 52
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assignment, 56
AXIOMS, 53

B
ASSERTIONS, 53
Models, 62
PROPERTIES, 53

before–after
predicate, 60, 66
relation, 62

binary relation, 52
bounded choice, 56

Cartesian product, 51
clause

ASSERTIONS, 55, 65
CONSTANTS, 55
PROPERTIES, 55, 65
SETS, 55, 65
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coordination paradigm, 93
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discrete model, 62

discrete transition system, 62
distributed algorithm, 124
distributed leader election, 125
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enabledness condition, 61
establishes, 56
event, 56, 60

feasibility, 61
feasible

event, 61, 66
computation, 58

function, 51

generalized assignment, 56
generalized substitution, 56
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gluing invariant, 71
guard, 56, 60
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inductive invariant, 64
internal consistency, 65
intersection, 51
invariance, 65
invariant, 60, 61, 64, 65
inverse relation, 52

localization, 135

message communication, 142
miraculous computation, 58
model, 50, 65

operation, 56, 60
overriding, 52

pair, 51
partial, 51

function, 52
power, 51
precondition, 56, 60
predicate transformer, 56
priming, 61
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primitive recursive function, 77
project, 62
proof

based development, 71
engine, 55
obligation, 60, 61, 64–66
process, 55

protocol, 125
prover, 55

range, 52
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mapping, 72
relation, 51
relational style, 62
restriction, 52

safety, 65
properties, 64

sequencing, 56

sequent calculus, 55
set, 51

choice, 56
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state, 56
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free trace semantics, 72
system, 62
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1 The CafeOBJ Specification Language

CafeOBJ is an executable industrial-strength algebraic specification language;
it is a modern successor of OBJ and incorporates several new algebraic specifi-
cation paradigms. It was developed in Japan with large-scale support from the
Japanese government. Its definition is given in [12], a presentation of its logical
foundations can be found in [14], and a presentation of some methodologies
developed around CafeOBJ can be found in [15, 16]. CafeOBJ is intended to
be used mainly for system specification, formal verification of specifications,
rapid prototyping, and even programming.

In this chapter we present the logic underlying CafeOBJ and illustrate its
intimate relationship to the specification and verification methodologies.

First, let us briefly overview some of CafeOBJ most important features.

1.1 Equational Specification and Programming

Equational specification and programming is inherited from OBJ [18, 26] and
constitutes the basis of the language, the other features being somehow built
on top of it. As with OBJ, CafeOBJ is executable (by term rewriting), which
gives an elegant declarative method of functional programming, often referred
as algebraic programming.1 As with OBJ, CafeOBJ also permits equational
specification modulo several equational theories such as associativity, com-
mutativity, identity, idempotency, and combinations of all these. This feature
is reflected at the execution level by term rewriting modulo such equational
theories.

1 Although this paradigm may be used for programming, from the applications
point of view, this aspect is secondary to its specification side.
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1.2 Behavioural Specification

Behavioural specification [13, 21, 22, 29, 39, 40] provides a generalisation of
ordinary algebraic specification. Behavioural specification characterises how
objects (and systems) behave, not how they are implemented. This new form
of abstraction can be very powerful in the specification and verification of
software systems, since it naturally embeds other useful paradigms such as
concurrency, object orientation, constraints, and non-determinism (see [22]
for details). Behavioural abstraction is achieved by using specification with
hidden sorts and a behavioural concept of satisfaction based on the idea of
indistinguishability of states that are observationally the same, which also
generalises process algebra and transition systems (see [22]). The CafeOBJ
behavioural specification paradigm is based on the coherent hidden algebra
(CHA) of [13], which is both a simplification and an extension of the classical
hidden algebra of [22] in several directions, most notably by allowing opera-
tions with multiple hidden sorts in the arity. Coherent hidden algebra comes
very close to the “observational logic” of Hennicker and Bidoit [29].

CafeOBJ directly supports behavioural specification and its proof theory
through special language constructs, such as

• hidden sorts (for states of systems),
• behavioural operations (for direct “actions” and “observations” on states

of systems),
• behavioural coherence declarations for non-behavioural operations (which

may be either derived (indirect) “observations” or “constructors” on states
of systems), and

• behavioural axioms (stating behavioural satisfaction).

The main behavioural proof method is based on coinduction. In CafeOBJ,
coinduction can be used either in the classical hidden-algebra sense [22] for
proving the behavioural equivalence of states of objects, or for proving be-
havioural transitions (which appear when behavioural abstraction is applied
to preorder algebra).

Besides language constructs, CafeOBJ supports behavioural specification
and verification by several methodologies. CafeOBJ currently highlights a
methodology for concurrent hierarchical object composition which features
high reusability, not only of specification code but also of verifications [11,
12, 30]. Behavioural specification in CafeOBJ may also be effectively used
as an object-oriented (state-oriented) alternative to classical data-oriented
specifications. Experiments seem to indicate that an object-oriented style of
specification, even of basic data types (such as sets and lists) may lead to
higher simplicity of code and drastic simplification of the verification process
[12].

Behavioural specification is reflected at the execution level by the concept
of behavioural rewriting [12, 13], which refines ordinary rewriting with a con-
dition ensuring the correctness of the use of behavioural equations in proving
strict equalities.
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1.3 Preorder Algebra Specification

Preorder algebra (POA) specification in CafeOBJ is based on a simplified
unlabelled version of Meseguer’s rewriting logic [32] specification framework for
concurrent systems, which gives a non-trivial extension of traditional algebraic
specification towards concurrency. POA incorporates many different models
of concurrency in a natural, simple, and elegant way, thus giving CafeOBJ
a wide range of applications. Unlike Maude [4], the current CafeOBJ design
does not fully support labelled rewriting logic, which permits full reasoning
about multiple transitions between states (or system configurations), but it
provides proof support for reasoning about the existence of transitions between
states (or configurations) of concurrent systems via a built-in predicate with
dynamic definition encoding into equational logic of both the proof theory of
POA and the user-defined transitions (rules). At the level of the semantics,
this amounts to the fact that CafeOBJ POA models are preorders rather than
categories. This avoids many of the semantic complications resulting from the
labelled version of rewriting logic.

From a methodological perspective, CafeOBJ develops the use of POA
transitions for specifying and verifying the properties of declarative encoding
of algorithms (see [12]), as well as for specifying and verifying transition sys-
tems. The restriction of rewriting logic to its unlabelled version (POA) is also
motivated by the fact that this paradigm plays only a secondary role in the
CafeOBJ methodologies.

1.4 Module System

The principles of the CafeOBJ module system are inherited from OBJ, which
builds on ideas first realised in the language Clear [3], most notably the con-
cept of an institution [17, 19]. The CafeOBJ module system features

• several kinds of imports;
• sharing for multiple imports;
• parametrised programming allowing multiple parameters, views for pa-

rameter instantiation, and integration of CafeOBJ specifications with ex-
ecutable code in a lower-level language; and

• module expressions.

However, the concrete design of the language revises the OBJ view of impor-
tation modes and parameters [12].

1.5 Type System and Partiality

CafeOBJ has a type system that allows subtypes based on order-sorted algebra
(OSA) [20, 24]. This provides a mathematically rigorous form of run-time type
checking and error handling, giving CafeOBJ a syntactic flexibility comparable
to that of untyped languages, while preserving all the advantages of strong
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typing. CafeOBJ does not do partial operations directly, but rather handles
them by using error sorts and a sort membership predicate in the style of
membership equational logic (MEL) [33].

1.6 Notations and Terminology

We assume some familiarity with basic (naive) set theory and a rather mild
familiarity with category theory (except in Sect. 5, which uses a little more
category theory). For categories, we generally use the same notation and ter-
minology as MacLane [31], except that composition is denoted by “;” and
written in the diagrammatic order. The application of functions (functors)
to arguments may be written either normally using parentheses, or else in
diagrammatic order without parentheses, or, more rarely, by using subscripts
or superscripts. The category of sets is denoted by Set, and the category of
categories2 by Cat. The opposite of a category C is denoted by Cop. The class
of objects of a category C is denoted by |C| and the set of arrows in C having
the object a as source and the object b as target is denoted as C(a, b).

2 Data Type Specification

2.1 Basic Data Type Specification

Basic Specification

Consider a simple specification of natural numbers with addition:

mod!SIMPLE-NAT {

[ Nat ]

op 0 : -> Nat

op s_ : Nat -> Nat

op _+_ : Nat Nat -> Nat

vars M N : Nat

eq N + (s M) = s(N + M) .

eq N + 0 = N .

}

This specification consists of:

• A header (i.e., the part before {...}) giving the name of the specification
(SIMPLE-NAT) and the kind of denotation (mod!).

• The sort (type) declaration ([Nat]), representing the set of elements of
the sort (or “type”); the name “sort” is common in algebraic specification,
the name “type” is common in programming.

2 We steer clear of any foundational problems related to the “category of all cate-
gories”. Several solutions can be found in the literature; see, for example, [31].



CafeOBJ Logic 157

• The operation declarations, starting with op (for 0, s , and + ), repre-
senting functions on the set(s) of elements.

• The variable declarations, starting with vars (such as M and N). In
CafeOBJ, the variables can also be declared on the spot (such as M:Nat).

• Axioms (the statements starting with “eq)” defining the equality between
elements.

Signatures

The operation declarations consist of:

• The name of the operation, which can be in mix-fix syntax, showing the
position of the arguments by “ ” when an application of the operation is
written.

• The arity of the operation, which is a string of (declared) sorts. The arity
of an operation may consist of

– an empty string (as in the case of 0); such operations are called con-
stants,

– only one sort (such as “Nat” in the case of s ),
– several sorts (such as “Nat Nat” in the case of + ); these sorts may

also be different.

• The sort of the operation, which is a declared sort.

The sort and the operation declaration form the signature of the specifica-
tion.

Definition 1. Let S∗ denote the set of all finite sequences of elements from
S, where [] is the empty sequence.

An S-sorted signature (S, F ) is an S∗
× S-indexed set F = {Fw→s | w ∈

S∗, s ∈ S} of operation symbols.
Note that this definition permits overloading, in that the sets Fw→s need

not be disjoint. We call σ ∈ F[]→s
(sometimes denoted simply F→s) a constant

symbol of sort s.
A signature morphism ϕ from a signature (S, F ) to a signature (S′, F ′) is

a pair (ϕsort, ϕop) consisting of

• a map ϕsort : S → S′ of sorts, and
• maps ϕop

w→s
: Fw→s → F ′

(ϕsort)∗(w)→ϕ
sort(s)

for all w ∈ S∗ and s ∈ S.

A graphical representation of the signature can be very useful. This graph-
ical notation for algebraic specification was first introduced by the ADJ group
by extending the classical set-theory graphical representation of sets and func-
tions. We represent

• sorts (types) by discs, and
• operations by multi-source arrows.
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The signature SIMPLE-NAT can be represented graphically as follows:

Nat

0
s

+

Terms and Axioms

A variable declaration introduces a new variable of a declared sort. The ax-
ioms consist of formal equalities between terms. The terms denote elements
of the corresponding sort; they are basically operations applied to arguments,
which are either (complex) terms, constants, or variables. An application of
an operation to arguments has to respect the arity of the operation, i.e. the
argument must have the sort indicated by the arity.

Definition 2. An (S, F )-term t of sort s ∈ S is a structure of the form
σ(t1, . . . , tn), where σ ∈ Fw→s and t1, . . . , tn are (S, F )-terms of sorts s1 . . . sn,
and where w = s1 . . . sn.

In CafeOBJ, we can check the well-formedness of a term by means of the
command parse:

SIMPLE-NAT> parse s 0 0 .

[Error] no successful parse

or

SIMPLE-NAT> parse s 0 + 0 .

((s 0) + 0) : Nat

(Notice that SIMPLE-NAT> is a CafeOBJ prompt.) The first term is not well-
formed, hence the parsing error. The second term is wellformed, and the
CafeOBJ system parses the term as
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and tells the user that the sort of the term is Nat.
Notice that another possible parsing for s 0 + 0 is s(0 + 0):

However, the system does not choose this possibility, because the operation
s has higher precedence than the operation + .

Denotations

Specifications are formal descriptions of a certain class of (possible) implemen-
tations. In algebraic-specification terminology, “implementation” is explained
by the concept of a model and “possible implementations” are explained by
the concept of denotation.

The models of CafeOBJ data type specifications are called algebras. Alge-
bras are ideal mathematical entities that interpret the syntactic constituents
of the signatures of the specifications as ideal semantic entities.
Algebras interpret:

• sorts as sets, and
• operations as functions on these sets,

such that the interpretation of the operations is compatible with the inter-
pretation of the sorts. Software (or system) implementations of specifications
can be regarded as algebras.

Definition 3. Given a sort set S, an S-indexed (or sorted) set A is a family
{As}s∈S of sets indexed by the elements of S; in this context, a ∈ A means
that a ∈ As for some s ∈ S. Given an S-indexed set A and w = s1 . . . sn ∈ S∗,
let Aw = As1

× · · · ×Asn
; in particular, let A[] = {�} (some one point set).

A (S, F )-algebra A consists of

• an S-indexed set A (the set As is called the carrier of A of sort s), and
• a function Aσ : Aw → As for each σ ∈ Fw→s.

If σ ∈ F→s, then Aσ determines a point in As which may also be denoted Aσ.

Definition 4. Given a signature morphism ϕ : (S, F ) → (S′, F ′) and an
(S′, F ′)-algebra A′, we can define the ϕ-reduct of A′ to (S, F ), denoted A′�ϕ

(or simply A′�(S,F ) when ϕ is an inclusion of signatures),

• to have carriers A′

ϕ(s)
for s ∈ S, and

• to have operations (A′�ϕ)σ = A′

ϕ(σ)
for σ ∈ F .

Then A′ is called a ϕ-expansion of A along ϕ.
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Equations

These are the axioms of CafeOBJ specifications. They are formal equalities
between (well-formed) terms denoting equalities between actual elements (in
algebras).

Definition 5. Any F -term t = σ(t1 . . . tn), where σ ∈ Fw→s is an operation
symbol and t1, . . . , tn are F -(sub)terms corresponding to the arity w, is inter-
preted as an element At ∈ As in a (S, F )-algebra A by At = Aσ(At1

. . . Atn
).

Definition 6. An equation is an equality t = t′ between F -terms t and t′.
Let ρ1 and ρ2 be any (S, F )-sentences, then ρ1 ∧ ρ2 (their conjunction)

is also a (S, F )-sentence. Sentences can also be formed with other Boolean
operators: disjunction, implication, and negation.

Let X be a set of variables for a signature (S, F ), then (∀X)ρ is a (S, F )-
sentence for each (S, F ∪ X)-sentence ρ (and similarly for existential quan-
tification).

A universal Horn sentence for an algebraic signature (S, F ) is a sentence
of the form (∀X)C if H, where H is a finite conjunction of equational atoms
and C is an equational atom, and C if H is the implication of C by H. Uni-
versal Horn sentences are also called conditional equations. An unconditional
equation is just a conditional equation for which the hypothesis H is true.

CafeOBJ restricts the sentences to Horn ones, and hence the equational
part of CafeOBJ has conditional equations as sentences.

Definition 7. Given an algebraic signature morphism ϕ : (S, F ) → (S′, F ′),
every (S, F )-sentence ρ can be translated to an (S′, F ′)-sentence ρ′, denoted
ϕ(ρ), by replacing any symbol of (S, F ) from ρ by its corresponding symbol
from (S′, F ′) given by ϕ.3

Definition 8. The satisfaction between algebras and sentences is the Tarskian
satisfaction defined inductively on the structure of sentences. Given a fixed
arbitrary signature (S, F ) and an (S, F )-algebra A,

• A |= t = t′ if At = At
′ for equations;

• A |= ρ1 ∧ ρ2 if A |= ρ1 and A |= ρ2, and similarly for the other Boolean
operators; and

• for every (S, F ∪X)-sentence A |= (∀X)ρ if A′
|= ρ for each expansion A′

of A along the signature inclusion, (S, F ) ↪→ (S, F ∪X).

3 In the particular case of quantification, notice that this changes the sorts of the
variables.
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Operation Attributes

Some equations, such as the commutativity and associativity of operations,
can be specified as operation attributes. For example:

op _+_ : Nat Nat -> Nat { comm }

has the same meaning as

eq M + N = N + M .

and

op _+_ : Nat Nat -> Nat { assoc }

has the same meaning as

eq (M + N) + P = M + (N + P) .

However, the specification of such equations as operation attributes has the
advantage of avoiding non-terminating computations. (In computations, they
are not used directly as rewrite rules. Instead, computations are performed as
rewriting modulo the operation attributes.)

Booleans and Predicates

CafeOBJ has a built-in (predefined) data type of Boolean values, called
BOOL. The essential part of its signature can be represented as

Bool

and,or

not

true,
false

We can use the Boolean data type for defining the “strictly less than” relation
between the natural numbers as follows:

op _<_ : Nat Nat -> Bool

eq 0 < (s M) = true .

eq (s M) < (s N) = M < N .

eq M < M = false .

eq (s M) < 0 = false .

Predicates in CafeOBJ are the same as Boolean-valued operations, so we
may use the short-hand notation

pred _<_ : Nat Nat
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Conditional Equations

The built-in sort Boolean data type BOOL supports the use of conditional equa-
tions which are equations valid under a condition represented as a Boolean
term. For example, conditional equations can be used to define a maximum
function on pairs of naturals:

op max : Nat Nat -> Nat { comm }

ceq max(M:Nat, N:Nat) = M if (N > M) or (M == N).

Initial models

The header of a specification may start with either mod! or mod*. mod! means
that the denotation of the specification is initial, which means that it essen-
tially consists of only one model (modulo isomorphism). Informally, the initial
model of a specification is obtained by the following two steps:

1. We construct all well-formed terms from the signature of the specification.
2. We identify the terms which are equal under the equations of the specifi-

cation.

For example, the model giving the denotation of the following CafeOBJ spec-
ification

mod!STRG {

[ S ]

ops a b : -> S

op : S S -> S { assoc }

}

consists of all strings that can be formed with the characters a and b.
The first step is to construct all terms of the form a, b, ab, ba, aa,

bb, a(ab), a(ba), b(ab), b(ba), (ab)a, (ab)b, (ba)a, (ba)b,

(ab)(ab), (ab)(ba), (ba)(ab), (ba)(ba), etc.
The second step identifies terms under the associativity equation (specified

as an attribute of the concatenation operation ). For example (a(ab))b,

(aa)(bb), a(a(bb)), a((ab)b), ((aa)b)b are all identified in one ele-
ment, denoted as (aabb).

In the following, we develop formally the concept of an initial algebra for
a CafeOBJ equational specification.

Definition 9. An S-indexed (or sorted) function f : A → B is a family
{fs : As → Bs}s∈S.

Also, for an S-sorted function f : A → B, let fw : Aw → Bw denote
the function product mapping a tuple of elements (a1, . . . , an) to the tuple
(fs1

(a1), . . . , fsn
(an)).

An (S, F )-homomorphism from one (S, F )-algebra A to another B is an
S-indexed function h : A → B such that
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hs(Aσ(a)) = Bσ(hw(a))

for every σ ∈ Fw→s and a ∈ Aw.
A (S, F )-homomorphism h : A → B is an (S, F )-isomorphism if and only

if each function hs : As → Bs is bijective (i.e. one-to-one and onto, in an
older terminology).

The category (class) of algebras of a signature (S, F ) is denoted Alg(S, F ).

Definition 10. An algebra A is initial for a class C of algebras when, for
each algebra B ∈ C, there exists an unique homomorphism A → B.

Notice that initial algebras are unique up to isomorphisms.

The Existence of Initial Algebras for Specifications

Definition 11. An F -congruence on an (S, F )-algebra A is an S-sorted fam-
ily of relations, ≡s on As, each of which is an equivalence relation, and
which also satisfy the congruence property that, given any σ ∈ Fw→s and
any a ∈ Aw, then Aσ(a) ≡s Aσ(a′) whenever a ≡w a′.4

Definition 12. Each congruence on an (S, F )-algebra A determines a quo-
tient algebra A/≡ such that

• (A/≡)s = (As)/≡s
for each sort s ∈ S, i.e. the equivalence classes of ≡s,

and
• (A/≡)σ(a/≡) = Aσ(a)/≡ for each operation symbol σ ∈ Fw→s and each

a ∈ Aw.

For an algebra homomorphism h : A → B, let its kernel =h be defined by
a =h b iff h(a) = h(b).

Proposition 1. For any algebra homomorphism h, its kernel =h is a congru-
ence.

Proposition 2. For any surjective algebra homomorphism q : A → A′ and
any algebra homomorphism h′ : A → B, there exists a unique algebra homo-
morphism h′ : A′

→ B such that q;h′ = h if and only if =q⊆=h:

A
q

��

h

��
��

��
��

� A′

h
′

����
��

��
�

B

Definition 13. Given a set of universal Horn sentences Γ , a congruence ≡

on an algebra A is closed under Γ -substitutivity if for each (∀X)C if H ∈ Γ ,
for any expansion A′ of A to (S, F ∪X), A′

H
⊆≡ implies A′

C
⊆≡.

4 This means that ai ≡si
a′

i for i = 1, . . . , n, where w = s1 . . . sn and a =
(a1, . . . , an).
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Proposition 3. For any algebra A, A/≡ |= Γ if and only if ≡ is closed under
Γ -substitutivity.

Proposition 4. The least congruence that is closed under Γ -substitutivity,
denoted =Γ , exists as the intersection of all congruences that are closed under
Γ -substitutivity.

Corollary 1. For any algebra A, A/=Γ
is the free algebra over A satisfying

Γ :

A
qΓ

��

∀h

����
��

��
��

� A/=Γ

∃!hΓ
����

��
��

���

B |= Γ

By taking A as 0(S,F ), the initial term algebra (i.e. initial in Alg(S, F )),
defined by

• (0(S,F ))s is the set TF of all F -terms of sort s, and
• (0(S,F ))σ(t1, . . . , tn) = σ(t1, . . . , tn) for each operation symbol σ ∈ Fw→s

and each list of terms t1 . . . tn corresponding to w,

we obtain the following:

Corollary 2. Each set Γ of conditional equations admits an initial algebra,
which is 0(S,F )/=Γ

.

Loose Denotations

On the other hand, mod* means that the denotation of the specification is
loose, which means that we consider all possible interpretations of the speci-
fication which satisfy the equations.

For example, (almost) the same specification as above, but specified with
loose denotation,

mod* SEMI-GROUP {

[ S ]

ops a b : -> S

op : S S -> S { assoc }

}

has as its models all semigroups with all interpretations of the two constants
a and b.
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2.2 Specifying Partial Functions

Subsorts

A specification of natural numbers with subtypes distinguishes two subsorts
of Nat:

mod!BARE-NAT {

[ NzNat Zero < Nat ]

op 0 : -> Zero

op s : Nat -> NzNat

}

The subsorts (of a sort) represent subsets of the elements of the sort.
In CafeOBJ, a subsort relationship is specified by using the “less than”

symbol < inside a sort declaration. In this example, Zero is the sort of zero
(0), and NzNat is the sort of the non-zero natural numbers.

The use of subsorts allows a more precise definition of operations. In the
case of BARE-NAT, the constant 0 is declared to be of (sub)sort Zero rather
than Nat, and the sort of the successor function s is declared as the sort
NzNat of non-zero naturals rather than Nat. The latter declaration embeds a
very basic piece of information about the successor function: zero can never
be the result of applying a successor function to an element.

The graphical representation of signatures uses disc inclusion for subsorts:

Zero NzNat

Nat

0 s_

Operation Overloading

Consider the example of the specification SIMPLE-NAT of natural numbers
with addition, and enriched with subsorts. The signature of this specification
can be represented graphically by
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Zero NzNat

Nat

0 s_

_+_

_+_

In this specification, the operation + is overloaded, in the sense that the same
operation symbol is used twice with different ranks or arities:

op _+_ : Nat Nat -> Nat

op _+_ : NzNat Nat -> NzNat

Notice that the sorts in the arity of the second operation are subsorts of the
corresponding sorts in the arity of the first operation. The same applies to the
sorts of the operations.

The second + is in fact a restriction of the first, but it helps with the
precision of evaluations at the most primitive syntactic level.

If a non-zero natural takes part in the addition, then the result should
always be a non-zero natural number.

Another kind of operation overloading occurs when overloaded operations
act on sorts which are not related directly or indirectly by a subsort relation-
ship. In such a situation, there is no interference between the meanings of the
overloaded operations, but such use of overloading might increase the expres-
sivity of the specification. Such an example is given by a specification of the
length of a list of elements, with both addition of natural numbers and list
concatenation specified by the same operation symbol. Here is the graphical
representation of the signature of this specification:

s_
0

Nat

_+_

length

nil

EltList

_+_

Partial Functions Via Subsorts

Subsorts also constitute the simplest (and most limited) form of partiality for
functions. Partial functions are those functions which do not evaluate for
all values of the arguments, but only for a subset of those values. In some
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cases, this subset of values (called the domain) of the partial function can be
handled by using subsorts.

For example, the division of rational numbers can be defined only when
the second argument is non-zero:

NzRat

_/_

Rat

In this example, the sort of rational numbers is Rat, the sort of non-zero
rational numbers is NzRat, and the division operation is / .

Error handling

An accurate specification style based on subsorts permits precise information
about the types of the elements. The CafeOBJ command parse shows us
whether a term is well formed, and what is its smallest sort. For example

BARE-NAT> parse s s 0 .

gives the answer

(s (s 0)) : NzNat

During the computation process, the information about the sort of an element
becomes more accurate. For example, in the case of rational numbers,

RAT> parse 2 / 2 .

(2 / 2) : NzRat

but when this expression is evaluated (by using the CafeOBJ command red),

RAT> red 2 / 2 .

-- reduce in RAT : 2 / 2

1 : NzNat

the CafeOBJ system gives us the smallest sort of the element, which is the
non-zero naturals. In the case of an attempt to evaluate a partial function
for values of the arguments which do not belong to its domain, the system
indicates an error to us:

RAT> parse 2 / 0 .

(2 / 0) : ?Rat

This is achieved by using an error supersort (?Rat) that stores all ill-formed
expressions, which are considered as error values.

In CafeOBJ, the error supersorts are built into the system, so although
they are in general hidden from the user, they are used for signalling parsing
errors.
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Dynamic Type Checking

As we saw above, more accurate information about the sort of an element
may appear during the computation process. the error-handling system is
flexible enough to take advantage of this situation. This is called dynamic
type checking. For example:

RAT> parse 2 / ((3 / 2) + (1 / 2)) .

(2 / ((3 / 2) + (1 / 2))) : ?Rat

gives an error because the sort of (3 / 2) + (1 / 2) is computed as Rat

rather than as NzRat. However, the CafeOBJ system still attempts to evaluate
this expression, and during the computation the system “discovers” that (3

/ 2) + (1 / 2) is indeed a non-zero rational:

RAT> red 2 / ((3 / 2) + (1 / 2)) .

-- reduce in RAT : 2 / (3 / 2 + 1 / 2)

1 : NzNat

Sort Constraints

A more complex case of partiality of functions occurs when the domain of
the function can be specified in the language. For example, the following
specification of a minus function on naturals as a partial function uses the
“less than” predicate for naturals:

op - : ?Nat ?Nat -> ?Nat

vars M N : Nat

ceq (M - N) :is Nat = true if not(M < N) .

eq (s M) - (s N) = M - N .

eq M - 0 = M .

We use the built-in error supersort ?Nat and the built-in sort membership

predicate

Nat Bool
_:is_

NatSortKind

Here, NatSortKind is the (predefined) sort/set of the sort names (directly
or indirectly) related to Nat by the subsorting relation. The first equation
gives the sort constraint defining the domain of the partial function - , while
the last two equations define the function.



CafeOBJ Logic 169

Kinds and Sorts

The semantics of the sort membership predicate is given by “membership
algebra”.

Definition 14. A membership algebraic signature is a triple (K,F, kind)
where K is a set of kinds, (K,F ) is an algebraic signature, and kind : S → K

is a function that assigns to each element in its domain, called “sort”, a kind.
Given a membership algebraic signature (K,F, kind), a (K,F, kind)-algebra
A is a (K,F )-algebra together with sets As ⊆ Akind(s) for each “sort” s.

Sentences in membership algebra have two types of atom, namely atomic
equations t = t′, where t, t′ are any F -terms of the same “kind”, and atomic
memberships t : s, where s is a “sort” and t is an F -term of “kind” kind(s).

A membership algebra A satisfies an equation t = t′ when At = At
′ and

satisfies an atomic membership t : s when At ∈ As.

The subsort relationship s < s′ is modelled in membership algebra by the
Horn sentence (∀x)x : s′ if x : s. Hence a signature with subsorts corresponds
to a Horn presentation in membership algebra. This leads to the conclusion
that the existence of initial algebras for equational specifications (Corollary 2)
can be extended to order-sorted equational specifications.

2.3 Inference and Reduction

Group Theory

Consider the following specification of the group theory:

_+_

0

-_

G

mod* GROUP {

[ G ]

op 0 : -> G

op + : G G -> G {assoc}

op - : G -> G

var X : G

eq 0 + X = X .

eq (- X) + X = 0 .

}
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The denotation of this specification consists of all groups. However, this fact
is not obvious with the current specification, since the standard specification
of group theory contains two more equations:

eq X + 0 = X .

eq X + (- X) = 0 .

These two equations can be deduced from the three axioms of the specification
(two explicit equations plus the associativity attribute for + ).

Proving X + 0 = X

The first equation can be deduced from the second equation (which we prove
later) and the axioms of GROUP by the following inference chain:

� 0 + a = a by the first axiom,
0 + a = a � (a + (−a)) + a = a by the second equation,
(a + (−a)) + a = a � a + ((−a) + a) = a by the associativity of + ,
a + ((−a) + a) = a � a + 0 = a by the second axiom.

Proving X + (- X) = 0:

The second equation can be deduced from the axioms of GROUP by the follow-
ing inference chain:

� (−(−a)) + (−a) = 0
(by the second axiom for x ← (−a)),
(−(−a)) + (−a) = 0 � (−(−a)) + (0 + (−a)) = 0
(by the first axiom for x ← (−a)),
(−(−a)) + (0 + (−a)) = 0 � (−(−a)) + (((−a) + a) + (−a)) = 0
(by the second axiom),
(−(−a)) + (((−a) + a) + (−a)) = 0 � ((−(−a)) + (−a)) + (a + (−a)) = 0
(by the associativity of + ),
((−(−a)) + (−a)) + (a + (−a)) = 0 � 0 + (a + (−a)) = 0
(by the second axiom for x ← (−a)),
0 + (a + (−a)) = 0 � a + (−a) = 0
(by the first axiom for x ← a + (−a)).

Equational Inference.

The inference steps in equational logic obey the principle of replacing equals
by equals, which means that, in a term, we replace an instance of a side of an
equation by the corresponding instance of the other side of the equation.

• An instance of a term is obtained by substituting the variables of the term
by (well-formed) terms of the same sort as the variable to be substituted.

• By the “corresponding instance of the other side of the equation” we mean
that, for both instances, we use the same substitutions for the variables.
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Definition 15. Given an algebraic signature (S, F ) and sets X and Y of vari-
ables (i.e. new constant symbols), an (S, F )-substitution θ : X → Y is a
function X → TF∪Y .

For any (S, F ∪ X)-sentence ρ, we denote by ρθ the (S, F ∪ Y )-sentence
determined by replacing each symbol x ∈ X in ρ by the term θ(x).

Definition 16. The equational proof system is generated by the following
rules:

{(∀X)t = t}
R.

{(∀X)t = t′}

{(∀X)t′ = t}
S.

{(∀X)t = t′, (∀X)t′ = t′′}

{(∀X)t = t′′}
T.

For each operation symbol σ ∈ F :

{(∀X)ti = t′
i
|1 ≤ i ≤ n}

{(∀X)σ(t1, . . . , tn) = σ(t′1, . . . , t
′
n
)}

OC.

For all (∀Y )C if H ∈ Γ , subst θ : Y → X

{Γ ∪ {(∀X)Hθ}

{(∀X)Cθ}
Γ.

The completeness of equational deduction can be obtained from Corollary 1
by noticing that =Γ on TF (X) (the free (S, F )-algebra over X) is

{(t, t′) | Γ �
e (∀X)t = t′},

where �
e is the equational provability relation.

Corollary 3. The equational proof system is sound and complete., i.e. E |= ρ

if and only if E �
e ρ.

The completeness of equational logic is due to a well-known result by Birkhoff
[2], and it has been extended to the many-sorted case in [23].

Rewriting.

Equational deduction can be regarded as a computation process by starting
with a term and applying the principle of replacing equals by equals, with the
(instances of the) left-hand side of equations replaced by (the corresponding
instances of) the right-hand side of equations until this is not possible any
more. This is called rewriting.

For example, the CafeOBJ “reduce” (which rewrites using equations from
left to right),

GROUP> reduce (- - a) + (- a) + a + (- a) .

gives the result 0 : G after three rewriting steps modulo the associativity
attribute of + . This reduction process can be visualised as follows:

(− − a) + (−a) + a + (−a) � (− − a) + 0 + (−a) first rewrite,
(− − a) + 0 + (−a) � (− − a) + (−a) second rewrite,
(− − a) + (−a) � 0 third rewrite.
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Proof by Rewriting

Rewriting of terms can be used for mechanising equational inference. For
example, the proof of

eq X + (- X) = 0 .

can be done as follows by rewriting:

a + (−a) � 0 + a + (−a) first rewrite,
0 + a + (−a) � (−(−a)) + (−a) + a + (−a) second rewrite,
(−(−a)) + (−a) + a + (−a) � (−(−a)) + 0 + (−a) third rewrite,
(−(−a)) + 0 + (−a) � (−(−a)) + (−a) fourth rewrite,
(−(−a)) + (−a) � 0 fifth rewrite.

Notice that the first two rewrites are actually backward rewrites, in the sense
that the rewritings are performed by replacing an instance of the right-hand
side of a equation with the corresponding instance of the left-hand side of the
equation. The last three rewrites are ordinary rewrites, and therefore they can
be performed automatically. Ordinary rewriting is called reduction.

The CafeOBJ proof score for this proof by rewriting is as follows:

open GROUP .

op a : -> G .

start a + (- a) .

apply -.1 at (1) . -- 1st backward rewrite

apply -.2 with X = (- a) at [1] . -- 2nd backward rewrite

apply reduce at term . -- reduce the whole term

close

where the backward rewritings are done by using the command apply and
the last three automatically by reduce.

Deduction by Rewriting

Definition 17. The rewriting proof system is generated by R., T., OC., and
Γ . Let �

r denote its entailment relation.

As a consequence of Corollary. 3, we obtain the following proposition.

Proposition 5. The rewriting proof system is sound.

Definition 18. An F -context c[z] is any F -term c with a marked variable z

occurring only once in c.

Proposition 6. The rewriting proof system can be generated by R., T., and
the following rule:

RW. (∀X)Hθ �
r (∀X)c[tθ] = c[t′θ] for any substitution θ : Y → X, each

sentence (∀Y )t = t′ if H, and each context c.
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Normal Forms

When a term cannot be rewritten any more, we say that it is a normal form.
For example, 0, 0+a, a+b, etc. are normal forms in GROUP.

When there are no infinite rewrite chains, we say that rewriting termi-

nates. In this situation, in principle, each input term may be rewritten to
several normal forms. For example, (-(-a))+(-a)+a+(-a) has both a+(-a)

and 0 as normal forms when we consider the equations of GROUP as rewrite
rules (from left to right).

However, when the rewriting is in addition confluent, the normal form
of a term is unique. Confluence is a basic property which says that whenever
there are several choices for rewriting, it does not matter which one we chose in
the sense that from each choice there would be a continuation of the rewriting
to the same result. This can be visualised by the following picture:

t

t1 t2

t’

* *

This picture can be interpreted as follows: if t can be rewritten to both t1

and t2 (in one step), then t1 and t2 can be rewritten (possibly in several
steps) to the same term t’.

For the rest of this section, A should typically be taken as the set/algebra
of terms, or of terms modulo some equational theory in the case of rewriting
modulo operation attributes (such as associativity and/or commutativity).

Definition 19. A binary reflexive relation R on a set A is confluent when,
for each element a, b, c ∈ A, if aRb and aRc then there exists an element
d ∈ A such that bRd and cRd.

Proposition 7. If > is a confluent preorder relation on a set A, then the
relation ↓ defined by

b ↓ c if and only if there exists d ∈ A with b > d and c > d

is the equivalence generated by > (i.e. the least equivalence containing >).

Proposition 8. Given an algebra A, if > is a confluent preorder preserving
the operations, then ↓ is a congruence.

Rewriting as a Decision Procedure

Termination and confluence together ensure the completeness of rewriting as
a decision procedure for equality, since given two terms we can decide whether
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they are equal for a certain specification just by comparing their unique normal
forms.

The completeness of rewriting as a decision procedure is justified by The-
orem 1 below.

Let us assume that all our signatures contain a distinguished sort b with
a constant t and that each hypothesis H of a conditional equation (∀X)t =
t′ if H can be regarded as a term H of sort b such that, for each expansion
A′ of an algebra A to (S, F ∪X), we have that

A′
|= H if and only if A′

H

= A′

t.

Let Γ = {(∀X)t = t′ if H | (∀X)t = t′ if H ∈ Γ}.
This determines a relation >

Γ
on any (S, F ∪X)-algebra A by At >

Γ
At

′

if and only if Γ �
r (∀X)t = t′}.

Let ↓Γ be the equivalence generated by >Γ .

Proposition 9. If >Γ is confluent, then ↓Γ is a congruence.

Proposition 10. For any algebra A, if >Γ is confluent then a ↓Γ a′ implies
a =Γ a′.

An element n ∈ A is a normal form for a relation > on A when, for each
element a ∈ A, n > a implies n = a.

Proposition 11. On any algebra A, if >
Γ

is confluent and At is a normal

form then A/↓
Γ
|= Γ .

Theorem 1. On any algebra A, if >
Γ

is confluent and At is a normal form
then ↓

Γ
==

Γ
.

CafeOBJ implements rewriting as a decision procedure by the built-in
semantic equality predicate ==. For example in SIMPLE-NAT,

SIMPLE-NAT> reduce (s s 0) + (s 0) == (s 0) + (s s 0) .

gives the result true : Bool, since the equations of SIMPLE-NAT are taken as
rewrite rules from left to right and both sides of == are reduced to the same
normal form (s s s 0).

2.4 Induction

Inductive Properties

Consider a specification of natural numbers with successor and addition given
by SIMPLE-NAT. The denotation of SIMPLE-NAT consists of the initial model,
whose main carrier (i.e., underlying set) consists of all terms formed only by
0 and s , i.e., 0, (s 0), (s s 0), (s s s 0), ....

The operations 0 and s are called the constructors of the specification
SIMPLE-NAT. The commutativity of the addition is an inductive property
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in the sense that it holds for the (initial) denotation of SIMPLE-NAT, but it is
not an equational consequence of the axioms of the specification. In order to
see this, it is enough to consider the loose denotation version of SIMPLE-NAT
a model of lists interpreting + as concatenation, and to notice that list
concatenation is not commutative.

The Inductive Proof of the Commutativity of Addition

The proof of the commutativity of + in SIMPLE-NAT involves a structural
induction, which is an induction on the structure of the terms of the carrier
of the denotation of SIMPLE-NAT.

open SIMPLE-NAT

We declare temporary working variables as arbitrary constants

ops i j : -> Nat .

We need the following two lemmas.

Lemma 1. (s i) + j = s(i + j)

Proof. We prove this lemma by induction on j.
The base case:

red (s i) + 0 == s(i + 0) .

gives true.
The induction step uses the following hypothesis.

eq (s i) + j = s(i + j) .

The proof of the induction step,

red (s i) + (s j) == s(i + (s j)) .

gives true.

Lemma 2. 0 + j = j

Proof. We prove this lemma by induction on j.
The base case:

red 0 + 0 == 0 .

gives true.
The induction step uses the following hypothesis.

eq 0 + j = j .

The proof of the induction step,

red 0 + (s j) == s j .
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gives true.
We now declare the proven equations (i.e., the two lemmas above),

eq (s I:Nat) + J:Nat = s (I + J) .

eq 0 + J:Nat = J:Nat .

and then proceed with the main proof. We show that,

i + j = j + i

by induction on j.
The base case:

reduce i + 0 == 0 + i .

gives true. For the induction step we use the following hypothesis.

eq i + j = j + i .

The proof of the induction step,

red i + (s j) == (s j) + i .

gives true.

3 Transitions

3.1 Specifying Transitions

Algorithm Specification

Rewriting rules can be used to specify algorithms by showing transitions be-
tween various states of the algorithm. For example a crude version of the
bubble sort algorithm may be specified as follows in CafeOBJ:

mod!SORTING-NAT {

protecting(STRG-NAT)

vars N N’ : Nat

ctrans (N . N’) => (N’ . N) if N’ < N .

}

Notice this very compact encoding of the bubble sort algorithm by only one
conditional transition.
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The Logic of Transitions

The logic of CafeOBJ transitions is called preorder algebra.

Definition 20. POA signatures are just ordinary algebraic signatures.
POA models are preorder algebras, which are interpretations of the sig-

natures in the category of preorders Pre rather than the category of sets Set.
This means that each sort is interpreted as a preorder, and each operation as
a preorder functor.

The atomic sentences of POA are either equations or transitions t => t′,
with t and t′ being terms of the same sort. POA sentences are formed from
(atomic) equations and transitions by iterations of the usual logical connectives
and quantification.5

A transition t => t′ is satisfied by a preorder algebra M when the interpre-
tations of the terms are in the preorder relation of the carrier, i.e. Mt ≤ Mt

′ .

The Initial Denotation of an Algorithm Specification

SORTING-NAT is an initial (or tight) denotation specification in the sense that
it specifies a standard initial model. This model is a model of the data type
of strings of natural numbers (in which the strings are thought as possible
states of the algorithm), enriched with transitions between the states of the
algorithm by applying the bubble sort rule (as specified by the conditional
transition of SORTING-NAT) in all possible ways.

In the model, there exists at most one transition between two states, which
means that our models capture the existence of the possibility of a transition
between two states of the algorithm rather than all possible transitions be-
tween the states.

A fragment of this model corresponding to the sorting of 3 . 2 . 1 can be
visualised as follows:

3.2.1

2.3.1

2.1.3

1.2.3

1.3.2

3.1.2

Strg

Operations on Transitions

SORTING-NAT is a typical example of POA specification.

5 However, CafeOBJ restricts the POA sentences to Horn ones.
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In the initial model of this specification, the operation interpretations ex-
tend from the elements of the underlying data type (i.e. the states of the
algorithm) to the transitions. For example, in the case of SORTING-NAT, not
only do the strings “concatenate”, but also the transitions can “concatenate”,
as depicted in the following picture.

3.2.1

2.1.3

t1

 2.1

 1.2

t2. t1.t2

3.2.1.2.1

2.1.3.1.2

=

Definition 21. A POA-congruence (preorder algebra congruence) on a pre-
order algebra for a signature (S, F ) is a pair (∼,) such that

• ∼ is an F -congruence on M ;
•  is an (S-sorted) preorder on M compatible with the operations and which

contains M≤, i.e. M≤ ⊆; and
• a′ ∼ a, a  b, b ∼ b′ implies a′ ∼ b′ for all elements a, a′, b, b′ of M .

Congruences form a partial order under inclusion, i.e. (∼,) ⊆ (∼′,′) if
and only if ∼⊆∼

′ and ⊆
′.

Proposition 12. Each POA-congruence on a preorder algebra M determines
a quotient preorder algebra homomorphism M → M/(∼,�) such that

• the algebra underlying M/(∼,�) is the quotient algebra M/∼; and
• m/∼ ≤ m′/∼ if and only if m  m′.

Definition 22. For a preorder algebra homomorphism h : M → N , let its
kernel ker(h) = (=h,≤h) where a =h b iff h(a) = h(b) and a ≤h b iff h(a) ≤

h(b).

Proposition 13. ker(h) is a POA-congruence.

Proposition 14. For any surjective preorder algebra homomorphism q : M →

M ′ and any preorder homomorphism h′ : M → N , there exists a unique
preorder homomorphism h′ : M ′

→ N such that q;h′ = h if and only if
ker(q) ⊆ ker(h).

M
q

��

h

��
��

��
��

��
M ′

h
′

����
��

��
��

N

Definition 23. Given a set Γ of universal Horn sentences in POA, a POA-
congruence (∼,) on a preorder algebra M is closed under Γ -substitutivity
if for each (∀X)C if H ∈ Γ , and for any expansion M ′ of M to (S, F ∪ X),
M ′

H
⊆ (∼,) implies M ′

C
⊆ (∼,).
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Proposition 15. For any preorder algebra M , M/(∼,�) |= Γ if and only if
(∼,) is closed under Γ -substitutivity.

Proposition 16. The least POA-congruence closed under Γ -substitutivity,
denoted (=Γ ,≤Γ ), exists as the infimum of all POA-congruences that are
closed under Γ -substitutivity.

Corollary 4. For any preorder algebra M , M/(=Γ ,≤Γ ) is the free preorder
algebra over M satisfying Γ .

By considering the initial term algebra 0(S,F ) for the preorder algebra M

in Corollary 4, we obtain the existence of initial preorder algebras of Horn
POA theories.

Corollary 5. Each set Γ of universal Horn sentences in POA admits an ini-
tial model.

Completeness of POA Deduction

Definition 24. The POA proof system is generated by the following rules (for
a given signature (S, F )):

{(∀X)t = t}
R.

{(∀X)t => t}
R.

{(∀X)t = t′}

{(∀X)t′ = t}
S.

{(∀X)t = t′, (∀X)t′ = t′′}

{(∀X)t = t′′}
T.

{(∀X)t => t′, (∀X)t′ => t′′}

{(∀X)t => t′′}
T.

For each operation symbol σ ∈ F :

{(∀X)ti = t′
i
|1 ≤ i ≤ n}

{(∀X)σ(t1, . . . , tn) = σ(t′1, . . . , t
′
n
)}

OC.

and
{(∀X)ti => t′

i
|1 ≤ i ≤ n}

{(∀X)σ(t1, . . . , tn) => σ(t′1, . . . , t
′
n
)}

OC.

For all (∀Y )C if H ∈ Γ , subst θ : Y → X

{Γ ∪ {(∀X)Hθ}

{(∀X)Cθ}
Γ.

By noticing that (=Γ ,≤Γ ) in the term algebra TF (X) is given by

=Γ = {(t, t′) | Γ �
POA (∀X)t = t′}

and

≤Γ = {(t, t′) | Γ �
POA (∀X)t → t′}

where �
POA is the provability relation of the preorder-algebra proof system,

we obtain the following corollary.

Corollary 6. The POA proof system is sound and complete.
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Specification of Generic Algorithms

Many algorithms have a certain degree of independence of the actual data
type, in the sense that they do not depend on all details of the data type, but
rather on some of its properties.

This is the case for sorting too, since the bubble sort algorithm also works
for integers, reals, etc. In fact, this sorting algorithm can be specified for
strings over any data type which has a partial order. We can therefore use
the CafeOBJ generic (or parametrised) specification paradigm and specify a
generic sorting algorithm over any partial order by reusing the specification
STRG(Y :: POSET) of generic strings over a partial order:

mod! SORTING(Y :: POSET) {

protecting(STRG(Y))

vars N N’ : Elt

ctrans N . N’ => N’ . N if (N’ <= N) and (N =/= N’) .

}

The sorting of strings of natural numbers can be obtained by instantiating
the abstract partial order of SORTING to the natural numbers with the usual
ordering:

mod!SORTING-NAT {

protecting(SORTING(NAT))

}

Execution of Algorithms

Algorithms specified with POA in CafeOBJ can also be executed, and results
can thus be obtained.

For example, we can execute SORTING-NAT and actually sort strings of
naturals by using the CafeOBJ command “exec”:

select SORTING-NAT

SORTING-NAT> exec (3 . 2 . 1) .

-- execute in SORTING-STRG-NAT: (3 . 2 . 1)

1 . 2 . 3 : Strg

Some algorithm properties

Notice that an algorithm is not necessarily confluent, meaning that in a cer-
tain state of the algorithm there may be several transitions to different states
from which the algorithm can never reach a common state. SORTING-NAT is
an example of a confluent algorithm since, from any state s, the algorithm
finally reaches the state of the sorted string corresponding to s.

Also, an algorithm is not necessarily terminating, meaning that there
may be infinite chains of transitions. SORTING-NAT is an example of a termi-
nating algorithm, since bubble sort always terminates.
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3.2 Algorithm verification

Transition Predicates

In CafeOBJ, verification of POA algorithms is realised at a data type level.
That is, all reasoning about algorithm properties is done as the usual data-
type reasoning. This is essentially based on an encoding of transitions as data,
which is achieved via the built-in (many-sorted) transition predicate ==> .

The meaning of the transition predicate ==> is that of existence of tran-
sitions :

s ==> s ’ if and only if there exists at least one transition be-

tween the state s and the state s ’

For example, in the case of the algorithm SORTING-NAT for sorting strings
of naturals, we can do the following testing:

SORTING-NAT> red (2 . 3 . 1) ==> (1 . 2 . 3) .

gives true, while,

SORTING-NAT> red (2 . 2 . 1) ==> (1 . 2 . 3) .

gives false.
Unlike the language Maude, the CafeOBJ methodology for algorithm ver-
ification is limited to reasoning about the existence of transitions between
states of the algorithm, and does not discriminate between different (parallel)
transitions between two given states.

Algorithm Verification

The possibility of reasoning about the existence of transitions between the
states of an algorithm permits a wide range of verifications of algorithm prop-
erties.

For example, we can prove generic termination for the bubble sort algo-
rithm. By a generic property we mean a property proved at the level of a
generic algorithm, which then holds for all instances of the algorithm.

We consider the generic sorting algorithm SORTING(Y :: POSET) and use
a classical technique for proving algorithm termination. We define a weight
function on the states of the algorithm, with natural numbers as values, which
becomes strictly lower along any transition. Because the natural numbers are
well founded with respect to this “smaller-than” ordering, the existence of
such a weight function means that there are no infinite chains of transitions
between the states of the sorting algorithm.
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The Weight Function.

We define the weight function disorder, which intuitively measures a kind of
“distance” from the current state of the algorithm to the sorted state:

mod!SORTING-PROOF {

protecting(SORTING + NAT)

op disorder : Strg -> Nat

op >> : Elt Strg -> Nat

vars E E’ : Elt

var S : Strg

eq disorder(nil) = 0 .

eq disorder(E) = 0 .

eq disorder(E . S) = disorder(S) + (E >> S) .

eq E >> nil = 0 .

cq E >> E’ = 0 if E <= E’ .

cq E >> E’ = 1 if (E’ <= E) and (E =/= E’) .

eq E >> (E’ . S) = (E >> E’) + (E >> S) .

}

Visualisation of Sorting

Let us visualise how disorder (represented by the balls below) becomes lower
along transitions between some of the states of the instance of SORTING for
the natural numbers:

3.2.1

3

3.1.2

2

1.3.2

1

1.2.3

0

Termination Proof

So, we have to prove that,

s ==> s’ implies disorder (s’) < disorder(s)

for any (different) states s and s’. We prove this theorem by using two lem-
mas.

Lemma 3. disorder (e’ . e . s) < disorder (e . e’ . s) if e’ < e

for a string s and elements e and e’.

Proof. The CafeOBJ proof score of this lemma is as follows:

open SORTING-PROOF .

ops e e’ : -> Elt .

op s : -> Strg .
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where the hypothesis is eq e’ <= e = true . and the conclusion is,

red disorder(e’ . e . s) < disorder(e . e’ . s) .

close

Lemma 4. disorder (e . s) < disorder (e . s’)

if (e >> s) == (e >> s’) and disorder (s) < disorder (s’), for an el-
ement e, and strings s and s’.

Proof. The CafeOBJ proof score of this lemma is as follows:

open SORTING-PROOF .

op e : -> Elt .

ops s s’ : -> Strg .

where the hypothesis is

eq (e >> s) = (e >> s’) .

eq disorder(s) < disorder(s’) = true .

and the conclusion is:

red disorder(e . s) < disorder(e . s’) .

close

Now we return to the main part of the termination proof. If we have a one-step
transition s ==> s’, we can represent it as

(s . e . e’ . s’) ==> (s . e’ . e . s’)

where s and s’ are strings, and e’and e are elements. Then we apply
Lemma 3:

(e . e’ . s’) ==> (e’ . e . s’)

and then Lemma 4 iteratively, by induction on the length of s.

3.3 Non-determinism

Non-deterministic Naturals

Non-confluent algorithms correspond to non-deterministic computations. Non-
determinism in POA is achieved by the use of “choice” transitions.

The following is an example of a non-deterministic choice of natural num-
bers:

mod!NNAT {

extending(NAT)

op | : Nat Nat -> Nat { assoc comm }

}

The specification NNAT introduces new elements into the sort Nat of natural
numbers: the “non-deterministic” natural is a multi-set of ordinary natural
numbers expressing all possible choices of one natural number from the multi-
set.
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The Denotation of Specification of the Non-deterministic Natural

Numbers

In the denotation of NNAT, (a fragment of) the sort Nat can be visualised as
follows:

1|1|2

1|1
1|2

1
2

Nat

Non-deterministic Choice

The non-deterministic choice is specified by two transitions, as the following
specification in CafeOBJ shows:

mod!NNAT-CHOICE {

protecting(NNAT)

vars M N : Nat

trans N | M => N .

trans N | M => M .

}

The denotation of NNAT-CHOICE adds to the denotation of NNAT transitions
between the multi-sets of naturals as given by the two rules of the denotations.
This can be visualised as follows:

1|1|2

1|1
1|2

1
2

Nat

Testing for the Existence of Transitions

We can check the existence of transitions by using the built-in transition
predicate ==> .

NNAT-CHOICE> red (1 | 1 | 2) ==> (1 | 2) .

gives true, and

NNAT-CHOICE> red (1 | 1 | 2) ==> (2 | 2) .

gives false.
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Proving Properties of Non-deterministic Naturals

The operations on naturals extend automatically on to the new entities of sort
Nat, which may be either non-deterministic naturals or transitions (choices).
In this way, they are available for reasoning about non-deterministic naturals.

For example, let us consider the problem of proving that 3 is less than
any choice of (4 | 4 | 5). We can formulate this by using the “less than”
predicate < :

3 < (4 | 4 | 5)

In the absence of any axioms describing the relationship between < and | ,
we have to force all the applications of the transition axioms on to the non-
deterministic natural (4 | 4 | 5). Therefore, if there exists no transition
from 3 < (4 | 4 | 5) to false, this means that 3 is less than any choice
from (4 | 4 | 5). This is validated by the CafeOBJ system, since if we try
the evaluation

NNAT-CHOICE> red ((3 < (4 | 4 | 5)) ==> false) == true .

then we obtain false.

3.4 Linear Generation of Case Analyses

This POA methodology is useful for building proof scores involving complex
case analysis.

Orthogonal Case Analysis

Consider the following two functions on the natural numbers:

mod!FG-fun {

protecting(NAT)

ops F G : NzNat -> Nat

var X : NzNat

eq F(1) = 10 .

cq F(X) = 5 if (2 <= X) and (X <= 4) .

cq F(X) = 2 if (5 <= X) and (X <= 9) .

cq F(X) = 1 if (10 <= X) .

cq G(X) = 8 if (1 <= X) and (X <= 7) .

cq G(X) = 9 if (8 <= X) and (X <= 9) .

cq G(X) = 10 if (10 <= X) .

}

Let us consider the problem of proving that for all positive natural numbers
X and Y, F(X) + G(Y) is greater than 9.

Notice that there are four cases for the argument X, and three cases for
the argument Y. The cases for X and the cases for Y are orthogonal, in the
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sense that they are completely independent of each other, so that they can be
combined freely. This means that the total number of cases for this problem
is twelve.

The total proof term for this problem is the conjunction of the twelve
instances of the formula 9 <= F(X) + G(Y) for all combinations of the atomic
cases. In general, the complexity of the total proof term is exponential with
respect to the number of arguments (parameters), and so in principle will be
the complexity of its execution by the system, i.e. the actual proof.

This cannot be avoided, and since the effort of executing the proof term
is supported entirely by the system, this exponential complexity is not so
severe. Much more severe would be an exponential complexity at the level of
the specification effort for generating the total proof term. Fortunately, the
orthogonality of the arguments permits a linear generation of the total proof
term with respect to the number of arguments of the problem.

The generation of the total proof term is encoded in POA. This encoding
is meta-level with respect to the specification level of the actual problem,
since the meaning of the entities introduced by the encoding is different from
the meanings of the entities of the specification FG-fun.

The POA specification of the generation algorithm for the total proof term
involves the following steps.

Preliminaries

This includes the opening of the FG-fun module, and the introduction of
auxiliary variables:

open FG-fun

var A : NzNat .

Specification of the Cases for the Parameters

We introduce one temporary variable (specified as an arbitrary constant) for
each case, and we specify the conditions of each case.

The following is the specification of the cases for the parameter X:

ops x1 x2 x3 x4 : -> NzNat .

the condition for the first case is:

eq x1 = 1 .

the conditions for the second case are:

cq (A <= x2) = true if (A <= 2) .

cq (x2 <= A) = true if (4 <= A) .

the conditions for the third case are:
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cq (A <= x3) = true if (A <= 5) .

cq (x3 <= A) = true if (9 <= A) .

the condition for the fourth case is:

cq (A <= x4) = true if (10 <= A) .

The following is the specification of the cases for the parameter Y:

ops y1 y2 y3 : -> NzNat .

the conditions for the first case are:

cq (A <= y1) = true if (A <= 1) .

cq (y1 <= A) = true if (7 <= A) .

the conditions for the second case are:

cq (A <= y2) = true if (A <= 8) .

cq (y2 <= A) = true if (9 <= A) .

the condition for the third case is:

cq (A <= y3) = true if (10 <= A) .

Generation of the Total Proof Term

The generation of the parametrised initial proof term is represented by:

vars X Y : NzNat .

var Z : Nat .

pred Term : NzNat NzNat Nat .

trans Term(X,Y,Z) => (Z <= F(X) + G(Y)) .

The partial proof term is obtained by instantiation of the first parameter with
the cases for X:

pred Term1 : NzNat Nat .

trans Term1(Y,Z) => Term(x1,Y,Z) and

Term(x2,Y,Z) and

Term(x3,Y,Z) and

Term(x4,Y,Z) .

The total proof term is obtained by instantiation of the second parameter
with the cases for Y:

pred Term2 : Nat .

trans Term2(Z) => Term1(y1,Z) and Term1(y2,Z) and

Term1(y3,Z) .

The generation of the total proof term can be represented graphically by the
following tree:
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Term(x1,y1,Z)

Term(x2,y1,Z)

Term(x3,y1,Z)

Term(x4,y1,Z)

Term(x1,y2,Z)

Term(x2,y2,Z) Term(x3,y2,Z)

Term(x4,y2,Z)

Term(x1,y3,Z)

Term(x2,y3,Z)

Term(x3,y3,Z)

Term(x4,y3,Z)

Term1(y1,Z) Term1(y3,Z)

Term1(y2,Z)

Term2(Z)

Execution of the Proof Term.

The actual proof of 9 <= F(X) + G(Y) can now be performed automatically
by

exec Term2(9) .

and we obtain true.
The above exec command performs a two-level computation. First, it gen-

erates the total proof term containing the conjunction of the twelve instances
of the initial proof term. This is a meta-level computation by using the tran-
sitions. Second, it evaluates the final proof term in accordance with the data
of the specification FG-fun.

Case Debugging

This methodology for linear generation of case analyses via meta-level encod-
ing in POA permits fast isolation of failure cases. For example,

exec Term2(10) .

gives false.
In order to find the cases for which this proof fails, we try the proof terms

at the level below the top level. We obtain the result

exec Term1(y1,10) .

gives false.
From the proof terms below Term1(y1,10), only

exec Term(x4,y1,10) .

gives false. We then conclude that the failure can be localised to the case
(x4,y1).

close
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Case Intersection

Consider a more complicated proof goal, that F(X) * G(Y) + F(Y) * G(X)

is greater than 18 for all positive naturals X and Y. In this situation, both
parameters X and Y range over the cases for both F and G. For this problem,
we have to “intersect” the cases determined by F with the cases determined
by G, and obtain five atomic cases for both X and Y:

{1},{2,3,4},{5,6,7},{8,9},{10,11,...} .

In these five cases the parameters X and Y are orthogonal.

The CafeOBJ Code for the Generation of the Total Proof Term

for Case Intersection

open FG-fun

var A : NzNat .

ops x1 x2 x3 x4 : -> NzNat .

-- the condition for the 1st case

eq x1 = 1 .

-- the conditions for the 2nd case:

cq (A <= x2) = true if (A <= 2) .

cq (x2 <= A) = true if (4 <= A) .

-- the conditions for the 3rd case:

cq (A <= x3) = true if (A <= 5) .

cq (x3 <= A) = true if (9 <= A) .

-- the condition for the 4th case:

cq (A <= x4) = true if (10 <= A) .

-- the specification of the cases for the parameter Y:

ops y1 y2 y3 : -> NzNat .

-- the conditions for the 1st case:

cq (A <= y1) = true if (A <= 1) .

cq (y1 <= A) = true if (7 <= A) .

-- the conditions for the 2nd case:

cq (A <= y2) = true if (A <= 8) .

cq (y2 <= A) = true if (9 <= A) .

-- the condition for the 3rd case:

cq (A <= y3) = true if (10 <= A) .

vars X Y : NzNat .

var Z : Nat .

pred Term : NzNat NzNat Nat .

trans Term(X,Y,Z) => (Z <= F(X) + G(Y)) .

-- partial proof term by instantiation of

-- the 1st parameter with the cases for X

pred Term1 : NzNat Nat .

trans Term1(Y,Z) => Term(x1,Y,Z) and
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Term(x2,Y,Z) and

Term(x3,Y,Z) and

Term(x4,Y,Z) .

-- total proof term by instantiation of

-- the 2nd parameter with the cases for Y

pred Term2 : Nat .

trans Term2(Z) => Term1(y1,Z) and Term1(y2,Z) and

Term1(y3,Z) .

The proof of the problem is undertaken by the automatic execution:

exec Term2(18) .

which gives true.

close

4 Behavioural Specification

4.1 Basic Behavioural Specification

Behavioural specification distinguishes two kinds of sorts (types):

• hidden, for the states of abstract machines (or objects), and
• visible, for (ordinary) data types.

While the equality relation between “visible” (data type) elements is strict
equality, the equality between “hidden” elements is the (loose) behavioural
(observational) equality. Informally, two states are behaviourally equal when
they cannot be distinguished by “observing” them over the data types. “Ob-
servations” are made via successive applications of behavioural operations
ending with a visible sort. The set of behavioural operations is a precisely
specified subset of the operations of the specification.

It is the looseness of behavioural equality that is the key to the benefits of
behavioural-specification methodologies.

Specification of Bank Account Abstract Machine

mod* ACCOUNT {

protecting(INT)

*[ Account ]*

op init : -> Account

bop balance : Account -> Nat

bop deposit : Account Nat -> Account

bop withdraw : Account Nat -> Account

var N : Nat

var A : Account
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eq balance(init) = 0 .

eq balance(A deposit N) = balance(A) + N .

cq balance(A withdraw N) = balance(A) - N if N <= balance(A) .

cq balance(A withdraw N) = balance(A) if balance(A) < N .

}

The CafeOBJ notation uses *[...]* for declaring hidden sorts and bop

for declaring that an operation is behavioural. The space of the states of the
ACCOUNT abstract machine is denoted by the hidden sort Account, and the
abstract machine uses the (predefined) data type INT of integers. Behavioural
specification signatures are called “hidden algebra(ic) signatures”.

Definition 25. A hidden algebraic signature (H,V, F, F b) consists of

• disjoint sets H of hidden sorts and V of (ordinary) visible sorts,
• a set F of (H ∪ V )-sorted operation symbols, and
• a distinguished subset F b

⊆ F of behavioural operations.

Behavioural operations are required to have at least one hidden sort in their
arity.

The graphical representation of the signatures of behavioural modules uses
the following conventions:

• hidden sorts are represented as grey ellipsoidal discs; and
• behavioural operations are represented by thick arrows.

The following is the graphical representation of the signature of the ab-
stract machine for a bank account:

Account

NatInt

balance
deposit
withdraw

init

Behavioural Denotations

Definition 26. Given a hidden algebraic signature (H,V, F, F b), an
(H,V, F, F b)-algebra is just an (H ∪ V, F )-algebra.
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Unlike data modules, which usually have initial denotations, behavioural
modules usually have loose denotations (specified by mod*). This means that
several denotations of the abstract machine for the bank account may interpret
the hidden sort Account and the operations related to Account in different
ways, while the type INT of integers has the standard interpretation.

ACCOUNT: a Model

For example, one model of ACCOUNT can be visualised as

Nat

NatInt

=
+
minus

init

where

eq init = 0

and where the function minus is specified as

op minus : Nat Nat -> Nat

cq minus(M:Nat,N:Nat) = M - N if N <= M .

cq minus(M:Nat,N:Nat) = M if M < N .

ACCOUNT: Another Model

A second model of ACCOUNT keeps trace of the number of banking operations
(deposits and withdrawals) and interprets Account as a set of pairs of natural
numbers, with the first component holding the balance of the account and the
second component holding the number of banking operations:

NatxNat

NatInt

p1
d
w

init
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Here, p1 is the projection on the first component,

eq init = < 0, 0 >

and the specification of d and w are as follows:

op d : NatxNat Nat -> NatxNat .

eq d(< N1:Nat, N2:Nat >, M:Nat) = < M + N1, N2 + 1 > .

op w : NatxNat Nat -> NatxNat .

cq w(< N1:Nat, N2:Nat >, M:Nat) = < N1 - M, N2 + 1 >

if M <= N1 .

cq w(< N1:Nat, N2:Nat >, M:Nat) = < N1, N2 + 1 > if N1 < M .

Behavioural Equivalence

Ordinary (strict) equality is the appropriate equality relationship between
data elements. In the case of the states of an abstract machine, the meaningful
equality is behavioural equality, denoted ∼.

Two states s and s′ (of the same hidden sort) are behaviourally equal
(equivalent) if and only if

c(s) = c(s′)

for all visible sorted behavioural contexts c. A behavioural context c[z] is a
term with a marked variable z with only one occurrence and such that all
operations above z are behavioural.

The meaning of behavioural equivalence is that two states are behaviourally
equal if they appear to be the same under all possible observations correspond-
ing to all appropriate applications of behavioural operations.

Consider the states (a deposit 10 withdraw 5) and (a deposit 5) for an
arbitrary state a of ACCOUNT. In the first model of ACCOUNT, these two states
are equal in the strict ordinary sense, while in the second model they are equal
only behaviourally. In fact, we have that in all models of ACCOUNT

(a deposit 10 withdraw 5) ∼ (a deposit 5)

for all states a.
The behavioural-equivalence relation is characterised by the following

mathematical property.

Definition 27. Given a (H,V, F, F b)-algebra A, a hidden congruence ∼ on
A is just an F b-congruence which is the identity on the visible sorts.

The largest hidden F -congruence ∼A on A is called behavioural equiva-
lence.

Theorem 2. Behavioural equivalence always exists.
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Behavioural Equations

Behavioural-equivalence properties can be specified in CafeOBJ by behavioural
equations (by using the keyword beq).

As example, consider the following specification of behavioural lists, in
which the lists are specified as a behavioural type rather than a data type:

cdr

cons
err

Elt?Elt

car

nil

List

mod* BLIST {

[ Elt ]

op err : -> ?Elt

*[ List ]*

op nil : -> List

bop cons : Elt List -> List

bop car : List -> ?Elt

bop cdr : List -> List

var E : Elt

var L : List

eq car(nil) = err .

eq car(cons(E, L)) = E .

beq cdr(nil) = nil .

beq cdr(cons(E, L)) = L .

}

The elements of the lists are specified by the (loose) sort Elt, which has an
error constant err. The usual operations on lists (cons, car, and cdr) are
behavioural.

Notice that while the first two equations are strict (since they are equations
between data elements), the last two equations, between states of the (hidden)
sort List, are behavioural. This means that in the implementation of this
specification the elements denoted by the sides of these equations need not
necessarily be strictly equal, but only behaviourally equal.

Definition 28. Given a hidden algebraic signature (H,V, F, F b),
a behavioural equation t ∼ t′ consists of a pair of F -terms of the same sort.
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An (H,V, F, F b)-algebra A satisfies such an equation, i.e. A |= t ∼ t′,
when At ∼A At

′ .

Array with Pointer Implementation

In order to illustrate this situation, consider the implementation of a list by
a one-dimensional arrays of number with a pointer. In this model,

• cons(E, L ) moves the pointer forward by one position and assigns the
value E to the topmost cell of the array;

• cdr(L) moves the pointer backwards if possible, otherwise it leaves it in
the same position; and

• car(L) gives the value of the topmost cell.

Behavioural equivalence between two states of the array-with-pointer model
is given by the identity of the two arrays on the parts before the pointer only.
For example the following arrays are behaviourally equivalent:

...1 2 ...1 2 4

L cdr(cons(4,L))

however, they are not strictly equal. Hence the array-with-pointer model of
behavioural lists satisfies the behavioural equation above, but does not satisfy
its strict version.

The array-with-pointer model satisfies strictly the equation

beq cdr(nil) = nil .

However, with a small modification such that cdr(L) moves the pointer back-
wards if possible, otherwise it leaves it in the same position and marks the
first cell of the array by 0, we have the result that this equation is not satisfied
strictly any more, but is satisfied only behaviourally.

Behavioural Objects

A concept of a behavioural object can be defined by interpreting classical
object-oriented concepts within behavioural specification.

A behavioural object B is a behavioural specification which

• has a distinguished hidden sort h(B) for the space of the states of B , and
• is such that all behavioural operations are monadic, i.e. they have only

one hidden sort in the arity.

A behavioural operation is called an

• action when it changes the states of B, i.e. is defined on h(B) (possibly
parametrised by several data arguments) and evaluates to h(B), and an
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• observation when it evaluates the states of B to data values, i.e. is defined
on h(B) (possibly parametrised by several data arguments) and evaluates
to a visible (data) sort.

Below is the formal definition of the concept of a behavioural object.

Definition 29. [11] A behavioural object B is a pair consisting of a be-
havioural presentation ((HB , VB , F b

B
, FB), EB) and a hidden sort hB ∈ HB

such that each behavioural operation in F b
B

is monadic, i.e. it has only one
hidden sort in its arity.

The hidden sort hB denotes the (space of the) states of B.
The visible sorted behavioural operations on hB are called B-observations.
The hB-sorted behavioural operations on hB are called B-actions.
The hB-sorted operations with a visible sorted arity are called constant

states.6

For any behavioural object B, a B-algebra is just an algebra for the sig-
nature of B satisfying the sentences EB of the presentation of the object B.
The class of B-algebras is denoted by Alg(B).

In classical object-oriented jargon, “action” = “method”, and “observa-
tion” = “attribute”. In the object ACCOUNT, the actions are deposit and
withdraw and the observation is balance. In the object BLIST, the actions
are cons and cdr, and the observation is car.

4.2 Behavioural Proofs

Coinduction Principle

Theorem 2 provides the foundation for the following coinduction proof method:

1. Define an equivalence relation R (called a coinduction relation) for each
hidden sort.

2. Prove that R is a hidden congruence.
3. Prove that sRs′ for the states s and s′ which have to be proved be-

haviourally equivalent.

An example of coinduction

For the bank account object ACCOUNT, we want to prove that

(a deposit 10 withdraw 5) ∼ (a deposit 5)

We follow the coinduction proof method:

6 They should be considered as parametrised by the data arguments of the arity.
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Definition of an equivalence relation R

open ACCOUNT .

pred _R_ : Account Account .

eq (A1:Account R A2:Account) = (balance(A1) == balance(A2)) .

Proof that R is a hidden congruence

ops a a’ : -> Account .

ops n n’ : -> Nat .

We introduce the hypothesis

eq balance(a) = balance(a’) .

The preservation of R by deposit,

red (a deposit n) R (a’ deposit n) .

gives true.
The preservation of R by withdraw involves a simple case analysis:

case n <= balance(a):

eq n <= balance(a) = true .

eq n <= balance(a’) = true .

red (a withdraw n) R (a’ withdraw n) .

gives true.
case balance(a) < n’:

eq balance(a) < n’ = true .

eq balance(a’) < n’ = true .

red (a withdraw n’) R (a’ withdraw n’) .

also gives true.

Proof of s R s’

red (a deposit 10 withdraw 5) R (a deposit 5) .

which gives true.

Parametrised Coinduction Relations

For the behavioural list object BLIST, the coinduction relation R is defined by

(l R l’) if and only if car(cdrn(l)) = car(cdrn(l’))

for all natural numbers n.
The universal quantification “for all natural numbers n ” can be specified

in CafeOBJ by making cdr second-order and by parametrisation of R:
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mod* BLIST-PROOF {

protecting(BLIST + NAT)

var N : Nat

vars L L’ : List

bop cdr : Nat List -> List

eq [cdr1] : cdr(0, L) = L .

eq [cdr2] : cdr(s N, L) = cdr(N, cdr(L)) .

pred R[ ] : List Nat List

eq [r-def] : (L R[N] L’) =

(car(cdr(N, L)) == car(cdr(N, L’))) .

}

Proof of Hidden Congruence for the Parametrised Coinduction

Relation

The following is the proof score that R is a hidden congruence:

open BLIST-PROOF

op e : -> Elt .

op n : -> Nat .

ops l1 l2 : -> List .

hypothesis:

eq [hyp] : car(cdr(N:Nat, l1)) = car(cdr(N:Nat, l2)) .

preservation of R by car:

start car(l1) == car(l2) .

apply -.cdr1 within term .

apply .hyp within term .

apply reduce within term .

preservation of R by cdr:

start cdr(l1) R[n] cdr(l2) .

apply .r-def within term .

apply -.cdr2 within term .

apply .hyp within term .

apply reduce within term .

preservation of R by cons. Case analysis:

red cons(e, l1) R[0] cons(e, l2) .

red cons(e, l1) R[s n] cons(e, l2) .

close
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4.3 Behavioural Coherence

Example

For the bank account object ACCOUNT, we can prove by induction on the
structure of the behavioural contexts that

a ∼ a′ if and only if balance(a) = balance(a′)

for all states a and a′ of the object.
This means a significant simplification of the definition of behavioural

equivalence for the ACCOUNT abstract machine, and is due essentially to the
fact that

(a deposit n) ∼ (a′ deposit n) if a ∼ a′

and
(a withdraw n) ∼ (a′ withdraw n) if a ∼ a′

for all states a and a′ of the object and each natural number n, where the
behavioural equivalence is defined by equality under balance.

In such a situation, the actions deposit and withdraw may be specified
not as behavioural operations, but as ordinary operations. This property of the
actions deposit and withdraw of preserving behavioural equivalence (defined
as equality under balance) is called behavioural coherence.

Definition 30. An operation symbol σ is coherent for an algebra A when it
preserves the behavioural equivalence, i.e.

Aσ(a) ∼A Aσ(a′) whenever a ∼A a′ (possibly componentwise).

An operation symbol σ is coherent with respect to a presentation (Σ,E)
when it is coherent in each algebra of the presentation.

Behavioural Coherence as an Attribute

At the level of the language, the behavioural-coherence property is considered
as an axiom and is specified as an operation attribute. Therefore the signature
of the bank account object specification can be changed to

*[ Account ]*

op init : -> Account

bop balance : Account -> Nat

op _deposit_ : Account Nat -> Account { coherent }

op _withdraw_ : Account Nat -> Account { coherent }

and its signature can be represented graphically by
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Account

NatInt

balance
deposit
withdraw

init

Notice that the difference between this representation of the signature of
the account object and the previous representation consists only in the arrow
representing the monadic part of the actions deposit and withdraw, which
is now drawn as a thin arc. This is due to the fact that these two operations
are now specified as ordinary operations rather than actions (behavioural
operations).

Hidden Constructors

In the behavioural object BLIST of lists, the behavioural-equivalence relation
between the states of List can be proved to be

l ∼ l′ if and only if car(cdrn(l)) = car(cdrn(l′))

for all list states l and l′ and all natural numbers n.
This shows a fundamental methodological difference between car and cdr

on the one hand, and cons on the other, since cons does not play any role in
the definition of behavioural equivalence. This also corresponds to the situa-
tion in the case of the specification of lists as a data type, in which cons is
methodologically regarded as a constructor, and therefore has a methodolog-
ical meaning different from car and cdr.

The absence of cons from the simplified definition of the behavioural-
equivalence relation between lists is technically due to the fact that cons is
behaviourally coherent. Such “constructors” on the hidden sorts are called
hidden constructors, and they are required to be behaviourally coherent.

The CafeOBJ specification of the signature of BLIST with cons specified
as a coherent operation is therefore as follows:

op cons : Elt List -> List { coherent }

bop car : List -> ?Elt

bop cdr : List -> List
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4.4 Behavioural non-determinism

Non-deterministic Choice

We can specify a non-deterministic choice of natural numbers by means of
an abstract machine. The non-deterministic naturals are represented as a
behavioural type by using

• the hidden sort NNat, and
• a “choice” observation -> , indicating whether a certain natural num-

ber can be chosen from a certain state of the abstract machine for non-
deterministic natural numbers.

The hidden constructor | builds the non-deterministic naturals:

NNat

Nat Bool

[_]
_->_

_|_

mod* NNAT-HSA {

protecting(NAT)

*[ NNat ]*

op [ ] : Nat -> NNat

op | : NNat NNat -> NNat { coherent }

bop -> : NNat Nat -> Bool

vars S1 S2 : NNat

vars M N : Nat

eq [M] -> N = (M == N) .

eq S1 | S2 -> N = (S1 -> N) or (S2 -> N) .

}

Behavioural Coherence for Non-determinism

Notice that the non-deterministic constructor | is automatically coherent.
The behavioural equivalence between the states of the non-deterministic-
naturals abstract machine is given only by the choice observation s ∼ s′ if
and only if (s -> n) = (s′ -> n) for all naturals n.

Proofs about Non-deterministic Choice

This very simple definition of the behavioural equivalence of the abstract
machine for non-deterministic-naturals permits simple proofs for some be-
havioural properties of the non-deterministic hidden constructor.
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Proof of Commutativity.

red (s1 | s2) -> n == (s2 | s1) -> n .

Proof of Associativity.

red ((s1 | s2) | s3) -> n == (s1 | (s2 | s3)) -> n .

4.5 Behavioural Inheritance

Inheritance of Behavioural Objects

Suppose we wish to have a bank account object which, besides actions such as
deposit and withdraw and the observation balance, also has another obser-
vation history, giving the number of banking operations (deposits or with-
drawals). This can be solved by behavioural inheritance of the ACCOUNT

object as follows:

mod* HACCOUNT {

protecting(ACCOUNT)

*[ HAccount < Account ]*

op init : -> HAccount

bop deposit : HAccount Nat -> HAccount

bop withdraw : HAccount Nat -> HAccount

bop history : HAccount -> Nat

eq history(init) = 0 .

eq history(A:HAccount withdraw N:Nat) = history(A) + 1 .

eq history(A:HAccount deposit N:Nat) = history(A) + 1 .

}

The signature of this specification can be represented graphically as fol-
lows:

Account

Nat
Int

balance deposit
withdraw

HAccount
history

init
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Behavioural-Inheritance Specification Methodology

The object inheritance specification process involves the following steps:

1. We import the module defining the inherited object.
2. We define a new hidden sort for the states of the new (inheriting) object

as a subsort of the hidden sort of the states of the inherited object.
3. We overload all actions of the inherited object in the inheriting object.
4. We add new actions and/or observations and behavioural operations for

the inheriting object on its hidden (sub)sort.
5. Finally, we add new axioms for the newly introduced operations on the

inheriting object.

Preservation of Behavioural Equivalence

One important aspect of object inheritance is that the inherited object is
protected. In the case of behavioural objects, this is expressed by the fact
that its behavioural equivalence is preserved, in the sense that any two states
are behaviourally equivalent for the inherited object whenever they are be-
haviourally equivalent for the inheriting object.

For example, in the case of the bank account object HACCOUNT, the be-
havioural equivalence of the inherited abstract machine is given by

a1 ∼Account a2 if and only if balance(a1) = balance(a2)

while the behavioural equivalence of the inheriting abstract machine is

a1 ∼HAccount a2 if and only if balance(a1) = balance(a2) and
history(a1) = history(a2)

This means that a1 ∼HAccount a2 implies a1 ∼Account a2.
The mechanism responsible for the preservation of behavioural equivalence

during the inheriting process is a new hidden sort for the states of the inher-
iting object, specified as a subsort of the hidden sort of the inherited object.
This matches the intuition that each state of the inheriting object should also
be regarded as a state of the inherited object.

4.6 Behavioural Refinement

Behavioural Sets

Consider the following simple specification of a behavioural object of sets:
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__

Elt

empty

Set

in

_U_,_&_,_-_

Bool

mod* BSET (X :: TRIV) {

*[ Set ]*

op empty : -> Set

op : Elt Set -> Set { coherent }

op U : Set Set -> Set { coherent }

op & : Set Set -> Set { coherent }

op - : Set Set -> Set { coherent }

bop in : Elt Set -> Bool

vars E E’ : Elt

vars S S1 S2 : Set

eq E in empty = false .

eq E in (E’ S) = (E == E’) or (E in S) .

eq E in (S1 U S2) = (E in S1) or (E in S2) .

eq E in (S1 & S2) = (E in S1) and (E in S2) .

eq E in (S1 - S2) = (E in S1) and not (E in S2) .

}

Notice that this specification has only one behavioural operation, namely the
membership observation in.

Behavioural Refinement

We want to show that the behavioural sets defined above can be refined to
behavioural lists.

Behavioural-object refinement consists of the following:

1. A mapping between the hidden sorts of the “abstract” object and the
“refined” object, preserving the state space of the objects.

2. A mapping from the behavioural operations of the “abstract” object to
the (possibly derived) behavioural or (behaviourally) coherent operations
of the “refined” object which is consistent with the mapping of sorts.

These mapping are such that the axioms of the “abstract” object are satisfied
by the “refined” object via this mapping between the signatures. Such map-
pings between the signatures are a relaxed form of (hidden-algebra) signature
morphisms.
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Definition 31. A hidden-algebra signature morphism ϕ : (H,V, F, F b) →

(H ′, V ′, F ′, F ′b) is a signature morphism (H ∪ V, F ) → (H ′
∪ V ′, F ′) such

that

• ϕ(V ) ⊆ V ′ and ϕ(H) ⊆ H ′,

• ϕ(F b) = F ′b and ϕ−1(F ′b) ⊆ F b,

These conditions say that hidden-sorted signature morphisms preserve visi-
bility and invisibility for both sorts and operations, and the object-oriented
intuition behind the inclusion F ′b

⊆ ϕ(F b) is the encapsulation of classes
(in the sense that no new “methods” or “attributes” can be defined on an
imported class).

However, this last inclusion condition applies only to the case when sig-
nature morphisms are used as module imports (in this case they are called
horizontal signature morphisms); when they model specification refinement,
this condition might be dropped (in this case they are called vertical signature
morphisms).

Behavioural Lists Refine Behavioural Sets

In our example, the behavioural sets are the “abstract” object and the be-
havioural lists are the “refined” object. This corresponds to the intuition that
sets can be implemented as lists.

Since not all operations of BSET (such as ∪ and ∩ ) can be refined to
operations of BLIST, we have two choices:

• extend BLIST with refinements of all operations of BSET, or
• consider the following simpler version BASIC-BSET of behavioural sets il-

lustrated by the signature below:

__

Elt

empty

Set

in

Bool

Then, the refinement of behavioural sets to behavioural lists refines:

• the hidden sort Set to the hidden sort List (this means that each state
of a set object can be implemented as a state of the list object),

• the hidden constructor to the hidden constructor cons, and
• the membership observation (E in L) to the derived observation (E ==

car(L)) or-else (car(L) =/= err) and-also (E in cdr(L)) .
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Notice that the “refined” list object has the observation car and the action
cdr as new behavioural operations and also adds error handling.

Notice also that the derived observation which refines in uses some oper-
ational versions of the usual Boolean connectives, which evaluate as follows:

• if the left-hand-side argument of or-else evaluates to true, then the result
is true and the evaluation of the right-hand-side argument is omitted, and

• if the left-hand-side argument of and-also evaluates to false, then the
result is false and the evaluation of the right-hand-side argument is again
omitted.

This refinement can be represented graphically as follows:

/cdr

__/cons
/err

Elt?Elt

/car

empty/nil

Set/List

.../in

Bool

where the convention for the graphical notation for the signatures has been
extended as follows:

• refinement of sorts and operations is represented by / and sharing of the
same figure (disc or arrow) in the diagram, and

• newly introduced sorts and operations are represented by dotted lines.

CafeOBJ Coding of Refinement

We encode this refinement in CafeOBJ by using an import as follows:

protecting(BLIST)

We introduce a notation for the derived observation:

op _in_ : Elt List -> Bool { coherent }

Note that the coherence of this derived observation is provable from the rest
of the specification; we omit this proof.

eq E:Elt in L:List = (E == car(L)) or-else (car(L) =/= err

and-also E in cdr(L)) .
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Proof of Refinement

In order to prove that BLIST (or BLIST’) refines BASIC-BSET, we have only
to show that the equations

eq E in empty = false .

eq E in (E’ S) = (E == E’) or (E in S) .

are actually consequences of BLIST’:

open LIST’ .

ops e e1 e2 : -> Elt .

op l : -> List .

For the first equation, we have the following proof score:

red (e in nil) == false .

which gives true. For the second equation, the basic cases are as follows:

eq e1 in l = true .

eq e2 in l = false .

The proof score by case analysis is as follows:

red e1 in cons(e,l) == true .

red e2 in cons(e,l) == false .

red e in cons(e,l) == true .

All these proof scores evaluate to true.

close

Extension of Refinement

The refinement of the behavioural basic sets to behavioural lists can be ex-
tended to the behavioural sets of BSET by adding some derived operations to
BLIST as follows:

op append : List List -> List

beq append(nil, L:List) = L .

beq append (cons(E:Elt, L1:List), L2) =

cons(E, append(L1, L2)) .

The operation append refines the union ∪ (the proof would be similar to the
above one). Similarly, we can define an intersection of lists, and even a list
difference.
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4.7 Hierarchical Object Composition

Compound Systems

Composing already existing component systems in order to define a new
compound system is the most fundamental and important method of system
construction. In this methodology, both component and compound systems
are considered as behavioural objects.

We illustrate the basic methodology of parallel object composition (with-
out synchronisation) by use of the parallel composition of two ACCOUNTs by
composing two bank account objects.

I. Specification of the Projections

We create two different account objects by renaming the hidden sort of the
already defined specification ACCOUNT of the bank account object:

mod* ACCOUNT-SYS {

protecting(ACCOUNT * hsort Account -> Account1)

protecting(ACCOUNT * hsort Account -> Account2)

The composition of the two account objects is regarded as a new object with a
new hidden sort (AccountSys) for its states and two projection operations

(account1 and account2) to the two hidden sorts of the component account
objects. The projection operations are defined as behavioural:

*[ AccountSys ]*

bop account1 : AccountSys -> Account1

bop account2 : AccountSys -> Account2

II. Specification of Actions at the Level of the Compound Object

All the actions of the components are lifted to actions of the compound object.
Notice that each action name is renamed after the component of origin:

bop deposit1 : AccountSys Nat -> AccountSys

bop deposit2 : AccountSys Nat -> AccountSys

bop withdraw1 : AccountSys Nat -> AccountSys

bop withdraw2 : AccountSys Nat -> AccountSys

III. Specification of the Observations at the Level of the

Compound Object

The observations of the compound object are defined just as abbreviations of
the observations of the components:

bop balance1 : AccountSys -> Nat

bop balance2 : AccountSys -> Nat
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The Signature of the Composition

The signature of this composition can be visualised as follows:

AccountSys

Account1 Account2

Nat
Int

balance1
balance2

deposit1
deposit2
withdraw1
withdraw2

account2account1

IV. Relating the Actions at the Compound Level to Those at the

Components Level.

We relate the actions at the level of the compound object to the actions of
the component objects via the projection operations:

var AS : AccountSys

var N : Nat

eq account1(deposit1(AS, N)) = deposit(account1(AS), N) .

eq account2(deposit2(AS, N)) = deposit(account2(AS), N) .

eq account1(withdraw1(AS, N)) = withdraw(account1(AS), N) .

eq account2(withdraw2(AS, N)) = withdraw(account2(AS), N) .

The actions originating from one component do not change the state of the
other component. This basically means that each component can operate in-
dependently. This kind of composition is called parallel composition:

eq account1(deposit2(AS, N)) = account1(AS) .

eq account1(withdraw2(AS, N)) = account1(AS) .

eq account2(deposit1(AS, N)) = account2(AS) .

eq account2(withdraw1(AS, N)) = account2(AS) .

V. Relating the Observations at the Compound Level to Those at

the Component Level.

The observations of the compound object are just abbreviations of the obser-
vations of the components:

eq balance1(AS) = balance(account1(AS)) .

eq balance2(AS) = balance(account2(AS)) .

}
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The formal definition of parallel object composition is as follows:

Definition 32. [11] A behavioural object B is a parallel composition of be-
havioural objects B1 and B2 when

• HB = HB1
�HB2

� {hB};7

• VB = VB1
∪ VB2

;
• (FB)w→s = (FB1

)w→s ∪ (FB2
)w→s when all sorts in ws are visible;

• (FB)w→s = (FBi
)w→s when ws contains hidden sorts from HBi

only, for
i ∈ {1, 2};

• (FB)w→s = ∅ when ws contains hidden sorts from both HB1
and HB2

only;
• (FB)hB→hBi

= {πi} for i ∈ {1, 2};

• (FB)hBw→hB
= {σi | σ ∈ (FBi

)hBi
w→hBi

Bi-action, i ∈ {1, 2}};8

• the behavioural operations F b
B

are those from F b
B1

, F b
B2

, π1, π2, and the
actions and the observations on hB; and

• EB = EB1
∪ EB2

∪

{(∀{x} ∪W )πi(σi(x,W )) = σ(πi(x),W ) | σ Bi-action, i ∈ {1, 2}}
∪ {(∀{x} ∪W )πj(σi(x,W )) = πj(x) | σ Bi-action {i, j} = {1, 2}}
∪ {e(σ) | σ B-observation} ∪

⋃
c a B-state constant E(c),

where e(σ) is a derived observational definition of σ and E(c) is a derived
constant set of definitions for c.

For each B-observation σ, we say that an equation (∀{x} ∪W )σ(x,W ) =
τσ[πi(x),W ], where τσ is a visible sorted derived behavioural Bi-operation, is
a derived observational definition of σ when i ∈ {1, 2}.

For each B-state constant c we say that E(c) = {πi(c) = ci | ci a Bi-state
constant i ∈ {1, 2}} is a derived constant set of definitions for c.

We denote by B1‖B2 the class of behavioural objects B which are parallel
compositions of behavioural objects B1 and B2.

UML Representation of Parallel Composition

We can represent the parallel composition of the two bank account objects in
UML notation as follows:

Account1 Account2

deposit
withdraw

deposit
withdraw

1

1

1

1

AccountSys

deposit1
deposit2
withdraw1
withdraw2

7 By � we denote the disjoint union.
8 In order to simplify the notation, the arity of actions and observations is always

denoted with the hidden sort in the head position, e.g. hBw.
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In this representation, the connectors correspond to the projection operations.

Hierarchical Object Composition

The object composition methodology permits iteration of levels of composi-
tion, whereby compound objects may become component objects for a higher
level of composition:

Object A

base level objects

Object B

Object D Object E Object C

Equivalent Objects.

Definition 33. [11] Given an object B, two B-algebras A and A′ are equiv-
alent, denoted A ≡ A′, when

• AhB
= A′

hB
and ∼A=∼A

′ on the sort hB, and
• Aσ = A′

σ
for each B-action σ.

Notice that the equality between behavioural equivalences ∼A on A and ∼A
′

on A′ contains the equality of the interpretations of the observations too.
However, this formulation avoids the potential troubles caused by a possible
lack of direct observations, i.e. cases when the behavioural equivalence with
help of derived behavioural operations to the visible (data) sorts.

Definition 34. Two behavioural objects B and B′ are equivalent, denoted
B ≡ B′, when there exists a pair of mappings9 Φ : Alg(B) → Alg(B′) and
Ψ : Alg(B′) → Alg(B) which are inverse to each other modulo algebra equiv-
alence, i.e. A ≡ Ψ(Φ(A)) for each B-algebra A and A′

≡ Φ(Ψ(A′)) for each
B′-algebra A′.

Note that isomorphic objects are equivalent.
The following gives the compositionality property of behavioural equiva-

lence.

9 The mappings may be considered as functions when one is working with classes

of algebras, and functors when working with categories of algebras.
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Proposition 17. [11] For any behavioural objects B1 and B2, for each parallel
composition B ∈ B1‖B2, we have that

a ∼A a′ if and only if Aπ1
(a) ∼A1

Aπ1
(a′) and Aπ2

(a) ∼A2
Aπ2

(a′)

for each B-algebra A, with elements a, a′ ∈ AhB
, and where Ai = A�Bi

for
each i ∈ {1, 2}.

The following shows that parallel composition without synchronisation is
unique modulo equivalence of objects.

Proposition 18. [11] Let B1 and B2 be behavioural objects. Then all B,B′
∈

B1‖B2 have isomorphic classes of algebras. Consequently, B and B′ are equiv-
alent objects, i.e. B ≡ B′.

The following gives the final semantics of parallel composition without
synchronisation.

Theorem 3. [11] Let B ∈ B1‖B2 and let Ai be algebras of Bi for i ∈ {1, 2}
such that they are consistent on the common data part. Then there exists
a B-algebra A expanding A1 and A2 such that for any other B-algebra A′

expanding A1 and A2 there exists a unique B-algebra homomorphism A′
→ A

expanding A1 and A2.

The following shows that parallel composition without synchronisation is
commutative and associative modulo equivalence of objects.

Theorem 4. [11] For all behavioural objects B1, B2, and B3

1. B1‖B2 = B2‖B1, and
2. B(12)3 ≡ B1(23) for all B(12)3 ∈ B12‖B3 and all B1(23) ∈ B1‖B23, where

Bij is any composition in Bi‖Bj:

B1(23)

π’23

 B23  

B3   B2    B1  

π’3π’2

π’1

B(12)3

π12

  B12

  B1   B2   B3

π1 π2

π3

4.8 Composition with Synchronisation

Synchronisation

Synchronisation among components can occur when communications between
them exist. In general, the analysis of situations where synchronisation can
occur is not simple. However, the following two cases can be identified.

Broadcasting: some action of the compound object is projected to at
least two components, affecting changes of their states simultaneously.

Client-server: the projected state of the compound object (via a projec-
tion) depends on the state of a different component.
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Example: Transfer between Accounts

As an example, we add a transfer action to the bank account system obtained
by parallel composition of two accounts:

mod* ACCOUNT-SYS-TRANSF {

protecting(ACCOUNT-SYS)

The transfer action is specified as an action at the level of the compound
object, and models a transfer action from the first account to the second one:

bop transfer : AccountSys Nat -> AccountSys

Here is the signature of the system of two bank accounts with transfer:

AccountSys

Account1 Account2

Nat
Int

balance1
balance2

deposit1
deposit2
withdraw1
withdraw2

account2account1

transfer

The Equations for the Transfer

These are

eq account1(transfer(AS, N)) = withdraw(account1(AS), N) .

ceq account2(transfer(AS, N)) = account2(AS)

if N > balance1(AS) .

ceq account2(transfer(AS, N)) = deposit(account2(AS), N)

if N <= balance1(AS) .

}

Broadcasting and Client-Server Computing

Although very simple, this example contains both of the above synchronisation
cases:
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• broadcasting appears because transfer changes the states of both account
components, and

• client-server computing appears because transfer is related to a deposit
in ACCOUNT2 by using information about ACCOUNT1.

Compound Object Action Specification

The specification of the projections of the compound object actions is done
by conditional equations subject to the following conditions:

• each condition is a quantifier-free formula formed from equations by itera-
tion of logical connectives, the terms of the equations being compositions
between a projection and a composition chain of actions/observations (at
the level of the components) or terms in the data signature; and

• the conditions corresponding to a projected action are disjoint and their
disjunction is true.

Definition 35. [11] A behavioural object B is a synchronised composition of
behavioural objects B1 and B2 when

• HB = HB1
�HB2

� {hB};
• VB ⊇ VB1

∪ VB2
;

• (FB)w→s ⊇ (FB1
)w→s ∪ (FB2

)w→s when all sorts in ws are visible;
• (FB)w→s = (FBi

)w→s when ws contains hidden sorts from HBi
only, for

i ∈ {1, 2};
• (FB)w→s = ∅ when ws contains hidden sorts from both HB1

and HB2
only;

• for each i ∈ {1, 2}, there exists a unique string wi of visible sorts, such that
(FB)hBwi→hBi

is not empty, and it contains only one operation symbol πi;
• (FB)hBw→hB

⊇ {σi | σ ∈ (FBi
)hBi

w→hBi
Bi-action, i ∈ {1, 2}};

• the behavioural operations F b
B

of FB are those from F b
B1

, F b
B2

, π1, π2, and
the actions and observations on hB; and

• EB = EB1
∪ EB2

∪
⋃

σ B-action Eσ ∪ {e(σ) | σ a B-observation}
∪
⋃

c a B-state constant E(c),

where Eσ is a complete set of derived action definitions for σ, e(σ) is a derived
observational definition for σ, and E(c) is a derived constant set of definitions
for c.

For any B-action σ,

{(∀{x} ∪W ∪Wi) πi(σ(x,W ),Wi) =
τ i

σ,k
[x,W,Wi] if Ci

σ,k
[x,W,Wi] | τ

i

σ,k
a term, i ∈ {1, 2}, k ∈ {1, . . . , ni}}

is a complete set of derived action definitions for σ when the following condi-
tions apply.

1. Each τ i

σ,k
[x,W,Wi] is an hBi

-sorted term of behavioural or coherent Bi-
operations applied either to πi(x,Wi) or to a Bi-state constant.
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2. Each Ci

σ,k
[x,W,Wi] is a quantifier-free formula formed by iterations of

negations, conjunctions, and disjunctions from equations formed by terms
which are either data signature terms or visible sorted terms of the form
c[πj(x,Wj)] where c is some derived behavioural Bj-operation with Wj ⊆

W ∪Wj and such that
• the disjunction (∀{x} ∪ W ∪Wi) ∨{Ci

σ,k
| k ∈ {1, . . . , ni}} is true for

each i ∈ {1, 2},
• for a given i, the conditions Ci

σ,k
are disjoint, i.e. (∀{x} ∪ W ∪ Wi)

Ci

σ,k
∧ Ci

σ,k
′ is false whenever k �= k′.

We write B1⊗B2 for the class of behavioural objects B which are synchronised
compositions of behavioural objects B1 and B2.

4.9 Verification of Compound Objects

Compositionality of Verification

In object-oriented programming, reusability of source code is important, but
in object-oriented specification, reusability of proofs is also very important
because of the complexity of the verification process. We call this composi-

tionality of verification of components.
The following result provides the foundations of the CafeOBJ verification

methodologies in the case of compositions with synchronisation.

Theorem 5. [11] For any behavioural objects B1 and B2, for each composi-
tion with synchronisation B ∈ B1 ⊗B2, we have that

a ∼A a′ if and only if (∀Wi)Aπi
(a,Wi) ∼Ai

Aπi
(a′,Wi) for i ∈ {1, 2}

for each B-algebra A, with elements a, a′ ∈ AhB
, and where Ai = A�Bi

for
each i ∈ {1, 2}.

An important consequence of Theorem 5 is the final semantics for syn-
chronised parallel composition.

Theorem 6. Let B ∈ B1 ⊗B2, let Ai be algebras of Bi for i ∈ {1, 2}, and let
AV be an algebra for the data part of B such that they are consistent on the
common data part. Then there exists a B-algebra A expanding A1, A2, and
AV such that for any other B-algebra A′ expanding A1, A2, and AV there
exists an unique B-algebra homomorphism A′

→ A expanding A1, A2, and
AV .

Example: Dynamic System of Accounts with User Database

Management.

Here, we specify a dynamic bank account system with a user management
mechanism provided by a user database (USER-DB ) that enables us to query
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whether a user already has an account in the system. The dynamic aspect
of this composition is that the number of components (accounts in this case)
is changed dynamically while the compound system is working. This is tech-
nically reflected by the fact that the projection account is parametrised by
the data of user identifiers. The user database is obtained by reusing the
behavioural-set object BSET and by renaming two of its sorts:

mod* USER-DB protecting(BSET *

{ hsort Set -> UserDB, sort Elt -> UId })

The signature of this specification can be visualised as follows:

deposit
withdraw

transfer

del-account
add-account

accountAccountSys
user-db

IntNat Uid

Account

no-account
init-account

UserDB

The Equations for the Projection on UserDB

eq user-db(add-account(AS, U)) = (U empty) U user-db(AS) .

eq user-db(del-account(AS, U)) = user-db(AS) - (U empty) .

eq user-db(transfer(AS, U, U’, N)) = user-db(AS) .

eq user-db(deposit(AS, U, N)) = user-db(AS) .

eq user-db(withdraw(AS, U, N)) = user-db(AS) .

The Equations for the Projection on Account

The equations for add-account and del-account are:

ceq account(add-account(AS, U’), U) = init-account

if (U == U’) and not(U in user-db(AS)) .

ceq account(add-account(AS, U’), U) = account(AS, U)

if (U =/= U’) or (U in user-db(AS)) .

ceq account(del-account(AS, U’), U) = no-account

if (U == U’) .

ceq account(del-account(AS, U’), U) = account(AS, U)

if (U =/= U’) .
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The equations for transfer are:

ops cond1 cond2 cond3 : AccountSys UId UId UId Nat -> Bool

ceq account(transfer(AS, U’, U’’, N), U) =

withdraw(account(AS, U’), N)

if cond1(AS, U, U’, U’’, N) .

eq cond1(AS, U, U’, U’’, N) =

(U == U’) and (U’ in user-db(AS))and

(U’’ in user-db(AS)) and (U’ =/= U’’) .

ceq account(transfer(AS, U’, U’’, N), U) =

deposit(account(AS, U’’), N)

if cond2(AS, U, U’, U’’, N) .

eq cond2(AS, U, U’, U’’, N) =

(U == U’’) and (U’ in user-db(AS)) and

(U’’ in user-db(AS)) and (U’ =/= U’’) and

N <= balance(account(AS, U’)) .

ceq account(transfer(AS, U’, U’’, N), U) =

account(AS, U)

if cond3(AS, U, U’, U’’, N) .

eq cond3(AS, U, U’, U’’, N) =

not(cond1(AS, U, U’, U’’, N) or

cond2(AS, U, U’, U’’, N)) .

The equations for deposit and withdraw are:

ceq account(deposit(AS, U’, N), U) =

account(AS, U)

if not(U’ in user-db(AS)) or (U =/= U’) .

ceq account(deposit(AS, U’, N), U) =

deposit(account(AS, U), N)

if (U == U’) and (U’ in user-db(AS)) .

ceq account(withdraw(AS, U’, N), U) =

account(AS, U)

if not(U’ in user-db(AS)) or (U =/= U’) .

ceq account(withdraw(AS, U’, N), U) =

withdraw(account(AS, U), N)

if (U == U’) and (U’ in user-db(AS)) .

Encoding Behavioural Equivalence of Compound Objects

We use Theorem 5 for encoding the behavioural equivalence of the compound
object for the bank account:

mod BEQ-ACCOUNT-SYS {

protecting(ACCOUNT-D-SYS-TRANSF)

pred _R[_]_ : AccountSys UId AccountSys
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pred _=b=_ : UserDB UserDB

vars AS1 AS2 : AccountSys

var U : UId

eq AS1 R[U] AS2 = (account(AS1, U) =b= account(AS2, U))

and (user-db(AS1) =b= user-db(AS2)) .

op id : -> UId

eq (a1:Account =b= a2:Account) =

(balance(a1) == balance(a2)) .

eq (Udb1:UserDB =b= Udb2:UserDB) =

(id in Udb1 == id in Udb2) .

}

The constant id stands for an arbitrary user identifier, and can be regarded
as a Skolem constant. Notice also the use of the parametrised relation for
handling the conjunction indexed by the user identifiers.

Concurrency Proofs in the Compound Object

We now analyse the true concurrency of deposits of the two (possibly) differ-
ent users. This is a safety property for the system of bank accounts and is
formulated by the following behavioural commutativity property:

deposit(deposit(as, u2, n2), u1, n1) ∼ deposit(deposit(as, u1, n1), u2, n2)

This involves a case analysis which is an orthogonal combination of atomic
cases for the users with respect to their membership of the user accounts data
base.

Generation of Case Analysis

We apply the methodology for the linear generation of case analyses (see
Sect. 3.4):

mod PROOF-TREE {

protecting(BEQ-ACCOUNT-SYS)

--> Arbitrary amounts for withdrawal:

ops n1 n2 : -> Nat

--> Arbitrary user identifiers:

ops u u1 u1’ u2 u2’ : -> UId

--> Arbitrary state of the account system:

op as : -> AccountSys

--> 1st user is in the data base:

eq u1 in user-db(as) = true .

--> 2nd user is in the data base:

eq u2 in user-db(as) = true .

--> 1st user is not in the data base:
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eq u1’ in user-db(as) = false .

--> 2nd user is not in the data base:

eq u2’ in user-db(as) = false .

--> Basic proof term:

vars U U1 U2 : UId

op TERM : UId UId UId -> Bool

--> Liner cases analysis generation encoding:

op TERM1 : UId UId -> Bool

trans TERM1(U, U1) => TERM(U, U1, u2) and TERM(U, U1, u2’) and

TERM(U, U1, u1) and TERM(U, U1, u1’) .

op TERM2 : UId -> Bool

trans TERM2(U) => TERM1(U, u1) and TERM1(U, u1’) .

--> Final proof term:

op RESULT : -> Bool

trans RESULT => TERM2(u1) and TERM2(u1’) and

TERM2(u2) and TERM2(u2’) and TERM2(u) .

}

The Execution of the Proof Term

We now instantiate the generic proof term to our specific problem (of true
concurrency of withdrawals):

open PROOF-TREE

trans TERM(U, U1, U2) =>

deposit(deposit(as, U2, n2), U1, n1) R[U]

deposit(deposit(as, U1, n1), U2, n2) .

exec RESULT .

close

The execution of the proof term returns true.
If we consider the withdraw operation rather than deposit, the execution

of the proof term returns false. In order to isolate the failure case(s), we can
use the debugging method associated with the orthogonal linear generation of
case analyses (see Sect. 3.4). We find first get TERM2(u1) gives false, then
that TERM1(u1,u1) gives false, and finally only that TERM(u1,u1,u1) gives
false.

This corresponds to the case when there are two withdrawals correspond-
ing to the same user. The true concurrency of two withdrawal actions for the
same user depends on the relationship between the balance of the user and
the amounts required; in some cases one action can be performed while the
other cannot.
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5 Institutional Semantics

One of the fundamental principles of research and development in algebraic
specification today is that each algebraic specification and programming lan-
guage or system has an underlying logic in which all language constructs can
be rigorously defined as mathematical entities, and such that the semantics
of specifications or programs is given by the model theory of this underlying
logic. All modern algebraic specification languages, including CafeOBJ, follow
this principle strictly. Another example is Casl [35].

On the other hand, there are numerous algebraic specification languages in
use, some of them tailored to specific classes of applications, and hence a large
class of logics underlying algebraic specification languages. However, many
of the phenomena in algebraic specification are independent of the actual
language and its underlying logic (see [17, 19, 41], etc.). This potential to
perform algebraic specification at a general level is realized by the theory of
institutions [19], which is a categorical, abstract, model-theoretic meta-theory
of logics originally intended for specification and programming, but also very
suitable for model theory [8, 9, 10, 27, 28, 38, 42, 43].

The use of the concept of an institution in algebraic specification is man-
ifold:

• It provides a rigorous concept of the logic underlying algebraic specification
languages, a logic thus being a mathematical entity.

• It provides a framework for developing basic algebraic-specification con-
cepts and results independently of the actual underlying logic. This leads
to greater conceptual clarity, and appropriate uniformity and unity, with
the benefit of a simpler and more efficient top-down approach to algebraic-
specification theory that contrasts with the conventional bottom-up ap-
proach.

• It provides a framework for rigorous translations, encoding, and repre-
sentations between algebraic specification systems via various morphism
concepts between institutions.

5.1 Institutions

Definition 36. An institution (Sig,Sen,Mod, |=) consists of:

1. A category Sig, whose objects are called signatures.
2. A functor Sen : Sig → Set, giving for each signature a set whose elements

are called sentences over that signature.
3. A functor Mod : Sigop

→ Cat giving for each signature Σ a category
whose objects are called Σ-models, and whose arrows are called Σ-(model)
homomorphisms.

4. A relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ |Sig|, called Σ-satis-
faction.
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These are such that for each morphism ϕ : Σ → Σ′ in Sig, the satisfaction
condition

M ′
|=Σ

′ Sen(ϕ)(e) iff Mod(ϕ)(M ′) |=Σ e holds for each M ′
∈

|Mod(Σ′)| and e ∈ Sen(Σ). We may denote the reduct functor Mod(ϕ) by
�ϕ and the sentence translation Sen(ϕ) simply by ϕ( ). When M = M ′�ϕ, we

say that M ′ is an expansion of M along ϕ.

The formal-specification interpretation of institution concepts is as fol-
lows. The signatures of the institution provide the syntactic entities for the
specification language, the models provide possible implementations, the sen-
tences are formal statements encoding the properties of the implementations,
and the satisfaction relation tells us when a certain implementation satisfies
a certain property.

5.2 The CafeOBJ institution

CafeOBJ is a multi-logic language. This means that different features of
CafeOBJ require different underlying institutions. For example, behavioural
specification has coherent hidden algebra [13] as its underlying institution,
while preorder algebra specification has POA as its underlying institution.
Both institutions are in fact extensions of the more conventional equational-
logic institution. On the other hand, they can be combined into “coherent hid-
den preorder algebra” which extends both of them. Other features of CafeOBJ
require other institutions. Therefore, as a consequence of its multi-logic as-
pect, CafeOBJ involves a system of institutions and extension relationships
between them rather than a single institution.

The solution to the multi-logic aspect of CafeOBJ is given by the concept
of a Grothendieck institution, which flattens the underlying system of insti-
tutions to a single institution in which the flattened components still retain
their identity. Grothendieck institutions were invented in [7], but their spirit
had already appeared in [5], and although initially motivated by CafeOBJ se-
mantics, they provide a solution for the semantics of any multi-logic language.
For example, Casl, when used together with its extensions, has also adopted
Grothendieck institutions as its semantics [36].

Institution Morphisms

Institution morphisms [19] provide the necessary concept for relating different
institutions.

Definition 37. An institution morphism
(Φ, α, β) : (Sig′, Sen

′,Mod
′, |=′) → (Sig,Sen,Mod, |=) consists of:

1. A functor Φ : Sig′ → Sig.
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2. A natural transformation α : Φ; Sen ⇒ Sen
′.

3. A natural transformation β : Mod
′
⇒ Φop;Mod.

These are such that for any signature Σ′, the following satisfaction condition
holds:

M ′
|=′

Σ
′ αΣ

′(e) iff βΣ
′(M ′) |=Σ

′
Φ e

for any model M ′
∈ Mod

′(Σ′) and any sentence e ∈ Sen(Σ′Φ).
An adjoint institution morphism is an institution morphism such that the

functor Φ : Sig′ → Sig has a left adjoint.10

Institutions and their morphisms, with the obvious composition, form a
category denoted Ins.

This type of structure-preserving institution mapping, introduced in the sem-
inal paper [19], has a forgetful flavour in that it maps from a “richer” institu-
tion to a“poorer” institution. The dual concept of institution mapping, called
comorphism, [25] in which the mapping between the categories of signatures
is reversed, can be interpreted in actual examples as embedding a “poorer”
institution into a “richer” one. Any adjunction between the categories of sig-
natures determines a “duality” pair consisting of an institution morphism and
an institution comorphism; this was observed for the first time in [1, 45]. Be-
low, we may notice that all institution morphisms involved in the semantics
of CafeOBJ are adjoint.

Indexed Institutions

We now recall the concept of an “indexed category” [37]. A good reference for
indexed categories, which also discusses applications to algebraic specification
theory, is [44].

Definition 38. An indexed category [44] is a functor B : Iop
→ Cat; some-

times we denote B(i) as Bi (or Bi) for an index i ∈ |I|, and B(u) as Bu for
an index morphism u ∈ I.

The following “flattening” construction, which provides the canonical fibration
associated with an indexed category, is known as the Grothendieck construc-
tion, and plays an important role in mathematics.

Definition 39. Given an indexed category B : Iop
→ Cat, let B� be the

Grothendieck category having 〈i, Σ〉, with i ∈ |I| and Σ ∈ |Bi|, as objects, and
〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′

〉, with u ∈ I(i, i′) and ϕ : Σ → Σ′Bu, as arrows. The
composition of arrows in B� is defined by 〈u, ϕ〉; 〈u′, ϕ′

〉 = 〈u;u′, ϕ;(ϕ′Bu)〉.

Indexed institutions [7] extend indexed categories to institutions.

10 Adjoint institution morphisms were previously called “embedding” institution
morphisms in [7, 5].
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Definition 40. [7] Given a category I of indices, an indexed institution J is
a functor J : Iop

→ Ins. For each index i ∈ |I| we denote the institution J
i

by (Sigi,Mod
i, Sen

i, |=i) and for each index morphism u ∈ I, we denote the
institution morphism J

u by (Φu, αu, βu).

Grothendieck Institutions

Grothendieck institutions [7] extend the flattening Grothendieck construction
from indexed categories to indexed institutions.

Definition 41. The Grothendieck institution J
� of an indexed institution

J : Iop
→ Ins is defined as follows:

1. its category of signatures Sig� is the Grothendieck category of the indexed
category of signatures Sig : Iop

→ Cat of the indexed institution J .
2. its model functor Mod

� : (Sig�)op → Cat is given by
• Mod

�(〈i, Σ〉) = Mod
i(Σ) for each index i ∈ |I| and signature Σ ∈

|Sigi
|, and

• Mod
�(〈u, ϕ〉) = βu

Σ
′ ;Mod

i(ϕ) for each 〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′
〉.

3. its sentence functor Sen
� : Sig�

→ Set is given by
• Sen

�(〈i, Σ〉) = Sen
i(Σ) for each index i ∈ |I| and signature Σ ∈ |Sigi

|,
and

• Sen
�(〈u, ϕ〉) = Sen

i(ϕ);αu

Σ
′ for each 〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′

〉.

4. M |=�

〈i,Σ〉
e iff M |=i

Σ
e for each index i ∈ |I|, signature Σ ∈ |Sigi

|, model

M ∈ |Mod
�(〈i, Σ〉)|, and sentence e ∈ Sen

�(〈i, Σ〉).

By the satisfaction condition of the institution J
i for each index i ∈ |I| and the

satisfaction condition of the institution morphism J
u for each index morphism

u ∈ I, we obtain the following proposition.

Proposition 19. [7] J
� is an institution and for each index i ∈ |I|, there

exists a canonical institution morphism (Φi, αi, βi) : J
i
→ J

� mapping any
signature Σ ∈ |Sigi

| to 〈i, Σ〉 ∈ |Sig�
| and such that the components of αi and

βi are identities.

By [5, 7], under suitable conditions, the important properties of institu-
tions (including theory colimits, free construction (called liberality), model
amalgamation (called exactness), and inclusion systems) can be “globalised”
from the components of the indexed institution to the Grothendieck institu-
tion.

If we replace institution morphisms by institution comorphisms, we can de-
fine “comorphism-based” Grothendieck institutions [34]. When the institution
morphisms of the indexed institution are adjoint, the Grothendieck institu-
tion and the corresponding comorphism-based Grothendieck institution are
isomorphic [34]. It is easy to notice that this actually happens in the case of
CafeOBJ.
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The CafeOBJ Cube

Now we are ready to define the actual CafeOBJ institution as the Grothendieck
institution of the indexed institution below, called the CafeOBJ cube. (The
actual CafeOBJ cube consists of the full arrows; the dotted arrows denote the
morphisms from components of the indexed institution to the Grothendieck
institution.)

HA

MSA POA

HPOA

OSPOA

HOSPOA

CafeOBJ

HOSA

OSA

H = hidden
A = algebra
O = order
M =many
S = sorted 
POA = preoder algebra

The details of the institutions of the CafeOBJ cube can be found in [14]. We
present them briefly below.

As presented above, the institution MSA of many-sorted algebra has “al-
gebraic signatures” (consisting of sets of sort symbols and sorted function
symbols) as signatures, algebras interpreting the sort symbols as sets and the
function symbols as functions, and (possibly conditional) universally quanti-
fied equations as sentences.

As in other algebraic specification languages, the conditions of equations
are encoded as Boolean-valued terms, and hence in reality MSA should be
thought of as a constraint equational logic in the sense of [6]. Alternatively,
one may adopt membership equational logic [33] as the base equational-logic
institution.

OSA extends the MSA institution with order sortedness such that the set
of sorts of a signature is a partially ordered set rather than a discrete set,
and algebras interpret the subsort relationship as set inclusion. The forgetful
institution morphism from OSA to MSA just forgets the order sortedness.

As we have already seen above, the institution POA has the same signa-
tures as MSA, but the models interpret the sort symbols as preorders and
the function symbols as preorder functors (i.e. functors between preorders).
In CafeOBJ, POA sentences are Horn sentences formed from equations and
transitions. Their satisfaction by models is determined by the preorder rela-
tion between the interpretations of the terms of the transition. The forgetful
institution morphism from POA to MSA essentially forgets the preorder re-
lationship between the elements of models.

The institution HA of “coherent hidden algebra” is the institution under-
lying behavioural specification, and has hidden algebraic signatures, algebras
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as models, and (possibly conditional) strict and behavioural equations as sen-
tences. Note that coherence declarations need not be registered as sentences of
HA, because they are just abbreviations of conditional behavioural equations.
There is a forgetful institution morphism from HA to MSA that forgets the
distinction between visible and hidden.

These extensions of MSA towards three different paradigms can all be
combined into HOSPOA (see [14] for details). All institutions in the CafeOBJ
cube can be seen as subinstitutions of HOSPOA by means of the adjoint
comorphisms corresponding to the forgetful institution morphisms.

Various extensions of CafeOBJ can be considered by transforming the
CafeOBJ cube into a “hyper-cube” and by flattening it to a Grothendieck
institution.

6 Structured Specifications

6.1 Imports

Basic imports

Consider the problem of specifying the data type of strings of natural numbers.
We can reuse the data type of natural numbers (NAT) (predefined in CafeOBJ,
but it can also be user-defined), and focus on the specification of strings.

mod!STRG-NAT {

protecting(NAT)

[ Nat < Strg ]

op nil : -> Strg

op . : Strg Strg -> Strg { assoc }

eq nil . S:Strg = S .

eq S:Strg . nil = S .

}

The most basic reuse of specifications is called an import. Imports are the
most important module-structuring construct. The declaration responsible for
the import of the natural-numbers specification is “protecting(NAT)”. The
most important effect of an import declaration is that, although hidden, all
ingredients of the imported specification (such as the sorts, operations, and
axioms) are available at the level of the importing specification.

The part of a module besides the import (or parameter) declarations is
called the body of the module.

In the case of STRG-NAT, the body consists of

• the introduction of a new sort Strg, which is also declared as a super-sort
of the imported sort Nat (meaning that each natural number is already a
string of length 1);



226 Răzvan Diaconescu

• the introduction of the string operations nil for the empty string and .

for the string concatenation; and
• The string axioms (including the associativity of concatenation, specified

as an operation attribute).

The availability of the ingredients of the imported module NAT at the level of
STRG-NAT can easily be checked as follows:

STRG-NAT> red 2 + 1 .

-- reduce in STRG-NAT : 2 + 1

3 : NzNat

Multiple Imports

Suppose we enhance the above STRG-NAT specification of strings of naturals
with an integer-valued length function. Then we import both STRG-NAT and
an integer-number module INT as follows:

mod!LENGTH-STRG-NAT {

protecting(STRG-NAT + INT)

op #_ : Strg -> Int

eq # nil = 0 .

eq # N:Nat = 1 .

eq #(S:Strg . S’:Strg) = (# S) + (# S’) .

}

Notice that the module NAT of the natural numbers is a submodule (i.e.
it is imported by) of both STRG-NAT and INT. In such a case, NAT contributes
only once to LENGTH-STRG-NAT, i.e. only one copy of NAT is imported by
LENGTH-STRG-NAT. In other words, in LENGTH-STRG-NAT, NAT is shared (be-
tween STRG-NAT and INT).

The situation for the module imports in this example can be represented
graphically as

INT

STRG-NAT

STRG-NAT

LENGTH-STRG-NAT

If we read such a graphical representations of a module structure as a partial
order, the sharing of imported modules corresponds to the greatest lower
bound in this partial order given by the module imports.
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Module Sums

An alternative way to import both of the modules STRG-NAT and INT into
LENGTH-STRG-NAT is to use only one compact import declaration rather than
two import declarations, one for each imported module:

protecting(STRG-NAT + INT)

This is a module-structuring mechanism which builds the sum of the two
modules and corresponds to the lowest upper bound of the two modules in
the absolute partial order of the module imports. The sum of the modules is a
module itself, which of course respects the sharing principle for the common
submodules.

The graphical representation of the module structure for LENGTH-STRG-NAT
can be updated as follows:

INT

STRG-NAT

STRG-NAT

STRG-NAT + INT

LENGTH-STRG-NAT

Importation Modes

CafeOBJ admits three kinds of importation style, which are called importa-

tion modes:

• protecting,
• extending, and
• using.

Methodologically, the most important importation mode (and also the most
frequently used and the most recommended) is the protecting one. This means
that the declarations in the importing specification do not alter anything in the
imported data type. From a denotational point of view, the importation mode
plays a crucial role in establishing the denotation of the importing module from
the denotations of the imported modules.
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Protecting Imports

In the case of STRG-NAT, the import of NAT in protecting mode means that at
the level of STRG-NAT the data type of natural numbers is unchanged, which
basically means that

• there is no new element of sort Nat, and
• there is no collapse of elements of sort Nat.

The protecting property of the imported data type is semantic, in the sense
that this property is not guaranteed and even its violation cannot be sig-
nalled by the system. The correctness of the importation declarations is the
responsibility of the specifier.

Extending Imports

In the case of extending imports, only the second condition is required, which
means that we are allowed to add new elements to the imported types, but
not to collapse elements of the imported type. Below, we present an example
of an extending importation:

mod!BARE-NAT {

[ Nat ]

op 0 : -> Nat

op s : Nat -> Nat

}

mod!NAT-INFINITY {

extending(BARE-NAT)

op omega : -> Nat

eq s omega = omega .

}

Here the constant omega stands for “infinity” and is added as new element
of the sort Nat. The denotation of NAT-INFINITY is initial and consists of the
model of natural numbers enriched with an “infinity” element.

6.2 Parameters

Parametrised Specification

In the case of STRG-NAT the choice of the natural numbers as the underlying
data type for strings is rather arbitrary, in the sense that the data type of
strings does not really depend in any way on the natural numbers. This means
that strings can be specified as a generic data type in which the underlying
data type is left as a parameter:
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mod!STRG (T :: TRIV){

[ Elt < Strg ]

op nil : -> Strg

op . : Strg Strg -> Strg { assoc }

eq nil . S:Strg = S .

eq S:Strg . nil = S .

}

where TRIV is just the very simple specification of bare sets of elements:

mod* TRIV [ Elt ]

The parameter TRIV of STRG has loose denotation, which means that one can
obtain the strings STRG(A) over any particular set A of elements by interpret-
ing the sort Elt of elements as A.

Parameters vs. Imports

The relationship between a parameter and a parametrised module is similar to
that of an import, but strictly speaking it is not an import, since the param-
eter should be regarded as injected rather than included in the parametrised
module.

This is the same as saying that the parametrised module imports a copy
of the parameter, rather than the parameter itself. This copy is labelled by
the label of the parameter, which is T in the example above. This situation
can be represented graphically by

TRIV STRG
T

Parameter Instantiation

One can obtain the strings of naturals from the generic strings of STRG by
instantiating the parameter T to the data type of natural numbers:

STRG(T <= view to NAT sort Elt -> Nat)

This instantiation maps the sort Elt of TRIV to Nat.
In general, parameter instantiation interprets the parameter data as a

concrete data type. This means that

• each sort of the parameter is mapped to a sort of the data type, and
• each operation of the parameter is mapped to an operation of the data

type such that the sort mapping is respected, and such that
• the axioms of the parameter are satisfied by the data type via the mapping

of sorts and operations.
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Views

The mappings from the parameter specification to the concrete data type are
called “views”.

In the example above, we had a rather simple view. Now, let us consider
generic strings over a partially ordered data type:

mod!STRG (P :: POSET){

[ Elt < Strg ]

op nil : -> Strg

op . : Strg Strg -> Strg { assoc }

eq nil . S:Strg = S .

eq S:Strg . nil = S .

}

where the parameter POSET is the specification of partial orders:

mod* POSET {

[ Elt ]

pred _<=_ : Elt Elt

vars E1 E2 E3 : Elt

eq E1 <= E1 = true .

cq E1 = E2 if (E1 <= E2) and (E2 <= E1) .

cq (E1 <= E3) = true if (E1 <= E2) and (E2 <= E3) .

}

The instantiation of the parameter P of STRG to the natural numbers with
the usual “less than or equal” order between naturals maps

• the sort Elt to the sort Nat, and
• the predicate (Boolean-valued operation) <= on Elt to the (derived)

operation (E1 < E2) or (E1 == E2) on Nat .

Notice that this mapping is correct because the axioms of POSET are sat-
isfied by NAT via the mapping. Such verification requires a proof score.

Verification of View Definition

We first build the following working environment for the proof:

mod!NAT-POSET {

protecting(NAT)

op leq : Nat Nat -> Bool

eq E1:Nat leq E2:Nat = (E1 < E2) or (E1 == E2) .

}

We then we open the environment and introduce some working variables as
temporary constants:
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open NAT-POSET .

ops e e’ e’’ : -> Nat .

ops e1 e1’ e1’’ : -> Nat .

ops e2 e2’ e2’’ : -> Nat .

ops e3 e3’ e3’’ : -> Nat .

ops e4 e4’ e4’’ : -> Nat .

The proof score for the reflexivity axiom is very simple:

red e leq e .

This gives

true : Bool

The proof score for the anti-symmetry axiom is obtained by using the fol-
lowing lemma about naturals,

eq (E:Nat < E’:Nat) and (E’ < E) = false .

and by making explicit the implication connective in terms of and and or

connectives:

red not((e leq e’) and (e’ leq e)) or (e == e’) .

The result is

true : Bool

Finally, the proof score for the transitivity axiom requires a case analysis.
Case 1:

eq e1 = e1’ .

eq e1’ = e1’’ .

red e1 leq e1’’ .

gives true.
Case 2:

eq e2 = e2’ .

eq e2’ < e2’’ = true .

red e2 leq e2’’ .

gives true.
Case 3:

eq e3 < e3’ = true .

eq e3’’ = e3’ .

red e3 leq e3’’ .

gives true.
Case 4:

eq e4 < e4’ = true .

eq e4’ < e4’’ = true .

also gives true, but only after an induction proof.
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View Specification

The view defined above can be specified in CafeOBJ as follows:

view nat-poset from POSET to NAT {

sort Elt -> Nat,

op (E1:Elt <= E2:Elt) -> ((E1:Nat < E2:Nat) or (E1 == E2))

}

The strings over ordered naturals are then obtained by the instantiation
STRG(P <= nat-poset)

Default Conventions

From the syntactic point of view this is the most complete specification of
a parameter instantiation. CafeOBJ has some default conventions for short-
hand notation for views and parameter instantiations. For example, one can
specify an ”instant” instantiation:

STRG(P <= view to NAT { sort Elt -> Nat,

op (E1:Elt <= E2:Elt) -> (E1:Nat < E2:Nat) or

(E1 == E2) })

In the case of simpler instantiations, such as the strings of natural numbers
(discarding the partial order), we can use

STRG(T <= NAT)

or even

STRG(NAT)

which means that the sort Elt of the parameter is mapped to the princi-
pal sort (which can be declared or determined by implementation-dependent
conventions) Nat of NAT.

Notice that this level of default cannot be used for instantiating STRG(P

:: POSET) because of the need to specify the mapping of <= .
The mechanism of parameter instantiation is based on the presentation

pushout technique. In the case of the instantiation of strings of naturals, the
module structure involved in the process of parameter instantiation can be
represented graphically as

POSET STRG

STRG(NAT)NAT

nat-poset

P

by using the following convention:
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• dotted arrows for views,
• unlabelled arrows for imports, and
• labelled arrows for parameters.

Multiple Parameters

Consider the parametrised specification of the mathematical concept of a ho-
momorphism between two semigroups. The parameter semigroup is specified
as follows:

mod* SEMIGROUP {

protecting(TRIV)

op + : Elt Elt -> Elt { assoc }

}

The specification of the homomorphism uses two semigroup parameters,
one as the source, and the other as the target of the homomorphism:

mod* SG-HOM (S1 :: SEMIGROUP, S2 :: SEMIGROUP) {

op h : Elt.S1 -> Elt.S2

vars X Y : Elt.S1

eq h(X + Y) = h(X) + h(Y) .

}

In this example, we have used two parametrisations with the same param-
eter module. In general, in the case of multiple parametrisation, the parameter
modules are different.

Graphical Representation of Multiple Parameters

The module structure of this example can be represented by the following
diagram:

SG-HOM

SEMIGROUP

TRIV

S1 S2
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Instantiating Multiple Parameters

Now we can obtain the powers of 2 by instantiating the semigroup homomor-
phism to the following one:

mod! POWER-OF-2 {
protecting(SG-HOM(S1 <= view to NAT sort Elt -> Nat, op + -> + ,

S2 <= view to NAT sort Elt -> Nat, op + -> * ))

eq h(1) = 2 .

}

This instantiation uses several default (notations for) views. In the case
of S1, we have a complete default view and hence the most compact notation
possible. The sort Elt is mapped to the principal sort Nat of NAT, while the
operation + is mapped to the operation with the same name. The latter
mapping uses the convention that in the absence of an explicit declaration,
the sort or operations are mapped to entities with the same name and, in the
case of operations, the rank is matched. In the case of S2, we have only a
partial default view. The sort Elt is also mapped to Nat, as in the case of
S1, and hence this is skipped. However the operation + is mapped to the
multiplication of naturals.

The module structure of POWER-OF-2 can be represented by the following
diagram:

SG-HOM

SEMIGROUP

TRIV

S1 S2

NAT NAT

POWER-OF-2

Module Expressions

Module expressions build new complex modules on the spot by combining
existing modules. Module expressions are terms over modules formed by using
the following module operations:

• imports,
• sums,
• parametrised modules,
• views and parameter instantiations, and



CafeOBJ Logic 235

• renaming of sorts and operations.

Module expressions can be given names by using the CafeOBJ command
make and then used and, especially, reused later in the specification as a
module.

The command make evaluates the module expressions to a module.

6.3 Institution Independence

The concept of specification in CafeOBJ is a special case of structured specifi-
cation in an arbitrary institution instantiated to the CafeOBJ institution.
Our institution-independent structured specifications follows [41]; however
CafeOBJ specifications can be constructed by employing only a subset of
the specification building operations defined in [41].11

Definition 42. Given an institution (Sig,Sen,Mod, |=), its structured spec-
ifications (or specifications for short) are defined from the finite presentations
by iteration of the specification-building operators presented below. The seman-
tics of each specification SP is given by its signature Sig[SP] and its category
of models Mod[SP], where Mod[SP] is a full subcategory of Mod(Sig[SP]).

PRES. Each finite presentation (Σ,E) (i.e. Σ is a signature and E is a
finite set of Σ-sentences) is a specification such that
– Sig[(Σ,E)] = Σ and
– Mod[(Σ,E)] = Mod(Σ,E).12

UNION. For any specifications SP1 and SP2 such that Sig[SP1] = Sig[SP2]
we can take their union SP1 ∪ SP2 with
– Sig[SP1 ∪ SP2] = Sig[SP1] = Sig[SP2] and
– Mod[SP1 ∪ SP2] = Mod[SP1] ∩Mod[SP2].
TRANS. For any specification SP and signature morphism ϕ : Sig(SP) →

Σ′, we can take its translation along ϕ, denoted by SP � ϕ, such that
– Sig[SP � ϕ] = Σ′ and
– Mod[SP � ϕ] = {M ′

∈ Mod(Σ′) | M ′�ϕ ∈ Mod[SP]}.
FREE. For any specification SP′ and signature morphism ϕ : Σ →

Sig[SP′] we can take the persistently free specification of SP′ along ϕ,
denoted SP′ϕ, such that
– Sig[SP′ϕ] = Sig[SP′], and
– Mod[SP′ϕ] = {M ′

∈ Mod[SP′] | M ′ strongly persistently βSP′ ;
Mod(ϕ)-free }, where βSP′ is the subcategory inclusion Mod[SP′] →

Mod(Sig[SP′]).
The strongly persistent freeness property says that for each N ′

∈ Mod[SP′]
and for each model homomorphism h : M ′�ϕ → N ′�ϕ there exists a unique
model homomorphism h′ : M ′

→ N ′ such that h′�ϕ = h.

11 CafeOBJ specifications do not involve the “derivation”-building operation.
12

Mod(Σ, E) is the subcategory of all Σ-models satisfying all sentences in E.
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Definition 43. A specification morphism ϕ : SP1 → SP2 between specifica-
tions SP1 and SP2 is a signature morphism ϕ : Sig[SP1] → Sig[SP2] such
that M�ϕ ∈ Mod[SP1] for each M ∈ Mod[SP2].

With the exception of “including” or “using” imports (see [12]), any
CafeOBJ specification construct can be reduced to the kernel specification-
building language of Definition 42. In the case of initial denotations, “includ-
ing” and “using” imports can be included by adding corresponding variants
of the building operation FREE.

For example, CafeOBJ imports correspond to specification inclusions (a
simple import can be obtained as a union (UNION) between a structured spec-
ification and a presentation (PRES)), module parameters correspond to spec-
ification injections, “views” to arbitrary specification morphisms, parameter
instantiations to specification pushouts (obtained by translations (TRANS)
and union (UNION)), and modules with initial denotation are obtained as
free specifications (FREE).
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Summary. Casl is an expressive specification language that has been designed to
supersede many existing algebraic specification languages and provide a standard.
Casl consists of several layers, including basic (unstructured) specifications, struc-
tured specifications and architectural specifications; the latter are used to prescribe
the modular structure of implementations.

We describe a simplified version of the Casl syntax, semantics and proof calculus
for each of these three layers and state the corresponding soundness and complete-
ness theorems. The layers are orthogonal in the sense that the semantics of a given
layer uses that of the previous layer as a “black box”, and similarly for the proof
calculi. In particular, this means that Casl can easily be adapted to other logical
systems.

We conclude with a detailed example specification of a warehouse, which serves
to illustrate the application of both Casl and the proof calculi for the various layers.

Key words: Algebraic specification, formal software development, logic, cal-
culus, institution

1 Introduction

Algebraic specification is one of the most extensively developed approaches in
the formal-methods area. The most fundamental assumption underlying alge-
braic specification is that programs are modelled as algebraic structures that
include a collection of sets of data values together with functions over those
sets. This level of abstraction is commensurate with the view that the correct-
ness of the input/output behaviour of a program takes precedence over all its
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other properties. Another common element is that specifications of programs
consist mainly of logical axioms, usually in a logical system in which equality
has a prominent role, describing the properties that the functions are re-
quired to satisfy – often just by their interrelationship. This property-oriented
approach is in contrast to model-oriented specifications in frameworks such
as VDM [28] which consist of a simple realization of the required behaviour.
However, the theoretical basis of algebraic specification is largely in terms of
constructions on algebraic models, so it is at the same time much more model-
oriented than approaches such as those based on type theory (see e.g. [52]),
where the emphasis is almost entirely on syntax and formal systems of rules,
and semantic models are absent or regarded as of secondary importance.

Casl [4] is an expressive specification language that was designed by
CoFI, the international Common Framework Initiative for algebraic speci-
fication and development [18, 48], with the goal of subsuming many previous
algebraic specification languages and of providing a standard language for the
specification and development of modular software systems.

This chapter gives an overview of the semantic concepts and proof calculi
underlying Casl. Section 2 starts with institutions and logics, abstract for-
malizations of the notion of a logical system. The remaining sections follow
the layers of the Casl language:

1. Basic specifications provide the means to write specifications in a particu-
lar institution, and provide a proof calculus for reasoning within such un-
structured specifications. The institution underlying Casl, together with
its proof calculus, is presented in Sects. 3 (for many-sorted basic speci-
fications) and 4 (the extension to subsorting). Section 5 explains some
of the language constructs that allow one to write down theories in this
institution rather concisely.

2. Structured specifications express how more complex specifications are built
from simpler ones (Sect. 6). The semantics and proof calculus are given in a
way that is parametrized over the particular institution and proof calculus
for basic specifications. Hence, the institution and proof calculus for basic
specifications can be changed without the need to change anything for
structured specifications.

3. Architectural specifications, in contrast to structured specifications, pre-
scribe the modular structure of the implementation, with the possibility
of enforcing separate development of composable, reusable implementa-
tion units (Sect. 7). Again, the semantics and proof calculus in this layer
are formulated in terms of the semantics and proof calculus given in the
previous layers.

4. Finally, libraries of specifications allow the (distributed) storage and re-
trieval of named specifications. Since this is rather straightforward, space
considerations led to the omission of this layer of Casl in the present
work.
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For the sake of simplicity, this chapter covers only a simplified version
of Casl, and mainly introduces semantic concepts; language constructs are
treated only briefly in Sect. 5. A full account of Casl, also covering libraries of
specifications, is given in [50] (see also [4, 18, 37]), while a gentle introduction
is provided in [49].

2 Institutions and Logics

First, before considering the particular concepts underlying Casl, we recall
how specification frameworks in general may be formalized in terms of insti-
tutions [22].

An institution I = (Sign,Sen,Mod, |=) consists of

• a category Sign of signatures ;
• a functor Sen : Sign→Set giving, for each signature Σ, a set of sentences

Sen(Σ), and for each signature morphism σ : Σ→Σ′, a sentence transla-
tion map Sen(σ) : Sen(Σ)→Sen(Σ′), where Sen(σ)(ϕ) is often written
σ(ϕ);

• a functor Mod : Signop

→ CAT
5 giving, for each signature Σ, a cate-

gory of models Mod(Σ), and for each signature morphism σ : Σ → Σ′,
a reduct functor Mod(σ) : Mod(Σ′)→Mod(Σ), where Mod(σ)(M ′) is
often written M ′

|σ; and
• a satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ Sign,

such that for each σ : Σ → Σ′ in Sign, the following satisfaction condition
holds:

M ′
|=Σ

′ σ(ϕ) ⇐⇒ M ′
|σ |=Σ ϕ

for each M ′
∈ Mod(Σ′) and ϕ ∈ Sen(Σ).

An institution with unions is an institution equipped with a partial bi-
nary operation ∪ on signatures, such that there are two “inclusions” ι1 : Σ1→

Σ1 ∪ Σ2 and ι2 : Σ2 →Σ1 ∪Σ2. We write M |Σi
for M |ιi : Σi→Σ1∪Σ2

(i = 1, 2)
whenever ιi is clear from the context. Typically (e.g. in the Casl institu-
tion), ∪ is a total operation. However, in institutions without overloading,
two signatures giving the same name to different things cannot generally be
united.

When Σ1 ∪ Σ2 = Σ2, where ι2 : Σ2 → (Σ1 ∪ Σ2 = Σ2) is the identity, we
say that Σ1 is a subsignature of Σ2, written Σ1 ⊆ Σ2.

Further properties of signature unions, as well as other requirements on
institutions, are needed only in Sect. 7 on architectural specifications and will
be introduced there.

5 Here, CAT is the quasi-category of all categories. As the meta-theory, we use
ZFCU , i.e. ZF with the axiom of choice and a set-theoretic universe U . This
allows the construction of quasi-categories, i.e. categories with more than one
class of objects. See [25].
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Within an arbitrary but fixed institution, we can easily define the usual no-
tion of logical consequence or semantic entailment. Given a set of Σ-sentences
Γ and a Σ-sentence ϕ, we say that ϕ follows from Γ , written Γ |=Σ ϕ, iff for
all Σ-models M , we have M |=Σ Γ implies M |=Σ ϕ. (Here, M |=Σ Γ means
that M |=Σ ψ for each ψ ∈ Γ .)

Coming to proofs, a logic [33] extends an institution with proof-theoretic
entailment relations that are compatible with semantic entailment.

A logic LOG = (Sign,Sen,Mod, |=,�) is an institution (Sign,Sen,

Mod, |=) equipped with an entailment system �, that is, a relation �Σ ⊆

P(Sen(Σ))×Sen(Σ) for each Σ ∈ |Sign|, such that the following properties
are satisfied for any ϕ ∈ Sen(Σ) and Γ, Γ ′

⊆ Sen(Σ):

1. Reflexivity: {ϕ} �Σ ϕ,
2. Monotonicity: if Γ �Σ ϕ and Γ ′

⊇ Γ then Γ ′
�Σ ϕ,

3. Transitivity: if Γ �Σ ϕi for i ∈ I and Γ ∪ {ϕi | i ∈ I} �Σ ψ, then Γ �Σ ψ,
4. �-translation: if Γ �Σ ϕ, then for any σ : Σ→Σ′ in Sign, σ(Γ ) �Σ

′ σ(ϕ),
5. Soundness: if Γ �Σ ϕ then Γ |=Σ ϕ.

A logic is complete if, in addition, Γ |=Σ ϕ implies Γ �Σ ϕ.
It is easy to obtain a complete logic from an institution by simply defining

� as |=. Hence, � might appear to be redundant. However, the point is that
� will typically be defined via a system of finitary derivation rules. This gives
rise to a notion of proof that is absent when the institution is considered on
its own, even if the relation that results coincides with semantic entailment,
which is defined in terms of the satisfaction relation.

3 Many-Sorted Basic Specifications

Casl’s basic specification layer is an expressive language that integrates sub-
sorts, partiality, first-order logic and induction (the latter expressed using sort
generation constraints).

3.1 The Many-Sorted Institution

The institution underlying Casl is introduced in two steps [9, 16]. In this
section, we introduce the institution of many-sorted partial first-order logic
with sort generation constraints and equality, PCFOL=. In Sect. 4, subsorting
is added.

Signatures

A many-sorted signature Σ = (S,TF ,PF , P ) consists of a set S of sorts,
S∗

×S-indexed families TF and PF of total - and partial-function symbols, with
TFw,s ∩ PFw,s = ∅ for each (w, s) ∈ S∗

×S, and where constants are treated
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as functions with no arguments; and an S∗-indexed family P of predicate
symbols. We write f : w → s ∈ TF for f ∈ TFw,s (with f : s for empty w),
f : w →? s ∈ PF for f ∈ PFw,s (with f :→? s for empty w) and p : w ∈ P

for p ∈ Pw.
Although TFw,s and PFw,s are required to be disjoint, so that a function

symbol with a given profile cannot be both partial and total, function and
predicate symbols may be overloaded: we do not require, for example, TFw,s

and TFw
′
,s

′ (or TFw,s and PFw
′
,s

′ ) to be disjoint for (w, s) �= (w′, s′). To
ensure that there is no ambiguity in sentences, however, symbols are always
qualified by profiles when used. In the Casl language constructs (see Sect. 5),
such qualifications may be omitted when they are unambiguously determined
by the context.

Given signatures Σ and Σ′, a signature morphism σ : Σ→Σ′ maps sorts,
function symbols and predicate symbols in Σ to symbols of the same kind in
Σ′. A partial-function symbol may be mapped to a total-function symbol, but
not vice versa, and profiles must be preserved, so for instance f : w → s in
Σ maps to a function symbol in Σ′ with a profile σ∗(w) → σ(s), where σ∗ is
the extension of σ to finite strings of symbols. Identities and composition are
defined in the obvious way, giving a category Sign of PCFOL=-signatures.

Models

Given a finite string w = s1 . . . sn and sets Ms1
, . . . ,Msn

, we write Mw for
the Cartesian product Ms1

× · · · ×Msn
. Let Σ = (S,TF ,PF , P ).

A many-sorted Σ-model M consists of a non-empty carrier set Ms for
each sort s ∈ S, a total function (fw,s)M : Mw → Ms for each total-function
symbol f : w → s ∈ TF , a partial function (fw,s)M : Mw ⇀ Ms for each
partial-function symbol f : w →? s ∈ PF , and a predicate (pw)M ⊆ Mw for
each predicate symbol p : w ∈ P . Requiring carriers to be non-empty simpli-
fies deduction and makes it unproblematic to regard axioms (see Sect. 3.1)
as implicitly universally quantified. A slight drawback is that the existence of
initial models is lost in some cases, even if only equational axioms are used,
namely if the signature is such that there are no ground terms of some sort.
However, from a methodological point of view, specifications with such sig-
natures are typically used in a context where a loose rather than an initial
semantics is appropriate.

A many-sorted Σ-homomorphism h : M → N maps the values in the
carriers of M to values in the corresponding carriers of N in such a way that
the values of functions and their definedness are preserved, as well as the truth
of predicates. Identities and composition are defined in the obvious way. This
gives a category Mod(Σ).

Concerning reducts, if σ : Σ → Σ′ is a signature morphism and M ′ is
a Σ′-model, then M ′

|σ is a Σ-model with (M ′
|σ)s := M ′

σ(s)
for s ∈ S

and analogously for (fw,s)M
′|σ

and (pw)
M

′|σ
. The same applies to any Σ′-

homomorphism h′ : M ′
→ N ′: its reduct h′

|σ : M ′
|σ → N ′

|σ is the Σ-
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homomorphism defined by (h′
|σ)s := h′

σ(s)
for s ∈ S. It is easy to see

that a reduct preserves identities and composition, so we obtain a functor
Mod(σ) : Mod(Σ′)→Mod(Σ). Moreover, it is easy to see that reducts are
compositional, i.e., we have, for example, (M ′′

|θ)|σ = M ′′
|σ; θ for all signature

morphisms σ : Σ→Σ′, θ : Σ′
→Σ′′ and Σ′′-models M ′′. This means that we

have indeed defined a functor Mod : Signop

→CAT .

Sentences

Let Σ = (S,TF ,PF , P ). A variable system over Σ is an S-sorted, pairwise
disjoint family of variables X = (Xs)s∈S . Let such a variable system be given.

As usual, the many-sorted Σ-terms over X are defined inductively as com-
prising the variables in X , which have uniquely determined sorts, together
with applications of function symbols to argument terms of appropriate sorts,
where the sort is determined by the profile of its outermost function symbol.
This gives an S-indexed family of sets TΣ(X) which can be made into a (to-
tal) many-sorted Σ-model by defining (fw,s)TΣ(X) to be the term-formation
operations for f : w → s ∈ TF and f : w →? s ∈ PF , and (pw)

TΣ(X) = ∅ for
p : w ∈ P .

An atomic Σ-formula is either an application pw(t1, . . . , tn) of a predicate

symbol to terms of appropriate sorts, an existential equation t
e

= t′ or strong
equation t

s
= t′ between two terms of the same sort, or an assertion def t that

the value of a term is defined. This defines the set AFΣ(X) of many-sorted
atomic Σ-formulas with variables in X . The set FOΣ(X) of many-sorted first-
order Σ-formulas with variables in X is then defined by adding a formula false
and closing under implication ϕ ⇒ ψ and universal quantification ∀x : s • ϕ.
We use the usual abbreviations ¬ϕ for ϕ ⇒ false, ϕ∧ψ for ¬(ϕ ⇒ ¬ψ), ϕ∨ψ

for ¬(¬ϕ ∧ ¬ψ), true for ¬false and ∃x : s • ϕ for ¬∀x : s • ¬ϕ.
A sort generation constraint states that a given set of sorts is generated by

a given set of functions. Technically, sort generation constraints also contain
a signature morphism component; this allows them to be translated along
signature morphisms without sacrificing the satisfaction condition. Formally,
a sort generation constraint over a signature Σ is a triple (S̃, F̃ , θ), where

θ : Σ→Σ, Σ = (S,TF ,PF , P ), S̃ ⊆ S and F̃ ⊆ TF ∪ PF .
Now a Σ-sentence is either a closed many-sorted first-order Σ-formula (i.e.

a many-sorted first-order Σ-formula over the empty set of variables), or a sort
generation constraint over Σ.

Given a signature morphism σ : Σ→Σ′ and a variable system X over Σ,
we can obtain a variable system σ(X) over Σ′ by taking

σ(X)s
′ :=

⋃

σ(s)=s
′

Xs

Since TΣ(X) is total, the inclusion ζσ,X : X → TΣ
′(σ(X))|σ (regarded as a

variable valuation) leads to a term evaluation function
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ζ
#

σ,X
: TΣ(X)→TΣ

′(σ(X))|σ

that is total as well. This can be inductively extended to a translation along
σ of Σ-first order formulas with variables in X by taking σ(t) := ζ

#

σ,X
(t),

σ(pw(t1, . . . , tn)) := σw(p)
σ
∗(w)(σ(t1), . . . , σ(tn)), σ(t

e

= t′) := σ(t)
e

= σ(t′),
σ(∀x : s • ϕ) = ∀x : σ(s) • σ(ϕ), and so on. The translation of a Σ-constraint

(S̃, F̃ , θ) along σ is the Σ′-constraint (S̃, F̃ , θ; σ). It is easy to see that sentence
translation preserves identities and composition, so sentence translation is
functorial.

Satisfaction

Variable valuations are total, but the value of a term with respect to a variable
valuation may be undefined, owing to the application of a partial function
during the evaluation of the term. Given a variable valuation ν : X →M for
X in M , term evaluation ν# : TΣ(X) ⇀ M is defined in the obvious way,
with t ∈ dom(ν#) iff all partial functions in t are applied to values in their
domains.

Even though the evaluation of a term with respect to a variable valuation
may be undefined, the satisfaction of a formula ϕ in a model M is always
defined, and it is either true or false: that is, we have a two-valued logic. The
application pw(t1, . . . , tn) of a predicate symbol to a sequence of argument
terms is satisfied with respect to a valuation ν : X→M iff the values of all of
t1, . . . , tn are defined under ν# and give a tuple belonging to pM . A definedness
assertion def t is satisfied iff the value of t is defined. An existential equation
t1

e

= t2 is satisfied iff the values of t1 and t2 are defined and equal, whereas
a strong equation t1

s
= t2 is also satisfied when the values of both t1 and

t2 are undefined; thus the two kinds of equation coincide for defined terms.
Satisfaction of other formulae is defined in the obvious way. A formula ϕ is
satisfied in a model M , written M |= ϕ, iff it is satisfied with respect to all
variable valuations into M .

A Σ-constraint (S̃, F̃ , θ) is satisfied in a Σ-model M iff the carriers of M |θ

of sorts in S̃ are generated by the function symbols in F̃ , i.e. for every sort
s ∈ S̃ and every value a ∈ (M |θ)s, there is a Σ-term t containing only function

symbols from F̃ and variables of sorts not in S̃ such that ν#(t) = a for some
valuation ν into M |θ.

For a sort generation constraint (S̃, F̃ , θ), we can assume without loss of

generality that all the result sorts of function symbols in F̃ occur in S̃. If not,
we can just omit from F̃ those function symbols not satisfying this require-
ment, without affecting the satisfaction of the sort generation constraint: in
the Σ-term t witnessing the satisfaction of the constraint, any application of
a function symbol with a result sort outside S̃ can be replaced by a variable
of that sort, which obtains as its assigned value the evaluation of the function
application.

For a proof of the satisfaction condition, see [37].
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3.2 Proof Calculus

We now come to the proof calculus for Casl many-sorted basic specifications.
The rules of derivation are given in Figs. 1 and 2.

(Absurdity)
false

ϕ (Tertium non datur)

[ϕ] [ϕ ⇒ false]
...

...
ψ ψ

ψ

(⇒-intro)

[ϕ]
...
ψ

ϕ ⇒ ψ
(⇒-elim)

ϕ

ϕ ⇒ ψ

ψ
(∀-elim)

∀x : s.ϕ
ϕ

(∀-intro)
ϕ

∀x : s.ϕ
where xs occurs freely only in local assumptions

(Reflexivity)
xs

e
= xs

if xs is a variable

(Congruence)
ϕ

(
V

xs∈F V (ϕ)
xs

e
= ν(xs)) ⇒ ϕ[ν]

if ϕ[ν] defined

(Substitution)
ϕ

(
V

xs∈F V (ϕ)
D(ν(xs))) ⇒ ϕ[ν]

if ϕ[ν] defined and FV (ϕ) occur freely only in local assumptions

(Totality)
D(fw,s(xs1

, . . . , xsn
))

if w = s1 . . . sn, f ∈ TFw,s

(Function Strictness)
t1

e
= t2

D(t)
t some subterm of t1 or t2

(Predicate Strictness)
pw(t1, . . . , tn)

D(ti)
i ∈ {1, . . . , n}

Fig. 1. First-order deduction rules for Casl basic specifications

The first rules (up to ∀-Intro) are standard rules of first-order logic [6]. The
rules Reflexivity, Congruence and Substitution differ from the standard rules
since they have to take into account the potential undefinedness of terms.
Hence, Reflexivity holds only for variables (which by definition are always
defined), and Substitution needs the assumption that the terms being sub-
stituted are defined. (Note that definedness, D(t), is just an abbreviation for

the existential equality t
e

= t.) Totality, Function Strictness and Predicate
Strictness have self-explanatory names; they allow definedness statements to
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(Induction)

(S, F, θ : Σ̄→Σ)
ϕ1 ∧ · · · ∧ ϕk

V

s∈S ∀x : θ(s) • Ψs(x)

F = {f1 : s1
1 . . . s1

m1
→s1; . . . ; fk : sk

1 . . . sk
mk

→sk},
Ψsj

is a formula with one free variable x of sort θ(sj), j = 1, . . . , k,

ϕj = ∀x1 : θ(sj
1), . . . , xmj

: θ(sj
mj

)•
“

D(θ(fj)(x1, . . . , xmj
)) ∧

V

i=1,...,mj ; s
j

i
∈S

Ψ
s

j

i

(xi)
”

⇒ Ψsj

`

θ(fj)(x1, . . . , xmj
)
´

(Sortgen-intro)
ϕ1 ∧ · · · ∧ ϕk ⇒

V

s∈S
∀x : θ(s) • ps(x)

(S, F, θ : Σ̄→Σ)

F = {f1 : s1
1 . . . s1

m1
→s1; . . . ; fk : sk

1 . . . sk
mk

→sk},
for s ∈ S, the predicates ps : θ(s) occur only in local assumptions,
and for j = 1, . . . , k,

ϕj = ∀x1 : θ(sj
1), . . . , xmj

: θ(sj
mj

)•
“

D(θ(fj)(x1, . . . , xmj
)) ∧

V

i=1,...,mj ; s
j

i
∈S

p
s

j

i

(xi)
”

⇒ psj

`

θ(fj)(x1, . . . , xmj
)
´

Fig. 2. Induction rules for Casl basic specifications

be inferred. Finally, the two rules in Fig. 2 deal with sort generation con-
straints. If these are seen as second-order universally quantified formulas, In-
duction corresponds to second-order ∀-Elim, and Sortgen-Intro corresponds to
second-order ∀-Intro. The ϕj correspond to the inductive bases and inductive
steps that have to be shown, while the formula

∧
s∈S

∀x : θ(s) • Ψs(x) is the
statement that is shown by induction. Note that if S consists of more than
one sort, we have a simultaneous induction over several sorts.

A derivation of Φ � ϕ is a tree (called a derivation tree) such that

• the root of the tree is ϕ;
• all the leaves of the tree are either in Φ or marked as local assumptions;
• each non-leaf node is an instance of the conclusion of some rule, with its

children being the correspondingly instantiated premises; and
• any assumptions marked by [. . .] in the proof rules are marked as local

assumptions.

If Φ and ϕ consist of Σ-formulas, we also write Φ �Σ ϕ. In practice, one works
with acyclic graphs instead of trees, since this allows the reuse of lemmas.

Some rules contain a condition that some variables occur freely only in
local assumptions. These conditions are the usual eigenvariable conditions of
natural-deduction-style calculi. They mean, more precisely, that if the spec-
ified variables occur freely in an assumption in a proof tree, the assumption
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must be marked as local and have been used in the proof of the premise of
the respective rule.

In order to carry out a proof in the calculus, it is convenient to prove some
derived rules. We list only a few here:

(∧-Intro)
ϕ ψ

ϕ ∧ ψ

(∧-Elim1)
ϕ ∧ ψ

ϕ

(∧-Elim2)
ϕ ∧ ψ

ψ

Recall that ϕ ∧ ψ is defined6 to be (ϕ ⇒ ψ ⇒ false) ⇒ false.7

Proof of ∧-Intro. Assume ϕ and ψ. Assume further (aiming at a proof
using ⇒-Intro) that ϕ ⇒ ψ ⇒ false. By ⇒-Elim twice, we obtain false .
Hence, (ϕ ⇒ ψ ⇒ false) ⇒ false by ⇒-Intro. �

Proof of ∧-Elim1. Assume (ϕ ⇒ ψ ⇒ false) ⇒ false . We want to prove ϕ

using Tertium non datur. Obviously, ϕ can be proved from itself. It remains
to prove it from ϕ ⇒ false. Now from ϕ ⇒ false, using ⇒-Intro twice and
⇒-Elim once, we obtain ϕ ⇒ ψ ⇒ false . Hence, by ⇒-Elim with our main
assumption, we obtain false . Absurdity, we get ϕ. The proof of ∧-Elim2 is
similar. �

The following theorem is proved in [44]:

Theorem The above proof calculus yields an entailment system. Equipped
with this entailment system, the Casl institution PCFOL= becomes a sound
logic. Moreover, it is complete if sort generation constraints are not used.

With sort generation constraints, inductive data types such as the natu-
ral numbers can be specified monomorphically (i.e., up to isomorphism). By
Gödel’s incompleteness theorem, there cannot be a recursively axiomatized
complete calculus for such systems.

Theorem If sort generation constraints are used, the Casl logic is not com-
plete. Moreover, there cannot be a recursively axiomatized sound and complete
entailment system for many-sorted Casl basic specifications.

Instead of using the above calculus, it is also possible to use an encoding
of the Casl logic into second-order logic; see [37].

6 This is not the same definition as in [50], but it allows us to keep things simple.
The proofs would also go succeed with the definitions of [50], but would be a little
more complex.

7 Note that ⇒ associates to the right.
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4 Subsorted Basic Specifications

Casl allows the user to declare a sort as a subsort of another. In contrast to
most other subsorted languages, Casl interprets subsorts as injective embed-
dings between carriers – not necessarily as inclusions. This allows for more gen-
eral models in which values of a subsort are represented differently from values
of the supersort, an example being integers (represented as 32-bit words) as
a subsort of reals (represented using floating-point representation). Further-
more, to avoid problems with modularity (as described in [24, 34]), there are
no requirements like monotonicity, regularity or local filtration imposed on
signatures. Instead, the use of overloaded functions and predicates in formu-
lae of the Casl language is required to be sufficiently disambiguated, such
that all parses have the same semantics.

4.1 The Subsorted Institution

In order to cope with subsorting, the institution for basic specifications pre-
sented in Sect. 3 has to be modified slightly. First a category of subsorted
signatures is defined (each signature is extended with a pre-order ≤ on its set
of sorts), and a functor from this category into the category of many-sorted
signatures is defined. Then the notions of models, sentences and satisfaction
can be borrowed from the many-sorted institution via this functor. Technical
details follow below, leading to the institution of subsorted partial first-order
logic with sort generation constraints and equality (SubPCFOL=).

Signatures

A subsorted signature Σ = (S,TF ,PF , P,≤) consists of a many-sorted signa-
ture (S,TF ,PF , P ) together with a reflexive, transitive subsort relation ≤ on
the set S of sorts.

For a subsorted signature, we define overloading relations for function and
predicate symbols: two function symbols f : w1 → s1 (or f : w1 →? s1) and
f : w2 → s2 (or f : w2 →? s2) are in an overloading relation iff there exists
a w ∈ S∗ and s ∈ S such that w ≤ w1, w2 and s1, s2 ≤ s. Similarly, two
qualified predicate symbols p : w1 and p : w2 are in an overloading relation iff
there exists a w ∈ S∗ such that w ≤ w1, w2.

Let Σ = (S,TF ,PF , P,≤) and Σ′ = (S′,TF ′,PF ′, P ′,≤′) be subsorted
signatures. A subsorted signature morphism σ : Σ → Σ′ is a many-sorted
signature morphism from (S,TF ,PF , P ) into (S′,TF ′,PF ′, P ′) preserving
the subsort relation and the overloading relations.

With each subsorted signature Σ = (S,TF ,PF , P,≤) we associate a

many-sorted signature Σ̂, which is the extension of the underlying many-
sorted signature (S,TF ,PF , P ) with

• a total embedding function symbol em : s → s′ for each pair of sorts s ≤ s′;
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• a partial projection function symbol pr : s′ →? s for each pair of sorts
s ≤ s′; and

• a unary membership predicate symbol in(s) : s′ for each pair of sorts
s ≤ s′.

It is assumed that the symbols used for injection, projection and membership
are distinct and are not used otherwise in Σ.

In a similar way, any subsorted signature morphism σ from Σ into Σ′

extends to a many-sorted signature morphism σ̂ from Σ̂ into Σ̂′.
The construction ̂ is a functor from the category of subsorted signatures

SubSig into the category of many-sorted signatures Sign.

Models

For a subsorted signature Σ = (S,TF ,PF , P,≤), with embedding symbols
em, projection symbols pr and membership symbols in , the subsorted mod-
els for Σ are ordinary many-sorted models for Σ̂ satisfying a set Ax(Σ) of
sentences (formalized in [50], section III.3.1.2) that ensuring the following.

• Embedding functions are injective.
• The embedding of a sort into itself is the identity function.
• All compositions of embedding functions between the same two sorts are

equal functions.
• Projection functions are injective when defined.
• Embedding followed by projection is identity.
• Membership in a subsort holds just when the projection to the subsort is

defined.
• Embedding is compatible with those functions and predicates that are in

the overloading relations.

Subsorted Σ-homomorphisms are ordinary many-sorted Σ̂-homomorphisms.
Hence, the category of subsorted Σ-models SubMod(Σ) is a full subcategory

of Mod(Σ̂), i.e. SubMod(Σ) = Mod(Σ̂, Ax(Σ)).
The reduct of Σ′-models and Σ′-homomorphisms along a subsorted signa-

ture morphism σ from Σ into Σ′ is the many-sorted reduct along the signature
morphism σ̂. Since subsorted signature morphisms preserve the overloading
relations, this is well defined and leads to a functor Mod(σ̂) : SubMod(Σ′)→
SubMod(Σ).

Sentences

For a subsorted signature Σ, the subsorted sentences are the ordinary many-
sorted sentences for the associated many-sorted signature Σ̂. Moreover, the
subsorted translation of sentences along a subsorted signature morphism σ is
the ordinary many-sorted translation along σ̂.
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The syntax of the Casl language (see Sect. 5) allows the user to omit
subsort injections, thus permitting the axioms to be written in a simpler
and more intuitive way. Static analysis then determines the corresponding
sentences of the underlying institution by inserting the appropriate injections.

Satisfaction

Since subsorted Σ-models and Σ-sentences are just certain many-sorted Σ̂-
models and Σ̂-sentences, the notion of satisfaction for the subsorted case
follows directly from the notion of satisfaction for the many-sorted case. Since
reducts and sentence translation in the subsorted case are ordinary many-
sorted reducts and sentence translation, the satisfaction condition is satisfied
for the subsorted case as well.

4.2 Borrowing of Proofs

The proof calculus can borrowed from the many-sorted case. To prove that a
Σ-sentence ϕ is a Σ-consequence of a set of assumptions Φ, one just has to
prove that ϕ is a Σ̂-consequence of Φ and Ax(Σ), i.e.

Φ �Σ ϕ

if and only if

Φ ∪Ax(Σ) �
Σ̂

ϕ

Soundness and (for the sublogic without sort generation constraints) com-
pleteness follow from the many-sorted case.

5 Casl Language Constructs

Since the level of syntactic constructs will be treated only informally in this
chapter, we shall just give a brief overview of the constructs for writing basic
specifications (i.e. specifications in-the-small) in Casl. A detailed description
can be found in the Casl language summary [30] and the Casl semantics [9].

The Casl language provides constructs for declaring sorts, subsorts, op-
erations8 and predicates that contribute to the signature in the obvious way.
Operations, predicates and subsorts can also be defined in terms of others;
this leads to a corresponding declaration plus a defining axiom.

Operation and predicate symbols may be overloaded; this can lead to am-
biguities in formulas. A formula is well formed only if there is a unique way
of consistently adding profile qualifications, up to equivalence with respect to
the overloading relations.

8 At the level of syntactic constructs, functions are called operations.
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%list [ ], nil , ::
%prec { :: } < { ++ }

spec List [sort Elem ] =

free type List [Elem ] ::= nil | :: (head :? Elem ; tail :? List [Elem ]);
sort NEList [Elem ] = {L : List [Elem ] • ¬L = nil};
op ++ : List [Elem ] × List [Elem ] → List [Elem ];
forall e : Elem ; K ,L : List [Elem ]

• nil ++L = L %(concat nil)%
• (e :: K ) ++L = e :: K ++L %(concat cons)%

end

Fig. 3. Specification of lists over an arbitrary element sort in Casl

Binary operations can be declared to be associative, or commutative, idem-
potent, or to have a unit. This leads to a corresponding axiom, and, in the
case of associativity, to an associativity annotation.

For operations and predicates, mix-fix syntax is provided. Precedence and
associativity annotations may help to disambiguate terms containing mix-fix
symbols. There is also a syntax for literals such as numbers and strings, which
allows the usual data types to be specified purely in Casl, without the need
for magic built-in modules.

The type, free type and generated type constructs allow the concise
description of data types. These are expanded into a declaration of the corre-
sponding constructor and selector operations and axioms relating the selectors
and constructors. In the case of generated and free data types, a sort genera-
tion constraint is also produced. Free data types additionally lead to axioms
that assert the injectivity of the constructors and the disjointness of their
images.

A typical Casl specification is shown in Fig. 3. The translation of Casl

constructs into the underlying mathematical concepts is formally defined in
the Casl semantics [9], which gives the semantics of the language constructs
in two parts. The static semantics checks the well-formedness of a specifi-
cation and produces a signature as result; it fails to produce any result for
ill-formed phrases. The model semantics provides the corresponding model-
theoretic part of the semantics and produces a class of models as a result, and
is intended to be applied only to phrases that are well formed according to
the static semantics. A statically well-formed phrase may still be ill-formed
according to the model semantics, and then no result is produced.
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6 Structured Specifications

The Casl structuring concepts and constructs and their semantics do not
depend on a specific framework of basic specifications. This means that the
design of many-sorted and subsorted Casl specifications, as explained in the
previous sections, is orthogonal to the design of structured specifications that
we are now going to describe (this also holds for the remaining parts of Casl,
i.e. architectural specifications and libraries). In this way, we achieve the result
that the Casl basic specifications as given above can be restricted to sublan-
guages or extended in various ways (or even replaced completely) without the
need to reconsider or change the syntax and semantics of structured specifi-
cations. The central idea for achieving this form of genericity is the notion of
an institution introduced in Sect. 2. Indeed, many different logics, including
first-order [22], higher-order [14], polymorphic [51], modal [17, 66], temporal
[21], process [21], behavioural [11, 54], coalgebraic [47] and object-oriented
[2, 23, 31, 64, 65] logics have been shown to be institutions.

SPEC ::= BASIC-SPEC

| SPEC1 and SPEC2

| SPEC with σ

| SPEC hide σ

| SPEC1 then free { SPEC2 }

Fig. 4. Simplified syntax of Casl structured specifications

6.1 Syntax and Semantics of Structured Specifications

Given an arbitrary but fixed institution with unions, it is now possible to
define structured specifications. Their syntax is given in Fig. 4. The syntax of
the basic specifications BASIC-SPEC (as well as that of signature morphisms
σ) is left unexplained, since it is provided together with the institution.

Figure 5 shows the semantics of structured specifications [9, 60]. The static
semantics is shown on the left of the figure, using judgements of the form
� phrase � result (read: phrase statically elaborates to result). The model

semantics is shown on the right, using judgements of the form � phrase ⇒

result (read: phrase evaluates to result).
As might be expected, we assume that every basic specification (statically)

determines a signature and a (finite) set of axioms, which in turn determine
the class of models of this specification.

Using the model semantics, we can define semantic entailment as follows:
a well-formed Σ-specification SP entails a Σ-sentence ϕ, written SP |=Σ ϕ, if
ϕ is satisfied in all SP-models. A specification is consistent if its model class
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� BASIC-SPEC � 〈Σ, Γ 〉
� BASIC-SPEC � Σ

� BASIC-SPEC � 〈Σ, Γ 〉
M = {M ∈ Mod(Σ) | M |= Γ}

� BASIC-SPEC ⇒ M

� SP1 � Σ1

� SP2 � Σ2

Σ1 ∪ Σ2 is defined
� SP1 and SP2 � Σ1 ∪ Σ2

� SP1 � Σ1 � SP2 � Σ2

Σ′ = Σ1 ∪ Σ2 is defined
� SP1 ⇒ M1 � SP2 ⇒ M2

M={M ∈ Mod(Σ′) |M |Σi
∈ Mi, i = 1, 2}

� SP1 and SP2 ⇒ M

� SP � Σ

� SP with σ : Σ→Σ′
� Σ′

� SP � Σ � SP ⇒ M
M′ = {M ∈ Mod(Σ′) | M |σ ∈ M}

� SP with σ : Σ→Σ′ ⇒ M′

� SP � Σ′

� SP hide σ : Σ→Σ′
� Σ

� SP � Σ′ � SP ⇒ M
M′ = {M |σ | M ∈ M}

� SP hide σ : Σ→Σ′ ⇒ M′

� SP1 � Σ1 � SP2 � Σ2

Σ1 ⊆ Σ2

� SP1 then free { SP2 } � Σ2

� SP1 � Σ1 � SP2 � Σ2

ι : Σ1→Σ2 is the inclusion
� SP1 ⇒ M1 � SP2 ⇒ M2

M′ = {M | M is Mod(ι)-free over M ι in M2}

� SP1 then free { SP2 } ⇒ M′

M being Mod(ι)-free over M ι in M2 means that for each model M ′ ∈ M2

and model morphism h : M ι → M ′

ι, there exists a unique model morphism

h# : M →M ′ with h#
ι = h.

Fig. 5. Semantics of structured specifications

is non-empty. We also have a simple notion of refinement between specifica-
tions: SP1 refines to SP2, written SP1 ��SP2, if every SP2-model is also an
SP1-model. Given a Σ1-specification SP1 and a Σ2-specification SP2, a spec-
ification morphism σ : SP1 →SP2 is a signature morphism σ : Σ1 →Σ2 such
that for each SP2-model M , M |σ is an SP1-model. Note that σ : SP1 →SP2

is a specification morphism iff SP1 ��SP2 hide σ.
The above description is a somewhat simplified version of the Casl struc-

tured specifications. The first simplification concerns the way signature mor-
phisms are given. It is quite inconvenient to be forced to always write down a
complete signature morphism, listing explicitly how each fully qualified sym-
bol is mapped. As a solution to this problem, Casl provides a notion of symbol
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maps, based on an appropriate notion of an institution with symbols. Symbol
maps are a very concise notation for signature morphisms. Qualifications with
profiles, symbols that are mapped identically and even those whose mapping
is determined uniquely may be omitted.

The second simplification concerns the fact that it is often very convenient
to define specifications as extensions of existing specifications. For example,
in SPEC then free { SPEC′ }, typically SPEC′ is an extension of SPEC, and one
does not really want to repeat all the declarations in SPEC again in SPEC′ just
for the sake of turning SPEC′ into a self-contained specification. Therefore,
Casl has a construct SP then SP ′, where SP ′ can be a specification fragment
that is interpreted in the context (referred to as the local environment) coming
from SP . This extension construct can be simulated using a translation along
a signature inclusion and a union.

Details of these features can be found in [9, 35, 49].

6.2 A Proof Calculus for Structured Specifications

As explained above, the semantics of Casl structured specifications is para-
metrized over an institution that provides the semantics of the basic specifica-
tions. The situation for the proof calculus is similar: here, we need a logic, i.e.
an institution equipped with an entailment system. Based on this, it is possi-
ble to design a logic-independent proof calculus [15] for proving entailments of
the form SP � ϕ, where SP is a structured specification and ϕ is a formula; see
Fig. 6. Figure 7 shows an extension of the structured proof calculus to refine-
ments between specifications. Note that for the latter calculus, an oracle for
conservative extensions is needed. A specification morphism σ : SP1→SP2 is
conservative iff each SP1-model is the σ-reduct of some SP2-model.9

(CR)
{SP � ϕi}i∈I {ϕi}i∈I � ϕ

SP � ϕ
(basic)

ϕ ∈ Γ
〈Σ,Γ 〉 � ϕ

(sum1 )
SP1 � ϕ

SP1 and SP2 � ι1(ϕ)
(sum2 )

SP2 � ϕ
SP1 and SP2 � ι2(ϕ)

(trans) SP � ϕ
SP with σ � σ(ϕ)

(derive)
SP � σ(ϕ)

SP hide σ � ϕ

Fig. 6. Proof calculus for entailment in structured specifications

9 Besides this model-theoretic notion of conservativeness, there also is a weaker
consequence-theoretic notion: SP2 |= σ(ϕ) implies SP1 |= ϕ. There is a proof-
theoretic notion coinciding with the consequence-theoretic one for complete logics:
SP2 � σ(ϕ) implies SP1 � ϕ. For the calculus of refinement, we need the model-
theoretic notion.
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(Basic) SP � Γ
〈Σ, Γ 〉 � SP

(Sum) SP1 with ι1 � SP SP2 with ι2 � SP
SP1 and SP2 � SP

(Trans1)
SP � SP ′

with θ θ = σ−1

SP with σ � SP ′
(Trans2)

SP � SP ′
hide σ

SP with σ � SP ′

(Derive) SP � SP ′′

SP hide σ � SP ′

if σ : SP ′→SP ′′

is conservative

(Trans-equiv)
(SP with σ) with θ � SP ′

SP with σ; θ � SP ′

Fig. 7. Proof calculus for refinement of structured specifications

Theorem (Soundness [15]) The calculus for structured entailment is sound,
i.e. SP � ϕ implies SP |= ϕ. Also, the calculus for refinement between finite
structured specifications is sound, i.e. SP1 � SP2 implies SP1 ��SP2.

Before we can state a completeness theorem, we need to formulate some
technical assumptions about the underlying institution I.

An institution has the Craig interpolation property if for any pushout

Σ
σ1 � Σ1

Σ2

σ2

� θ1 � Σ′

θ2

�

and any Σ1-sentence ϕ1 and any Σ2-sentence ϕ2, with

θ2(ϕ1) |= θ1(ϕ2),

there exists a Σ-sentence ϕ (called the interpolant) such that

ϕ1 |= σ1(ϕ) and σ2(ϕ) |= ϕ2.

A cocone for a diagram in Sign is called (weakly) amalgamable if it is
mapped to a (weak) limit under Mod. I (or Mod) admits (finite) (weak)
amalgamation if the (finite) colimit cocones are (weakly) amalgamable, i.e.
if Mod maps (finite) colimits to (weak) limits. An important special case
is that of pushouts in the signature category, which are prominently used,
for instance, in instantiations of parametrized specifications; see Sect. 6.3.
(Recall also that finite limits can be constructed from pullbacks and terminal
objects, so that finite amalgamation reduces to preservation of pullbacks and
terminal objects, and, dually, pushouts and initial objects). Here, the (weak)
amalgamation property requires that a pushout
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Σ � Σ1

Σ2

�
� ΣR

�

in Sign is mapped by Mod to a (weak) pullback

Mod(Σ) � Mod(Σ1)

Mod(Σ2)

�

� Mod(ΣR)

�

of categories. Explicitly, this means that any pair (M1,M2) ∈ Mod(Σ1) ×

Mod(Σ2) that is compatible in the sense that M1 and M2 reduce to the
same Σ-model can be amalgamated to a unique ΣR-model M , (or weakly
amalgamated to a not necessarily unique model; i.e. there exists a (unique)
M ∈ Mod(ΣR) that reduces to M1 and M2, respectively), and similarly for
model morphisms.

An institution has conjunction if for any Σ-sentences ϕ1 and ϕ2, there is
a Σ-sentence ϕ that holds in a model iff ϕ1 and ϕ2 hold. The notion of an
institution having implication is defined similarly.

Theorem (Completeness [15]) Under the assumptions that

• the institution has the Craig interpolation property,
• the institution admits weak amalgamation,
• the institution has conjunction and implication, and
• the logic is complete,

the calculi for structured entailment and refinement between finite structured
specifications are complete.

In fact, the assumption of Craig interpolation and weak amalgamation can
be restricted to those diagrams for which it is really needed. Details can be
found in [15]. Notice, though, that even a stronger version of the interpolation
property, namely Craig-Robinson interpolation as in [20], still needs closure
of the set of sentences under implication in order to ensure the completeness
of the above compositional proof system.

A problem with the above result is that Craig interpolation often fails, for
example, it does not hold for the Casl institution SubPCFOL= (although
it does hold for the sublanguage with sort-injective signature morphisms and
without subsorts and sort generation constraints; see [13]). This problem may
be overcome by adding a “global” rule to the calculus, which does a kind of
normal-form computation, while maintaining the structure of specifications
to guide proof search as much as possible; see [41, 42].
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Checking Conservativity in the Casl Institution

The proof rules for refinement are based on an oracle that checks the con-
servativeness of extensions. Hence, logic-specific rules for checking conserva-
tiveness are needed. For Casl, conservativeness can be checked by syntactic
criteria, for example, free types and recursive definitions over them are al-
ways conservative. But more sophisticated rules are also available; see [44].
Note that checking conservativeness is at least as complicated as checking
non-provability: for a Σ-specification SP , SP �|= ϕ iff SP and 〈Σ, {¬ϕ}〉 is
consistent iff SP and 〈Σ, {¬ϕ}〉 is conservative over the empty specification.
Hence, even checking conservativeness in first-order logic is not recursively
enumerable, and thus there is no recursively axiomatized complete calculus
for this task.10

Proof Rules for Free Specifications

An institution-independent proof theory for free specifications has not been
developed yet (and it is not known whehter this is feasible at all). Hence,
for free specifications, one needs to develop proof support for each institution
separately. For the Casl institution, this has been sketched in [40]. The main
idea is just to mimic the construction of a quotient term algebra, and to
restrict proof support to those cases (e.g. Horn clause theories) where the free
model is given by such a construction. Details can be found in [40].

6.3 Named and Parametrized Specifications and Views

Structured specifications may be named, so that a reuse of a specification may
be replaced by a reference to it through its name. A named specification may
declare some parameters, the union of which is extended by a body; it is then
called generic. This is written as

spec SpName[ParSp] = BodySp,

where BodySp is an extension of ParSp. See Fig. 3 for an example of a generic
specification of lists.

A reference to a generic specification should instantiate it by providing,
for each parameter, an argument specification together with a fitting mor-
phism from the parameter to the argument specification. Fitting may also be

10 The situation is in fact even more subtle. The model-theoretic notion of conser-
vative extension (or, equivalently, of refinement between specifications involving
hiding) corresponds to second-order existential quantification. It is well known
that the semantics of second-order logic depends on the background set theory
[32]. For example, one can build a specification and an extension of it that is
conservative (or, equivalently, provide another specification to which it refines) iff
the continuum hypothesis holds–a question that is independent of our background
metatheory ZFCU .
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achieved by (explicit) use of named views between the parameter and argu-
ment specifications. The union of the arguments, together with the translation
of the generic specification by an expansion of the fitting morphism, corre-
sponds to a pushout construction–taking into account any explicit imports of
the generic specification, which allow symbols used in the body to be declared
also by arguments.

Since parametrization may be expressed in terms of union and translation,
we omit its semantics and proof rules here.

Semantically, a view v : SP1 →SP2 from a Σ1-specification SP1 to a Σ2-
specification SP2 is basically a specification morphism σ : SP1→SP2, leading
to a proof obligation SP1 � SP2 hide σ. A similar proof obligation is gener-
ated for anonymous instantiations of parametrized specifications (i.e. instan-
tiations not given by a named view).

Naming specifications and referencing them by name leads to graphs of
specifications. This is formalized as a development graph [41, 42, 44], which
expresses sharing between specifications, thereby leading to a more efficient
proof calculus, and providing management of proof obligations and proofs for
structured specification, as well as management of change.

7 Architectural Specifications

Architectural specifications in Casl provide a means for stating how imple-
mentation units are used as building blocks for larger components. (Dynamic
interaction between modules and dynamic changes of software structure are
currently beyond the scope of this approach.)

Identifier List

ProgramText
���

AbstractSyntax
�

SymbolTable

�

Parser
�

StaticAnalyser
��

CodeGenerator

�

Compiler

� ��

Fig. 8. Structure of the specification of a compiler. The arrows indicate the extension
relations between specifications

Units are represented as names with which a specification is associated.
Such a named unit is to be thought of as an arbitrarily selected model of
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the specification. Units may be parametrized, whereby specifications are as-
sociated with both the parameters and the result. The result specification is
required to extend the parameter specifications. A parametrized unit is to be
understood as a function which, given models of the parameter specifications,
outputs a model of the result specification; this function is required to be
persistent in the sense that reducing the result to the parameter signatures
reproduces the parameters.

Units can be assembled via unit expressions, which may contain operations
such as renaming or hiding of symbols, amalgamation of units, and application
of a parametrized unit. Terms containing such operations will only be defined
if symbols that are identified, for example, by renaming them to the same
symbol or by amalgamating units that have symbols in common, are also
interpreted in the same way in all “collective” models of the units defined so
far.

An architectural specification consists of declarations and/or definitions of
a number of units, together with a way of assembling them to yield a result
unit.

Example 1 A (fictitious) specification structure for a compiler might look
roughly as depicted in Fig. 8. The corresponding architectural specification in
Casl might have the following form:

arch spec BuildCompiler =
units I : Identifier with sorts Identifier ,Keyword ;

L : Elem → List[Elem];
IL = L[I fit sort Elem �→ Identifier ]
KL = L[I fit sort Elem �→ Keyword ]
PT : ProgramText given IL, KL;
AS : AbstractSyntax given PT ;
ST : SymbolTable given PT ;
P : Parser given AS ;
SA : StaticAnalyser given AS , ST ;
CG : CodeGenerator given ST

result P and SA and CG
end

(Here, the keyword with is used just to list some of the defined symbols.
The keyword given indicates imports.) According to the above specification,
the parser, the static analyser and the code generator would be constructed
building upon a given abstract syntax and a given mechanism for symbol ta-
bles, and the compiler would be obtained by just putting together the former
three units. Roughly speaking, this is only possible (in a manner that can
be statically checked) if all symbols that are shared between the parser, the
static analyser and the code generator already appear in the units for the
abstract syntax or the symbol tables–otherwise, incompatibilities might occur
that make it impossible to put the separately developed components together.
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For instance, if both StaticAnalyser and CodeGenerator declare an op-
eration lookup that serves to retrieve symbols from the symbol table, then
the corresponding implementations might turn out to be substantially differ-
ent, so that the two components fail to be compatible. Of course, this points
to an obvious flaw in the architecture: lookup should have been declared in
SymbolTable.

Consider an institution with unions I = (Sign,Sen,Mod, |=). We assume
that the signature category is finitely cocomplete and that the institution
admits amalgamation. We also assume that signature unions are exhaustive
in the sense that, given two signatures Σ1 and Σ2 and their union Σ1

ι1

−→

(Σ1 ∪ Σ2)
ι2

←− Σ2, for any models M1 ∈ Mod(Σ1) and M2 ∈ Mod(Σ2),
there is at most one model M ∈ Mod(Σ1 ∪ Σ2) such that M ι1

= M1 and
M ι2

= M2. We formally present a small but representative subset of the Casl

architectural specifications in such a framework. This fragment–or, rather, its
syntax–is given in Fig. 9.

Architectural specifications: ASP ::= arch spec Dcl∗ result T

Unit declarations: Dcl ::= U : SP | U : SP1

τ
−→ SP2

Unit terms: T ::= U | U [T fit σ] | T1 and T2

Fig. 9. A fragment of the architectural specification formalism

Example 1 additionally uses unit definitions and imports. Unit definitions
U = T introduce a (non-parametrized) unit and give its value by means of a
unit term. Imports can be regarded as syntactical sugar for a parametrized
unit which is instantiated only once: if U1 : SPEC1, then

U2 : SPEC2 given U1

abbreviates

U ′
2

: SPEC1 → SPEC2 ;
U2 =U ′

2
[U1 ].

We now sketch the formal semantics of our language fragment and show
how the correctness of such specifications may be established.

7.1 Semantics of Architectural Specifications

The semantics of architectural specifications introduced above is split into
static and model semantics, in very much the same way as was done for
structured specifications in Sect. 6.

Unit terms are statically elaborated in a static context Cst = (Pst ,Bst ),
where Pst maps parametrized unit names to signature morphisms and Bst

maps non-parametrized unit names to their signatures. We require the do-
mains of Pst and Bst to be disjoint. The empty static context that consists
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of two empty maps will be written as C ∅

st
. Given an initial static context, the

static semantics for unit declarations produces a static context by adding the
signature for a newly introduced unit, and the static semantics for unit terms
determines the signature for the resulting unit.

� UDD∗
� Cst Cst � T � Σ

� arch spec UDD∗
result T � (Cst , Σ)

C ∅

st � UDD1 � (Cst )1 · · · (Cst )n−1 � UDDn � (Cst )n

� UDD1 . . .UDDn � (Cst )n

� SP � Σ U ∈ (Dom(Pst ) ∪ Dom(Bst ))

(Pst ,Bst ) � U : SP � (Pst ,Bst + {U �→ Σ})

� SP1 � Σ1 � SP2 � Σ2 τ : Σ1 → Σ2

U ∈ (Dom(Pst) ∪ Dom(Bst ))

(Pst , Bst) � U : SP1

τ
−→ SP2 � (Pst + {U �→ τ},Bst )

U ∈ Dom(Bst )

(Pst , Bst) � U � Bst(U )

Pst(U ) = τ : Σ → Σ′ Cst � T � ΣT σ : Σ→ΣT

(τ ′ : ΣT → Σ′

T , σ′ : Σ′ → Σ′

T ) is the pushout of (σ, τ )

(Pst ,Bst ) � U [T fit σ] � Σ′

T

Cst � T1 � Σ1 Cst � T2 � Σ2

Σ = Σ1 ∪ Σ2 with inclusions ι1 : Σ1 → Σ, ι2 : Σ2 → Σ

(Pst ,Bst ) � T1 and T2 � Σ

Fig. 10. Static semantics of architectural specifications

In terms of the model semantics, a (non-parametrized) unit M over a
signature Σ is just a model M ∈ Mod(Σ). A parametrized unit F over a
parametrized unit signature τ : Σ1 → Σ2 is a persistent partial function
F : Mod(Σ1) ⇀ Mod(Σ2) (i.e. F (M) τ = M for each M ∈ Dom(F )).

The model semantics for architectural specifications involves interpreta-
tions of unit names. These are given by unit environments E, i.e. finite maps
from unit names to units as introduced above. On the model-semantics side,
the analogue of a static context is a unit context C, which is just a class of
unit environments, and can be thought of as a constraint on the interpreta-
tion of unit names. The unconstrained unit context, which consists of all en-
vironments, will be written as C

∅. The model semantics for unit declarations
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modifies unit contexts by constraining the environments to interpret newly
introduced unit names as determined by their specification or definition.

A unit term is interpreted by a unit evaluator UEv , a function that yields a
unit when given a unit environment in the unit context (the unit environment
serves to interpret the unit names occurring in the unit term). Hence, the
model semantics for a unit term yields a unit evaluator, given a unit context.

� UDD∗ ⇒ C C � T ⇒ UEv

� arch spec UDD∗
result T ⇒ (C,UEv)

C∅ � UDD1 ⇒ C1 · · · Cn−1 � UDDn ⇒ Cn

� UDD1 . . .UDDn ⇒ Cn

� SP ⇒ M

C � U : SP ⇒ C × {U �→ M}

� SP1 ⇒ M1 � SP2 ⇒ M2

F = {F : M1→M2 | for M ∈ M1, F (M) τ = M}

C � U : SP1

τ
−→ SP2 ⇒ C × {U �→ F}

C � U ⇒ {E �→ E (U ) | E ∈ C}

C � T ⇒ UEv

for each E ∈ C, UEv(E ) σ ∈ Dom(E (U ))
o

(∗)

for each E ∈ C, there is a unique M ∈ Mod(Σ′

T ) such that
M τ ′ = UEv(E ) and M σ′ = E (U )(UEv(E ) σ)

ff

(∗∗)

UEv ′ = {E �→ M | E ∈ C, M τ ′ = UEv(E ), M σ′ = E (U )(UEv(E ) σ)}

C � U [T fit σ] ⇒ UEv ′

C � T1 ⇒ UEv1 C � T2 ⇒ UEv2

for each E ∈ C, there is a unique M ∈ Mod(Σ) such that
M ι1 = UEv1(E ) and M ι2 = UEv2(E )

ff

(∗∗∗)

UEv = {E �→ M | E ∈ C and M ι1 = UEv1(E ),M ι2 = UEv2(E )}

C � T1 and T2 ⇒ UEv

Fig. 11. Model semantics of architectural specifications

The complete semantics is given in Figs. 10 (static semantics) and 11
(model semantics), where we use some auxiliary notation: given a unit context
C, a unit name U and a class V ,

C × {U �→ V} := {E + {U �→ V } | E ∈ C,V ∈ V},



266 T. Mossakowski, A. Haxthausen, D. Sannella and A. Tarlecki

where E + {U �→ V } maps U to V and otherwise behaves like E . The
model semantics assumes that the static semantics has been successful on the
constructs considered; we use the notation introduced by this derivation of
the static semantics in the model-semantics rules whenever convenient.

The model semantics is easily seen to be compatible with the static se-
mantics in the following sense: we say that C fits Cst = (Pst ,Bst ) if, whenever
Bst (U ) = Σ and E ∈ C, then E(U ) is a Σ-model, and a corresponding condi-
tion holds for Pst . Obviously, C∅ fits C ∅

st . Now, if C fits Cst , then Cst � T �Σ

and C � T ⇒ UEv imply that UEv(E) is a Σ-model for each E ∈ C. Corre-
sponding statements hold for the other syntactic categories (unit declarations
and architectural specifications).

We say that an architectural specification is internally correct (or simply
correct) if it has both a static and a model semantics. Informally, this means
that the architectural design the specification captures is correct in the sense
that any realization of the units according to their specifications allows us to
construct an overall result by performing the construction prescribed by the
resulting unit term.

Checking the correctness of an architectural specification requires checking
that all the rules necessary for derivation of its semantics may indeed be
applied, that is, all their premises can be derived and the conditions that they
capture hold. Perhaps the only steps which require further discussion are the
rules of the model semantics for unit application and amalgamation in Fig. 11.
Only there do some difficult premises occur, marked by (∗), (∗∗) and (∗∗∗).
All the other premises of the semantic rules are “easy” in the sense that they
largely just pass on the information collected about various parts of the given
phrase, or perform a very simple check that names are introduced before being
used, signatures fit as expected, etc.

First we consider the premises (∗∗) and (∗∗∗) in the rules for unit ap-
plication and amalgamation, respectively. They impose “amalgamability re-
quirements”, which are necessary to actually build the expected models by
combining simpler models, as indicated. Such requirements are typically ex-
pected to be at least partially discharged by static analysis–similarly to the
sharing requirements present in some programming languages (cf. e.g. Stan-

dard ML [53]). Under our assumptions, the premise (∗∗) may simply be
skipped, as it always holds (since all parametrized units are persistent func-
tions, E (U )(UEv(E ) σ) τ = UEv (E ) σ, and so the required unique model

M ∈ Mod(Σ′

T
) exists by the amalgamation property of the institution). The

premise (∗∗∗) may fail, though, and a more subtle static analysis of the de-
pendencies between units may be needed to check that it holds for a given
construct.

The premise (∗) in the rule for application of a parametrized unit requires
that the fitting morphism correctly “fits” the actual parameter as an argument
for the parametrized unit. To verify this, one typically has to prove that the
fitting morphism is a specification morphism from the argument specification
to the specification of the actual parameter. Similarly to the case of the proof
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obligations arising with instantiations of parametrized specifications discussed
in Sect. 6.3, this in general requires some semantic or proof-theoretic reason-
ing. Moreover, a suitable calculus is needed to determine a specification for
the actual parameter. One possible naive attempt to provide it might be to
build such a specification inductively for each unit term using specifications
of its components directly. Let SPT be such a specification for a term T . In
other words, verification conditions aside,

• SPU is SP , where U : SP is the declaration of U ;
• SPT1 and T2

is (SPT1
and SPT2

);

• SPU [T fit σ] is ((SPT with τ ′) and (SP ′ with σ′)), where U : SP
τ

−→

SP ′ is the declaration of U and (τ ′, σ′) is the pushout of (σ, τ), as in the
corresponding rule of the static semantics.

It can easily be seen that the SPT so determined is indeed a correct spec-
ification for T , in the sense that if Cst � T � Σ and C � T ⇒ UEv then
� SPT �Σ and � SPT ⇒ M, with UEv(E ) ∈ M for each E ∈ C. Therefore,
we could replace the requirement (∗) by SP ��SPT hide σ.

However, this would be highly incomplete. Consider a trivial example:

units U : {sort s ; op a : s}
ID : {sort s ; op b : s} → {sort s ; op b : s}
F : {sort s ; op a, b : s ; axiom a = b} → . . .

result F [ U and ID [U fit b �→ a] ]

The specification we obtain for the argument unit term of F does not capture
that fact that a = b holds in all units that may actually arise as the argu-
ment for F here. The problem is that the specification for a unit term built
as above disregards entirely any dependencies and sharing that may occur
between units denoted by unit terms, and so is often insufficient to verify the
correctness of unit applications. Hence, this first try to calculate specifications
for architectural unit terms turns out to be inadequate, and a more complex
form of architectural verification is needed.

7.2 Verification

The basic idea behind verification for architectural specifications is that we
want to extend the static information about units to capture their proper-
ties by an additional specification. However, as discussed at the end of the
previous section, we must also take into account sharing between various unit
components, resulting from inheritance of some parts of units via, for instance,
parametrized unit applications. To capture this, we accumulate information
about non-parametrized units into a single global signature ΣG, and represent
non-parametrized unit signatures as morphisms into this global signature, as-
signing them to unit names by a map Bv . The additional information resulting
from the unit specifications is then accumulated into a single global specifica-
tion SPG over this signature (i.e. we always have � SPG � ΣG). Finally, of
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� Dcl∗ :: Cv Cv � T :: Σ
i

−→ SP ′

G

θ
←− SPG

� arch spec Dcl∗ result T :: SP ′

G hide i

C ∅

v � Dcl1 :: (Cv )1 · · · (Cv )n−1 � Dcln :: (Cv )n

� Dcl1 . . .Dcln :: (Cv)n

U ∈ (Dom(Pv) ∪ Dom(Bv )) � SP � Σ

(ΣG
θ

−→ Σ′

G

i
←− Σ) is the coproduct of ΣG and Σ

(Pv ,Bv ,SPG) � U : SP ::
(Pv , (Bv ; θ) + {U �→ i}, (SPG with θ) and (SP with i))

U ∈ (Dom(Pv) ∪ Dom(Bv ))

(Pv ,Bv ,SPG) � U : SP1

τ
−→ SP2 :: (Pv + {U �→ SP1

τ
−→ SP2},Bv ,SPG)

Bv (U ) = Σ
i

−→ SPG

(Pv , Bv ,SPG) � U :: Σ
i

−→ SPG
id
←− SPG

(Pv ,Bv ,SPG) � T :: ΣT
i

−→ SP ′

G

θ
←− SPG

Pv (U ) = SP
τ

−→ SP ′ � SP � Σ � SP ′
� Σ′ σ : Σ → ΣT

(τ ′ : ΣT → Σ′

T , σ′ : Σ′ → Σ′

T ) is the pushout of (σ, τ )
(τ ′′ : Σ′

G → Σ′′

G, i′ : Σ′

T → Σ′′

G) is the pushout of (i, τ ′)
SP with σ; i � SP ′

G

(Pv ,Bv ,SPG) � U [T fit σ] ::

Σ′

T

i′

−→ (SP ′

G with τ ′′) and (SP ′
with σ′; i′)

θ; τ ′′

←− SPG

(Pv ,Bv ,SPG) � T1 :: Σ1

i1−→ SP1
G

θ1←− SPG

(Pv ,Bv ,SPG) � T2 :: Σ2

i2−→ SP2
G

θ2←− SPG

Σ = Σ1 ∪ Σ2 with inclusions ι1 : Σ1 → Σ, ι2 : Σ2 → Σ

(θ′

2 : Σ1
G → Σ′

G, θ′

1 : Σ2
G → Σ′

G) is the pushout of (θ1, θ2)
j : Σ → Σ′

G satisfies ι1; j = i1; θ′

2 and ι2; j = i2; θ′

1

(Pv ,Bv , SPG) � T1 and T2 ::

Σ1 ∪ Σ2

j
−→ (SP1

G with θ′

2) and (SP2
G with θ′

1)
θ1; θ′

2←− SPG

Fig. 12. Verification rules

course, we store the entire specification for each parametrized unit, assigning
these specifications to parametrized unit names by a map Pv . This results
in the concept of a verification context Cv = (Pv ,Bv ,SPG). A static unit
context ctx (Cv ) = (Pst ,Bst ) may easily be extracted from such an extended
context: for each U ∈ Dom(Bv ), Bst (U ) = Σ, where Bv (U ) = i : Σ → ΣG,

and for each U ∈ Dom(Pv ), Pst (U ) = τ , where Pv (U ) = SP1

τ

−→ SP2.
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Given a morphism θ : ΣG → Σ′

G
that extends the global signature (or a

global specification morphism θ : SPG → SP ′

G
) we write Bv ; θ for the corre-

sponding extension of Bv (mapping each U ∈ Dom(Bv ) to Bv (U ); θ). C ∅
v is

the “empty” verification context (with the initial global specification11).
The intuition described above is reflected in the form of verification judge-

ments, and captured formally by verification rules,

� ASP :: SP

Architectural specifications yield a specification of the result,

Cv � Dcl :: C ′
v

In a verification context, unit declarations yield a new verification context,

(Pv ,Bv ,SPG) � T :: Σ
i

−→ SP ′

G

θ

←− SPG

In a verification context, unit terms yield their signature embedded into a new
global specification, obtained as an extension of the kind indicated of the old
global specification.

The verification rules used to derive these judgements are shown in Fig. 12,
with diagrams to help one read the more complicated rules for unit application
and amalgamation given in Fig. 13.

Σ

ΣT

Σ′

Σ′

T

�
σ

�
τ

�τ ′

�
σ′

ΣG Σ′

G Σ′′

G
�θ �τ ′′

�
i

�
i′

ΣG

Σ1
G

Σ2
G

Σ1

Σ2

Σ1 ∪ Σ2 Σ′

G

�
�

�
���

θ2

�
�

�
���

θ1

�i1

�
i2

			

ι1

����
ι2

�j

�

θ′

2

�����������

θ′

1

Fig. 13. Diagrams for unit application and amalgamation

11 More precisely, this is the basic specification consisting of the initial signature
with no axioms.
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It should be easy to see that the verification semantics subsumes (in the
obvious sense) the static semantics: a successful derivation of the verification
semantics ensures a successful derivation of the static semantics with results
that may be extracted from the results of the verification semantics in the
obvious way.

More crucially, a successful derivation of the verification semantics of an
architectural specification ensures a successful derivation of the model seman-
tics, and hence the correctness of the architectural specification.

To state this more precisely, we need an extension to verification contexts
of the notion that a unit context fits a static context: a unit context Cv fits a
verification context Cv = (Pv ,Bv ,SPG), where � SPG ⇒ MG, if

• for each E ∈ C and U ∈ Dom(Pv ) with Pv (U ) = SP
τ

−→ SP ′, where
� SP ⇒ M and � SP ′

⇒ M
′, we have E (U )(M) ∈ M

′ for all M ∈ M,
and

• for each E ∈ C, there exists MG ∈ MG such that for all U ∈ Dom(Bv ),
E (U ) = MG Bv (U ); we say then that E is witnessed by MG.

Now, the following claims follow by induction:

• For every architectural specification ASP , if � ASP :: SP with � SP ⇒ M,
then � ASP ⇒ (C,UEv) for some unit context C and unit evaluator UEv
such that UEv(E ) ∈ M for all E ∈ C.

• For any unit declaration Dcl and verification context Cv , if Cv � Dcl :: C ′
v
,

then for any unit context C that fits Cv , C � Dcl ⇒ C
′ for some unit

context C
′ that fits C ′

v
; this generalizes to sequences of unit declarations

in the obvious way.
• For any unit term T and verification context Cv = (Pv ,Bv ,SPG), where

� SPG ⇒ MG, if Cv � T :: Σ
i

−→ SP ′

G

θ

←− SPG, where � SP ′

G
⇒ M

′

G
,

then for any unit context C that fits Cv , C � T ⇒ UEv for some unit
evaluator UEv such that for each E ∈ C witnessed by MG ∈ MG, there
exists a model M ′

G
∈ M

′

G
such that M ′

G θ = MG and M ′

G i = UEv(E ).

In particular, this means that a successful derivation of the verification
semantics ensures that in the corresponding derivation of the model semantics,
whenever the rules for unit application and amalgamation are invoked, the
premises marked by (∗), (∗∗) and (∗∗∗) hold. This may also be seen somewhat
more directly:

(∗) Given the above relationship between verification and model semantics, the
requirement (∗) in the model-semantics rule for unit application follows from
the requirement that SP with σ; i � SP ′

G
in the corresponding verification

rule.

(∗∗) As pointed out already, the premises marked by (∗∗) may be removed by
the assumption that the institution that we are working with admits amalga-
mation.
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(∗∗∗) Given the above relationship between verification and model semantics,
the existence of the models required by (∗∗∗) in the model-semantics rule for
unit amalgamation can be shown by gradually constructing a compatible fam-
ily of models over the signatures in the corresponding diagram in Fig. 13 (this
requires amalgamation again); the uniqueness of the model so constructed
follows from our assumption about signature union.

Note that only the checking of the requirement (∗) relies on the informa-
tion contained in the specifications built for the unit terms by the verification
semantics. The other requirements are entirely “static”, in the sense that they
may still be checked if we replace the specifications by their signatures. This
may be used to split the verification semantics into two parts: an extended
static analysis, performed without taking specifications into account, but con-
sidering in detail all the mutual dependencies between units involved to check
properties such as those labelled by (∗∗) and (∗∗∗); and a proper verification
semantics, aimed at considering unit specifications and deriving specifications
for unit terms from them. See [67] for details.

7.3 Enriched Casl, Diagram Semantics and the Cell Calculus

The verification semantics of architectural specifications presented in the
Sect. 7.2 depends crucially on amalgamation in the underlying institution.
However, the Casl institution fails to have this property.

Example 2 The simplest case where amalgamation fails is the following: let
Σ be the signature with sorts s and t and no operations, and let Σ1 be the
extension of Σ by the subsort relation s ≤ t. Then the pushout

Σ � Σ1

Σ1

�
� Σ1

�

in SubSig fails to be amalgamable (since two models of Σ1 that are com-
patible with respect to the inclusion of Σ may interpret the subsort injection
differently).

The solution is to embed the Casl institution into an institution that
possesses the amalgamation property. The main idea in the definition of the
required extended institution is to generalize pre-orders of sorts to categories
of sorts, i.e. to admit several different subsort embeddings between two given
sorts; this gives rise to the notion of an enriched Casl signature. Details can
be found in [63]. This means that before a Casl architectural specification
can be statically checked and verification conditions can be proved, it has to
be translated to enriched Casl, using such an embedding.
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One might wonder why the mapping from subsorted to many-sorted spec-
ifications introduced in Sect. 4 is not used instead of introducing enriched
Casl. Indeed, this is possible. However, enriched Casl has the advantage of
keeping the subsorting information entirely static, avoiding the need for any
axioms to capture the built-in structural properties, as would be the case with
the mapping described in Sect. 4.

This advantage plays a role in the diagram semantics of architectural spec-
ifications. This replaces the global signatures that are used in the static se-
mantics by diagrams of signatures and signature morphisms; see [9]. In the
“extended static part” of the verification semantics, the commutativity con-
ditions concerning signature morphisms into the global signature have then
to be replaced by model-theoretic amalgamation conditions. Given an em-
bedding into an institution with amalgamation such as that discussed above,
the latter conditions are equivalent to factorization conditions on the colimit
of the embedded diagram. For (enriched) Casl, these factorization condi-
tions can be dealt with using a calculus called the cell calculus) for proving
equality of morphisms and symbols in the colimit; see [29]. A verification se-
mantics without reference to overall global specifications (and which relies on
the amalgamation property) and consequently with more “local” verification
conditions is yet to be worked out.

8 Refinement

The standard development paradigm of algebraic specification [5] postulates
that formal software development begins with a formal requirement specifi-
cation (extracted from a software project’s informal requirements) that fixes
only some expected properties but, ideally, says nothing about implementa-
tion issues; this is to be followed by a number of refinement steps that fix
more and more details of the design, so that one finally arrives at what is
often termed the design specification. The last refinement step then results in
an actual implementation in a programming language.

One aspect of refinement concerns the way that the specified model class
becomes smaller and smaller as more and more design decisions are made
during the refinement process, until a monomorphic design specification or
program is reached. This is reflected by Casl’s concepts of views and the
corresponding refinement relation �� between specifications as introduced in
Sect. 6. However, views are not expressive enough for refinement, being pri-
marily a means for naming fitting morphisms for parametrized specifications.
This is because there are more aspects of refinement than just model class
inclusion.

One central issue here is constructor refinement [61]. This includes the ba-
sic constructions for writing implementation units that can be found in pro-
gramming languages, for example, enumeration types, algebraic data types
(that is, free types) and recursive definitions of operations. Also, unit terms
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in architectural specifications can be thought of as (logic-independent) con-
structors: they construct larger units out of smaller ones. Refinements may
use these constructors, and hence the task of implementing a specification
may be entirely discharged (by supplying appropriate constructs in some pro-
gramming language), or it may be reduced (via an architectural specification)
to the implementation of smaller specifications. A first refinement language
following these lines is described in [46]. On the one hand, in this language,
one can express chains of model class inclusions, such as

refinement R1 =
Sp1 refined to

Sp2 refined to Sp3

end

which expresses that the model class of Sp3 is included in that of Sp2, which
is in turn included in the model class of Sp1. On the other hand, it is possible
to refine structured specifications into architectural specifications, introducing
a branching into the development:

refinement R2 =
Sp1 refined to arch spec Asp

end

Architectural specifications can be further refined by refining their com-
ponents, as in:

refinement R3 =
SP refined to arch spec units

K : SP ′
→ SP

A′ : SP ′

result K(A′)
then {K to USP ,

A′ to arch spec units

K ′ : SP ′′
→ SP ′

A′′ : SP ′′

result K ′(A′′)}
then {A′ to {K ′ to USP ′

}}

Here, “then” denotes composition of refinements. Details and the formal se-
mantics can be found in [46].

A second central issue concerns behavioural refinement. Often, a refined
specification does not satisfy the initial requirements literally, but only up to
some sort of behavioural equivalence. For example, if stacks are implemented
as arrays-with-pointer, then two arrays-with-pointer differing only in their
“junk” entries (that is, those beyond the pointer) exhibit the same behaviour
in terms of stack operations. Hence, they correspond to the same abstract
stack and should be treated as being the same for the purpose of refinement.
This can be achieved by using, for example, observational equivalences be-
tween models, which are usually induced by sets of observable sorts [12, 59].
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9 Tools

A language will be used only if good tool support is available. The Hetero-
geneous Tool Set (Hets) [45] collects several tools around Casl. It provides
tool support for all layers of Casl, as well as for Casl sublanguages and
extensions.

Hets consists of parsing, static-analysis and proof management tools, com-
bining various such tools for individual specification languages, thus providing
a tool for heterogeneous multi-logic specification. Hets is based on a graph of
logics and languages (formalized as institutions). The input language of Hets

is Heterogeneous Casl (HetCasl; see [38]). HetCasl includes the structur-
ing constructs of Casl as introduced in Sect. 6. HetCasl extends these with
constructs for the translation of specifications along logic translations. The
semantics of HetCasl specifications is given in terms of the Grothendieck
institution [19, 36]. This institution is basically a flattening, or disjoint union,
of the logic graph.

The central device for structured theorem proving and proof management
in Hets is the formalism of development graphs. Development graphs have
been used in large industrial-scale applications [27]. The graph structure pro-
vides a direct visualization of the structure of specifications, and it also allows
one to manage large specifications with hundreds of subspecifications.

A development graph (see Fig. 14 for an example graph generated by the
specifications given in Sect. 10) consists of a set of nodes (corresponding to
whole structured specifications or parts thereof), and a set of arrows called
definition links, indicating the dependency of each structured specification
involved on its subparts. Each node is associated with a signature and some
set of local axioms. The axioms of other nodes are inherited via definition
links. Definition links are usually drawn as black solid arrows, denoting an
import of another specification that is homogeneous (i.e. stays within the
same logic). Double arrows indicate imports that are heterogeneous, i.e. the
logic changes along the arrow.

Complementary to definition links, which define the theories of related
nodes, theorem links serve for postulating relations between different theories.
Theorem links are the central data structure for representing proof obligations
that arise in formal developments. Theorem links can be global (drawn as solid
arrows) or local (drawn as dashed arrows): a global theorem link postulates
that all axioms of the source node (including the inherited ones) hold in the
target node, while a local theorem link postulates only that the local axioms
of the source node hold in the target node.

The proof calculus for development graphs [40, 42, 44] is given by rules
that allow one to prove global theorem links by decomposing them into simpler
(local and global) ones. Local theorem links can be proved by turning them
into local proof goals (associated with a particular node). The latter, in turn,
can be proved using a logic-specific calculus as given by an entailment system
(see Sect. 2). Currently, the theorem provers Isabelle and SPASS have been
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Fig. 14. Development graph for the warehouse example

linked to Hets, allowing one to perform far more efficient reasoning compared
with working directly with a calculus for basic specifications.

10 Case Study

This section is intended to illustrate how a system can be specified in Casl

and validated/verified using Casl tools. As example we use a specification
of a warehouse system by Baumeister and Bert [7]. This system is an infor-
mation system that keeps track of the stock of products and of orders from
customers, and provides operations for adding, cancelling and invoicing orders,
and adding products to the stock.

We both present the original specification and analyse its formal prop-
erties, which in some places leads to a need to redesign the specification. It
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is quite common that not only programs but also specification have errors
and are subject to correction. A specification may be erroneous because it is
ill-formed (either syntactically, or because it does not have a well-defined se-
mantics according to the rules in Sects. 6 and 7). However, even a well-formed
specification may be invalid in the sense that it does not meet the original
informal specification. We shall see that the calculi developed in Sects. 3.2,
6 and 7 are helpful for detecting both kinds of error. Baumeister and Bert
have revised their specifications in response to the problems reported in this
chapter, see [8].

First we give an overview of the specifications constituting the overall
specification of the warehouse system, and then we present these specifications
in more detail, one by one. Finally, we present an architectural specification
that describes the modular structure of an implementation of the system.

Nat

ORDER
�

STOCK

�

INVOICE
��

List � ORDER QUEUE

�

QUEUES

�

WHS

��

Fig. 15. Structure of the warehouse specification

Figure 15 gives an overview of the specifications and their extension rela-
tions. The objects of the system are products, orders, stocks, and queues of
pending and invoiced orders. The specifications ORDER and STOCK spec-
ify sorts, operations and predicates for orders and stocks, respectively. There
is no separate specification for products, but a sort for products is declared in
ORDER as well as in STOCK. The main purpose of the INVOICE specifi-
cation is to specify an operation for invoicing an order for a product in stock.
The ORDER QUEUE and QUEUES specifications specify various kinds
of queues of orders. The WHS specification is the top-level specification, in
which the main operations of the system are specified.
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10.1 Specification of Some Preliminaries

spec Nat = %mono

free type Nat ::= 0 | suc(Nat)
preds <= , >= : Nat × Nat
ops + : Nat × Nat → Nat ;

−? : Nat × Nat →? Nat
∀ m, n, r, s, t : Nat

%% axioms concerning predicates

• 0 <= n %(leq def1 Nat)%

• ¬ suc(n) <= 0 %(leq def2 Nat)%

• suc(m) <= suc(n) ⇔ m <= n %(leq def3 Nat)%

• m >= n ⇔ n <= m %(geq def Nat)%

%% axioms concerning operations

• 0 + m = m %(add 0 Nat)%

• suc(n) + m = suc(n + m) %(add suc Nat)%

• def m −? n ⇔ m >= n %(sub dom Nat)% %implied

• m −? n = r ⇔ m = r + n %(sub def Nat)%

then %mono

sort Pos = {p: Nat • p = 0}
op suc : Nat → Pos

end

Nat and List (the latter is shown in Fig. 3) are the usual specifications of
natural numbers and lists, taken from the library of Casl basic data types
[50]. The free type declarations are abbreviations for operation declarations
and Peano-like axioms. For example, the free type declaration in the speci-
fication Nat expands to

spec Nat =
sort Nat
ops 0 : Nat ;

suc : Nat → Nat
∀ X1 : Nat ; Y1 : Nat
• suc(X1 ) = suc(Y1 ) ⇔ X1 = Y1 %(ga injective suc)%

• ¬ 0 = suc(Y1 ) %(ga disjoint 0 suc)%

generated {sort Nat
ops 0 : Nat

suc : Nat → Nat %(ga generated Nat)%}

end

where the generated construct leads, in turn, to a sort generation constraint
({nat}, {0; suc}, id).
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spec ORDER =
Nat

then

sorts Order, Product
ops reference : Order → Product ;

ordered qty : Order → Pos
preds is pending, is invoiced : Order
var o: Order
• ¬ is pending(o) ⇔ is invoiced(o)
end

The ORDER specification declares a sort Order for orders, and “observer”
operations reference and ordered qty that, for a given order, give the ordered
product and the ordered quantity (a positive natural number in the sort Pos,
which is a subsort of Nat) of this, respectively. The predicates is pending and
invoiced test whether an order is pending or invoiced, respectively. According
to the axiom, an order is either pending or invoiced.

spec STOCK =
Nat

then

sorts Stock, Product
ops qty : Product × Stock →? Nat ;

add : Product × Pos × Stock →? Stock ;
remove : Product × Pos × Stock →? Stock

pred ∈ : Product × Stock
vars p, p′: Product ; n: Pos ; s : Stock
• def qty(p, s) ⇔ p ∈ s
• def add(p, n, s) ⇔ p ∈ s
• def remove(p, n, s) ⇔ p ∈ s ∧ qty(p, s) ≥ n
• qty(p, add(p, n, s)) = qty(p, s) + n if p ∈ s
• qty(p′, add(p, n, s)) = qty(p′, s) if p ∈ s ∧ p′ ∈ s ∧ ¬ p′ = p
• qty(p, remove(p, n, s)) = qty(p, s) −? n if p ∈ s ∧ qty(p, s) ≥ n
• qty(p′, remove(p, n, s)) = qty(p′, s) if p ∈ s ∧ p′ ∈ s ∧ ¬ p′ = p

end

The STOCK specification declares a sort Stock for stocks and (partial) op-
erations qty, add and remove for providing information about the number of
items of a certain product in stock, and for adding and removing a quantity of
items of a product in stock, respectively. The predicate is in (displayed as ∈)
tests whether a product is in stock. The first three axioms specify when the
partial operations are defined. The remaining axioms specify how the quantity
of a product is changed by the add and remove operations.
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An Unintended Consequence

The STOCK specification has some logical consequences that are clearly
revealed as not being intended when we look at the process that is being
modelled.

The source of the problem is the last axiom. There, remove(p,n,s) may
be undefined as its precondition qty(p,s) ≥ n is not required to hold. As a
consequence, we can prove that each stock contains at most one product:

∀p, p′ : Product; s : Stock . p ∈ s ∧ p′ ∈ s ⇒ p = p′.

It is certainly intended to have stocks with more than one product; hence,
this consequence of the specification is not intended, showing that the speci-
fication is not in accordance with our informal understanding of the problem.
This unintended consequence can be proved using the basic-specification proof
calculus of Sect. 3.2; however, the recognition that this reveals a discrepancy
between the specification and the informal understanding of the problem is
necessarily outside the scope of formal calculi.

We first prove a lemma in the specification Nat, using induction. Recall
that Nat contains the sort generation constraint ({nat}, {0; suc}, id). We
apply the rule Induction with

Ψnat(n) ≡ suc(n) ≤ n ⇒ false.

This means that

ϕ1 ≡ D(0) ⇒ Ψnat(0)
ϕ2 ≡ D(suc(n)) ∧ Ψnat(n) ⇒ Ψnat(suc(n))

We now prove ϕ2. Assume D(suc(n)) ∧ Ψnat(n). By ∧-Elim2, Ψnat(n) ≡

suc(n) ≤ n ⇒ false. Assume that suc(suc(n)) ≤ suc(n). By leq def3 Nat,
∧-Elim1 and ⇒-Elim, suc(n) ≤ n. With Ψnat and ⇒-Elim, we arrive at false .
By ⇒-Intro, we obtain suc(suc(n)) ≤ suc(n) ⇒ false , which is Ψnat(suc(n)).
Again by ⇒-Intro, we obtain D(suc(n)) ∧ Ψnat(n) ⇒ Ψnat(suc(n)), which is
just ϕ2.

ϕ1 is easy: it follows from leq def2 Nat by Substitution. By ∧-Intro, we
then have ϕ1 ∧ ϕ2. Hence, by Induction, we arrive at ∀n : Nat . Ψnat(n),
which is

∀n : Nat . suc(n) ≤ n ⇒ false . (1)

Let us now come to the proof of the unintended consequence of STOCK:

∀p, p′ : Product; s : Stock . p ∈ s ∧ p′ ∈ s ⇒ p = p′.

Using ∀-Intro and ⇒-Intro, we can reduce this to proving that p = p′

follows from
p ∈ s ∧ p′ ∈ s. (2)
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We do this with the rule Tertium non datur. With the assumption p = p′, we
immediately have p = p′. It remains to show p = p′ under the assumption

p = p′ ⇒ false. (3)

From (2) and (3) by ∧-Intro, p ∈ s ∧ p′ ∈ s ∧ p = p′ ⇒ false . With ⇒-
Elim and the last axiom of STOCK,12 qty(p′, remove(p, n, s)) = qty(p′, c).
By Function strictness, D(remove(p, n, s)). With the third axiom of STOCK,
∧-Elim1, ⇒-Elim and ∧-Elim2, we arrive at

qty(p, s) ≥ n, (4)

and by Predicate strictness,

D(qty(p, s)). (5)

From geq defNat in the specification Nat, by ∧-Elim1, m ≥ n ⇒ n ≤ m.
Rules sum1 and trans of the calculus for structured specifications allow
us to use this consequence also in STOCK. By Substitution, we obtain
D(qty(p, s)) ⇒ qty(p, s) ≥ n ⇒ n ≤ qty(p, s). By (5) and (4) using ⇒-Elim
twice, n ≤ qty(p, s). By Substitution,

D(suc(qty(p, s))) ⇒ suc(qty(p, s)) ≤ qty(p, s). (6)

From Totality, we have D(suc(x)), and with Substitution, we obtain
D(qty(p, s)) ⇒ D(suc(qty(p, s))). ⇒-Elim with (5) gives us

D(suc(qty(p, s))).

With ⇒-Elim and (6), we obtain

suc(qty(p, s)) ≤ qty(p, s). (7)

Equation (1), using again the rules of the calculus for structured spec-
ifications, is also derivable in STOCK. With ∀-Elim and Substitution, we
obtain

D(qty(p, s)) ⇒ suc(qty(p, s)) ≤ qty(p, s) ⇒ false

With (5) and (7), using ⇒-Elim twice, we arrive at false . By Absurdity, p = p′,
which is what we needed to prove. �

Of course, this proof is rather detailed and tedious. It shows only how
proofs could be carried out in principle. In practice, one would use an au-
tomated or interactive theorem prover. The Heterogeneous Tool Set (Hets)
provides an interface between Casl and the theorem prover Isabelle, which
can be used to carry out the proof much more succinctly.

The unintended consequence can be avoided by adding the folloowing miss-
ing condition:

• qty(p′, remove(p, n, s)) = qty(p′, s) if
p is in s ∧ p′ is in s ∧ ¬ p′ = p ∧ qty(p, s) ≥ n.

12 Note that ψ if ϕ is syntactical sugar for ϕ ⇒ ψ, and that not ϕ is syntactical
sugar for ϕ ⇒ false.
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10.2 Specification of the Warehouse System

spec INVOICE =
ORDER

and

STOCK

then

free type

Msg ::= success | not pending | not referenced | not enough qty
free type OSM ::= mk(order of :Order ; stock of :Stock ; msg of :Msg)
pred referenced(o: Order ; s : Stock) ⇔ reference(o) ∈ s
pred enough qty(o: Order ; s : Stock) ⇔

ordered qty(o) ≤ qty(reference(o), s)
pred invoice ok(o: Order ; s : Stock) ⇔

is pending(o) ∧ referenced(o, s) ∧ enough qty(o, s)
op invoice order : Order × Stock → OSM
vars o: Order ; s : Stock
• is invoiced(order of (invoice order(o, s))) if invoice ok(o, s)
• stock of (invoice order(o, s)) =

remove(reference(o), ordered qty(o), s) if
invoice ok(o, s)

• order of (invoice order(o, s)) = o if ¬ invoice ok(o, s)
• stock of (invoice order(o, s)) = s if ¬ invoice ok(o, s)
• reference(order of (invoice order(o, s))) = reference(o)
• ordered qty(order of (invoice order(o, s))) = ordered qty(o)
• msg of (invoice order(o, s)) = success if invoice ok(o, s)
• msg of (invoice order(o, s)) = not pending if ¬ is pending(o)
• msg of (invoice order(o, s)) = not referenced if

is pending(o) ∧ ¬ referenced(o, s)
• msg of (invoice order(o, s)) = not enough qty if

is pending(o) ∧ referenced(o, s) ∧ ¬ enough qty(o, s)
end

The INVOICE specification defines a predicate invoice ok for testing the
conditions for invoicing an order with respect to a stock: the order must be
pending, the ordered product must be in stock and the ordered quantity must
be less than or equal to the quantity which is in stock. The definition of
the predicate uses two auxiliary predicates referenced and enough qty, also
defined by this specification. (Note that the definition of predicates is written
in an abbreviated syntax that expands to a predicate declaration contributing
to the signature and an axiom.) The main operation of the specification is
the invoice order operation for invoicing an order with respect to a stock.
It takes an order and a stock as arguments and returns updated versions of
these: the state of the order is changed to “invoiced” and the quantity of the
ordered product in stock is reduced by the ordered quantity, but only if the
order is invoiceable. Furthermore, the operation returns a message providing
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information about whether the operation has succeeded or has failed because
one of the conditions for invoicing failed. The effect of the operation is specified
in an observational style.

spec ORDER QUEUE =
List [ORDER fit Elem �→ Order ] with List [Order ] �→ OQueue

then

pred ∈ : Order × OQueue
vars o, o2 : Order ; oq: OQueue
• ¬ o ∈ [ ]
• o2 ∈ (o :: oq) ⇔ o2 = o ∨ o2 ∈ oq
%% Auxiliary definitions

ops ← : OQueue × Order → OQueue;
remove : Order × OQueue → OQueue

vars o, o2 : Order ; oq: OQueue
• oq ← o = oq ++ [ o ]
• remove(o, [ ]) = [ ]
• remove(o, o2 :: oq) =

o2 :: remove(o, oq) when ¬ o = o2 else remove(o, oq)
end

The specification ORDER QUEUE defines a sort OQueue of queues of or-
ders to be a list in which the elements are orders. This is done by instantiating
the generic List specification shown in Fig. 3 and renaming the resulting sort
List[Order] to OQueue. The predicate is in tests whether an order is in a
given queue. Some auxiliary operations for appending and removing an order
to/from a queue are specified as well.

spec QUEUES =
ORDER QUEUE

then

preds unicity, pqueue, iqueue : OQueue
vars o: Order ; oq: OQueue
• unicity([ ])
• unicity(o :: oq) ⇔ ¬ o ∈ oq ∧ unicity(oq)
• pqueue(oq) ⇔ (∀ x : Order • x ∈ oq ⇒ is pending(x ))
• iqueue(oq) ⇔ (∀ x : Order • x ∈ oq ⇒ is invoiced(x ))
sorts UQueue = {oq: OQueue • unicity(oq)};

PQueue = {uq: UQueue • pqueue(uq)};
IQueue = {uq: UQueue • iqueue(uq)}

end

The QUEUES specification defines three subsorts of OQueue: UQueue for
queues with no repetitions of orders, PQueue for queues containing only pend-
ing orders and IQueue for queues containing only invoiced orders.

spec WHS =
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QUEUES

and

INVOICE

then

free type

GState ::= mk gs(porders:PQueue; iorders:IQueue; the stock :Stock)
op the orders(gs : GState): OQueue = porders(gs) ++ iorders(gs)
preds referenced(oq: OQueue; s : Stock) ⇔

∀ x : Order • x ∈ oq ⇒ referenced(x, s);
consistent(gs : GState) ⇔

unicity(the orders(gs))
∧ referenced(the orders(gs), the stock(gs))

sort VGS = {gs : GState • consistent(gs)}
pred invoiceable(pq: PQueue; s : Stock) ⇔

∃ o: Order • o ∈ pq ∧ enough qty(o, s)
op first invoiceable : PQueue × Stock →? Order
%% axioms for first invoiceable

vars o: Order ; pq: PQueue; s : Stock
• def first invoiceable(pq, s) ⇔ invoiceable(pq, s)
• first invoiceable(o :: pq as PQueue, s) =

o when enough qty(o, s) else first invoiceable(pq, s)
ops new order : Product × Pos × VGS → VGS ;

cancel order : Order × VGS → VGS ;
add qty : Product × Pos × VGS → VGS ;
deal with order : VGS → VGS ;
mk order : Product × Pos × VGS → Order

%% axioms for mk order

vars o, o1, o2 : Order ; p: Product ; n: Pos ;
vgs : VGS ; osm: OSM ; s2 : Stock

• is pending(mk order(p, n, vgs))
• ¬ mk order(p, n, vgs) ∈ the orders(vgs)
• reference(mk order(p, n, vgs)) = p
• ordered qty(mk order(p, n, vgs)) = n

%% axioms for the warehouse operation level

• new order(p, n, vgs) = vgs if ¬ p ∈ the stock(vgs)
• new order(p, n, vgs) =

mk gs(porders(vgs) ← mk order(p, n, vgs) as PQueue, iorders(vgs),
the stock(vgs)) if

p ∈ the stock(vgs)
• cancel order(o, vgs) =

mk gs(remove(o, porders(vgs)) as PQueue, iorders(vgs),
the stock(vgs))

when o ∈ porders(vgs)
else mk gs(porders(vgs), remove(o, iorders(vgs)) as IQueue,
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add(reference(o), ordered qty(o), the stock(vgs)))
when o ∈ iorders(vgs) else vgs

• add qty(p, n, vgs) = vgs if ¬ p ∈ the stock(vgs)
• add qty(p, n, vgs) =

mk gs(porders(vgs), iorders(vgs), add(p, n, the stock(vgs))) if
p ∈ the stock(vgs)

• deal with order(vgs) = vgs if
¬ invoiceable(porders(vgs), the stock(vgs))

• (o1 = first invoiceable(porders(vgs), the stock(vgs)) ∧

osm = invoice order(o1, the stock(vgs)) ∧

o2 = order of (osm) ∧

s2 = stock of (osm) ⇒

deal with order(vgs) =
mk gs(remove(o1, porders(vgs)) as PQueue,

iorders(vgs) ← o2 as IQueue, s2 )) if
invoiceable(porders(vgs), the stock(vgs))

end

The WHS specification defines a free type of global states. The components
of a global state are a queue of pending orders, a queue of invoiced orders
and a stock. A predicate consistent defines a desired invariant property for
states, and a subtype VGS of consistent states is defined. A state is consistent
if all orders in the queues are distinct and the products referenced in the
orders are products in the stock. A number of state-changing operations are
declared and defined in a constructive style by the last seven axioms of the
specification: new order for making a new order (i.e. adding it to the queue of
pending orders if the ordered product is in stock), cancel order for cancelling
an order (i.e. removing it from the queues of orders, and, if the order was
invoiced, also “backdating” the stock), add qty for adding a quantity of a
product to the stock if the product is in stock and deal with order for dealing
with an order (i.e. invoicing the first invoiceable order, if any, in the queue of
pending orders and moving it to the queue of invoiced orders). In order to make
the specification of new order constructive, an Order constructor mk order is
needed, so this is specified as well (since ORDER does not provide this). In
addition a number of auxiliary functions and predicates are defined.

We suggest that the the orders operation in WHS should return a UQueue
instead of an OQueue, since this is more precise. Then the clause

unicity(the orders(gs))

in the definition of consistent could be omitted.

10.3 The Architectural Decomposition

Before we write an architectural specification that describes a modular struc-
ture for the implementation of WHS, let us point out that the simplified
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fragment of the Casl architectural specifications studied in Sect. 7 forces the
user to combine all the units involved in the final result expression. This of-
ten leads to quite complicated unit expressions, which can be considerably
simplified by “storing” the results of subexpressions as named units within
the list of unit declarations. Indeed, CASL provides unit definitions, with a
self-evident syntax and rather obvious semantics, to allow this. We use this
feature in the final architectural specification below:13

arch spec Warehouse =
units

NatAlg: Nat;
OrderFun: Nat → ORDER;
OrderAlg = OrderFun [NatAlg];
StockFun: Nat → STOCK;
StockAlg = StockFun [NatAlg];
InvoiceFun: { ORDER and STOCK } → INVOICE;
QueuesFun: ORDER → QUEUES;
WhsFun : { QUEUES and INVOICE } → WHS;

result WhsFun[QueuesFun[OrderAlg]
and InvoiceFun[OrderAlg and StockAlg]]

end

The architectural specification requires a number of units that should
be combined in the way explained in the “result” part. The unit NatAlg

should implement Nat. The generic units OrderFun should expand units
implementing Nat into implementations of ORDER. Similar remarks hold
for the generic units StockFun and QueuesFun. OrderAlg and Stock-

Alg should be instantiations of OrderFun and StockFun with NatAlg.
The generic unit InvoiceFun should expand implementations of ORDER

and STOCK into implementations of INVOICE. A similar remark holds for
WhsFun.

A Sharing Problem

The verification semantics of architectural specifications that we presented in
Sect. 7.2 cannot be implemented in full, as it involves some true verification

13 In the original specification, parametrized units with two arguments were also
used. Since, for simplicity, we covered only one-argument units in Sect. 7, in some
places here we combine two units (as well as their specifications) into one. We
have also omitted, in this chapter, and hence in this architectural specification
as well, imports for unit specifications, used in the original specification to re-
quire the generic units InvoiceFun and WhsFun to work only for arguments
that extend NatAlg and, correspondingly, OrderAlg and StockAlg. Since
the specifications of these omitted imports are included in the specifications of
unit parameters, leaving them out has no effect on the way the units can be
implemented.
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conditions (captured notably by the last premise in the rule for unit instanti-
ation in Fig. 12). However, a good part of it can be implemented and provides
useful support for the user. An extended static analysis of Casl architectural
specifications can be defined along the same lines as for the verification se-
mantics, but replacing the specifications involved with their signatures. Such
an extended static analysis is implemented within the Heterogeneous Tool Set
[45]. Checking the above architectural specification with this tool leads to the
following error message:

Analyzing arch spec Warehouse

*** Error Invoice.casl:208.36-208.50, Amalgamability is not ensured:

sorts Product in OrderFun [NatAlg] and Product in StockFun [NatAlg]

might be different

The problem arises because Product is declared independently in OR-

DER and in STOCK. Consequently, its realizations in OrderAlg = Or-

derFun[NatAlg] and StockAlg = StockFun[NatAlg] may be different
and therefore not amalgamable in the arguments for InvoiceFun and Whs-

Fun.
Technically, this can be seen by studying the rule for unit amalgamation

in Fig. 12; see also the corresponding (second) diagram in Fig. 13. Namely,
elaboration of the two unit terms defining OrderAlg and StockAlg leads
to a new sort name for Product in each case, and therefore two copies of
it will occur in the “global signature” Σ′

G
, one linked to the occurrence of

Product in Σ1 via i1; θ
′
2, and the other to its occurrence in Σ2 via i2; θ

′
1 (where

Σ1 and Σ2 are the signatures of OrderAlg and StockAlg, respectively).
However, the union signature Σ1∪Σ2 contains only one occurrence of Product,
and therefore for any morphism j : (Σ1 ∪ Σ2) → Σ′

G
, either ι1; j �= i1; θ

′
2 or

ι2; j �= i2; θ
′
1. Consequently, the rule cannot be applied, and the analysis of

the amalgamation expression fails.
This problem can be avoided by declaring the Product sort only in a sep-

arate specification PRODUCT and letting ORDER and STOCK extend
PRODUCT. Then we can use the extended static semantics to show the
correctness of this corrected architectural decomposition:

arch spec Warehouse =
units

NatAlg: Nat;
ProductAlg: PRODUCT;
OrderFun: { Nat and PRODUCT } → ORDER;
OrderAlg = OrderFun [NatAlg and ProductAlg];
StockFun: { Nat and PRODUCT } → STOCK;
StockAlg = StockFun [NatAlg and ProductAlg];
InvoiceFun: { ORDER and STOCK } → INVOICE;
QueuesFun: ORDER → QUEUES;
WhsFun: { QUEUES and INVOICE } → WHS
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result WhsFun [QueuesFun [OrderAlg] and

InvoiceFun [OrderAlg and StockAlg]]
end

Referring again to the rule for amalgamation and the corresponding di-
agrams in Figs. 12 and 13, respectively, the sort name for Product is now
introduced to the “global signature” only once (when ProductAlg is de-
clared). It is linked to the corresponding names in both Σ1 and Σ2 (as before,
Σ1 and Σ2 are the signatures of OrderAlg and StockAlg, respectively)–
consequently, the appropriate morphism j : (Σ1 ∪ Σ2) → Σ′

G
exists, and the

rule can be applied with no trouble.

Inconsistent Unit Specifications

There is also a problem with the parameterized units InvoiceFun and Whs-

Fun above: their specifications are inconsistent. This is because both IN-

VOICE and WHS further constrain some operation symbols occurring in
the argument specification ORDER. Hence, a persistent unit function from
the model class of the argument specification to that of the result specification
cannot exist: those models that do not meet the further constraint cannot be
mapped persistently. In WHS, the problem is the mk order function, and in
INVOICE, it is the invoice order function. To show, for example, inconsis-
tency of the specification for InvoiceFun, notice that INVOICE |= ∃o1, o2 :
Order . o1 �= o2, because INVOICE contains a function invoice order that
allows one to change the status of an order from is pending to is invoiced .
On the other hand, ORDER �|= ∃o1, o2 : Order . o1 �= o2, because there is an
ORDER-model with a singleton carrier set for the sort Order . In particular,
this ORDER-model does not have an INVOICE-extension.

The deeper reason for these problems is that the specification ORDER is
not detailed enough to ensure that the unit OrderAlg can be used in the way
needed by the functions mk order and invoice order as specified in INVOICE

and WHS. This means that the architectural specification Warehouse rep-
resents an unrealistic design decision that cannot lead to an implementation.

Indeed, very loose specifications are often not sufficient in general as good
specifications of the components to appear in an architectural decomposition,
since often not enough information is provided to make them really usable–
and so, providing an architectural design may require additional details before
satisfactory specifications of components are obtained.

A better design can be obtained by first refining ORDER. A way to do
this is to introduce a function creating new orders. In order to be able to
distinguish different orders that happen to involve the same quantity of the
same product, we need to introduce labels for orders. We assume that labels
are ordered and come with an order-increasing successor function, such that
it is always possible to generate fresh, so far unused labels. In the following,
Boolean is a standard specification of the Boolean values (true, false), and
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RichTotalOrder is a specification of total orders, together with a binary
maximum operation.

spec ORDER’ = ORDER

and Boolean and RichTotalOrder with Elem �→ Label
then ops init label : Label ;

suc : Label → Label
type Order ::= gen order(reference:Product ; ordered qty:Pos ;

gen pending:Boolean; label :Label)
∀ l : Label ; o: Order
• l < suc(l)
• is pending(o) ⇔ gen pending(o) = True
∀ p1, p2 : Product ; q1, q2 : Pos ; b1, b2 : Boolean; l1, l2 : Label
• gen order(p1, q1, b1, l1 ) = gen order(p2, q2, b2, l2 ) ⇒

p1 = p2 ∧ q1 = q2 ∧ b1 = b2 ∧ l1 = l2 %(gen order injective)%

end

INVOICE and WHS have to be refined correspondingly, such that they
make use of the new function gen order generating orders:

spec INVOICE’ = ORDER’

and INVOICE

then ∀ o: Order ; s : Stock
• order of (invoice order(o, s)) =

gen order(reference(o), ordered qty(o), False, label(o)) if
msg of (invoice order(o, s)) = success

end

spec WHS’ = INVOICE’ and WHS

then ops max label : OQueue → Label ;
fresh label : VGS → Label

∀ p: Product ; n: Pos ; vgs : VGS ; o: Order ; oq: OQueue
• max label([ ]) = init label
• max label(o :: oq) = max (label(o), max label(oq))
• fresh label(vgs) = suc(max label(the orders(vgs)))
• mk order(p, n, vgs) = gen order(p, n, True, fresh label(vgs))

end

This results, finally, in a new architectural specification Warehouse’:

arch spec Warehouse’ =
units

NatAlg: Nat;
ProductAlg: PRODUCT;
OrderFun: { Nat and PRODUCT } → ORDER’;
OrderAlg = OrderFun [NatAlg and ProductAlg];
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StockFun: { Nat and PRODUCT } → STOCK;
StockAlg = StockFun [NatAlg and ProductAlg];
InvoiceFun: { ORDER’ and STOCK } → INVOICE’;
QueuesFun: ORDER → QUEUES;
WhsFun: { QUEUES and INVOICE’ } → WHS’

result WhsFun [QueuesFun [OrderAlg] and

InvoiceFun [OrderAlg and StockAlg]]
end

Obviously, ORDER’ and INVOICE’ refine their corresponding unprimed
variants. Moreover, we have the following refinement sequence:

refinement R =
WHS refined to

WHS’ refined to arch spec Warehouse’

end

However, note that Warehouse’ is not a refinement of Warehouse:
formally, this follows because Warehouse is inconsistent, while Warehouse’

is not. Indeed, Warehouse’ is simply a new design.
A further refinement of Warehouse’ would proceed for each component

unit separately. For instance,

• ORDER’ refines to ORDER”, where the latter replaces the sort Label
with Nat (from the specification of natural numbers).14 Note though that
this does not give extra information for use by other components unless
Warehouse’ is changed accordingly.

• The specification {QUEUES and INVOICE’}→WHS’ of the unit Whs-

Fun should refine to
arch spec

units

WhsFun’ : {QUEUES and INVOICE’}→WHS”;
F : WHS” → WHS’

result λQ : {QUEUES and INVOICE’} • F [WhsFun’[Q]]
where WHS” uses a more efficient method of generating fresh labels,
namely by storing the maximum label used so far as part of the state.
This requires replacing the sort VGS with a sort involving an extra state
component. The construction F needs to recover VGS from this new state
sort.

11 Conclusion

Casl is a complex specification language that provides both a complete for-
mal semantics and a proof calculus for all of its constructs. A central property

14 This refinement would involve a signature morphism mapping Label to Nat .
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of the design of Casl is the orthogonality between, on the one hand, basic
specifications that provide means to write theories in a specific logic and, on
the other hand, structured and architectural specifications, which have a logic-
independent semantics. This means that the logic for basic specifications can
easily be changed while keeping the rest of Casl unchanged. Indeed, Casl

is actually the central language in a whole family of languages. Casl concen-
trates on the specification of abstract data types and (first-order) functional
requirements, whereas some (currently still prototypical) extensions of Casl

also consider the specification of higher-order functions [43, 62] and of reactive
[10, 55, 56, 57] and object-oriented [3, 26] behaviour. Restrictions of Casl to
sublanguages [37, 39] make it possible to use specialized tool support.

Now that the design of Casl and its semantics have been completed and
have been laid out in a two-volume book [49, 50], the next step is to put Casl

into practical use. A library of basic data types [58] and several case studies
[1] have been developed in Casl; they show how Casl works in practice. The
Heterogeneous Tool Set [45] provides tool support for all the layers of Casl,
as well as for Casl extensions. Also, programming languages (formalized as
particular institutions) are being integrated into Casl, leading to a framework
and environment for formal software development.
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Theory: An Introduction. Oxford University Press, 1990.
53. L. Paulson. ML for the Working Programmer. Cambridge University Press,

1996, 2nd edition.
54. A. Popescu and G. Rosu. Behavioral extensions of institutions. In J.L. Fi-

adeiro, N. Harman, M. Roggenbach and J.M. Rutten, editors, Proceeeding of

Algebra and Coalgebra in Computer Science: First International Conference,

CALCO 2005, volume 3629 of Lecture Notes in Computer Science, pages 331–
347, Springer, 2005.

55. G. Reggio, E. Astesiano and C. Choppy. Casl-LTL – a Casl extension for
dynamic reactive systems – summary. Technical Report, DISI, Università di
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001 Lisboa, Portugal, 1993. Presented at IS-CORE Workshop 93.

66. A. Sernadas, C. Sernadas, C. Caleiro, and T. Mossakowski. Categorical fibring
of logics with terms and binding operators. In D. Gabbay and M. de Rijke,
editors, Frontiers of Combining Systems 2, Studies in Logic and Computation,
pages 295–316. Research Studies Press, 2000.

67. A. Tarlecki. Abstract Specification Theory: An Overview. In M. Broy and
M. Pizka, editors, Models, Algebras, and Logics of Engineering Software, volume
191 of NATO Science Series: Computer and System Sciences, pages 43–79. IOS
Press, 2003.

CASL Indexes

Symbol Index

∀-Elim, 248

∀-Intro, 248

∀x : s • ϕ, 246

AFΣ(X), 246

arch spec Dcl∗ result T , 263

Bv , 267
Bv ; θ, 269
Bst , 263

C, 264
C ∅

st
, 264

C ∅
v , 269

C � T ⇒ UEv , 265



Casl – the Common Algebraic Specification Language 295

Cv � Dcl :: C ′
v
, 269

Cv = (Pv ,Bv ,SPG), 268
Cst = (Pst ,Bst ), 263
Cst � T � Σ, 264

def t, 246

E, 264
∃x : s • ϕ, 246

F : Mod(Σ1) ⇀ Mod(Σ2), 264
(fw,s)M , 245
f : w →? s, 245
f : w → s, 245
false , 246
FOΣ(X), 246

Γ �Σ ϕ, 244
Γ |=Σ ϕ, 244

h : M → N , 245
h|σ, 245

I, 243
INVOICE, 281

M, 255
M |= ϕ, 247
M |=Σ ϕ, 243
Ms, 245
M |Σ , 243
M |σ, 243, 245
Mod, 243

Nat, 277
¬ϕ, 246
ν#, 247
ν : X→M , 247

ORDER, 277
ORDER QUEUE, 282

P , 244
Pv , 268

(Pv ,Bv ,SPG) � T :: Σ
i

−→ SP ′

G

θ

←−

SPG, 269
(pw)M , 245

p : w, 245
pw(t1, . . . , tn), 246
PCFOL=, 244
PF , 244
∧-Elim1, 250
∧-Elim2, 250
∧-Intro, 250
ϕ ∧ ψ, 246
⇒-Elim, 248
⇒-Intro, 248
ϕ ⇒ ψ, 246
ϕ ∨ ψ, 246
Pst , 263

QUEUES, 282

S, 244
(S̃, F̃ , θ), 246
Sen, 243
Σ, 243, 244
Σ1 ⊆ Σ2, 243
ΣG, 267
Σ̂, 251
σ(ϕ), 247
σ : Σ→Σ′, 243, 245
σ : SP1→SP2, 256
σ(t), 247
σ(ϕ), 243
Sign, 243
SP � ϕ, 258
SPG, 267
SP |=Σ ϕ, 255
SPT , 267
SP then SP ′, 257
SP1 � � SP2, 256
SP1 � SP2, 258
SPEC hide σ, 255
SPEC with σ, 255
SPEC1 then free { SPEC2 }, 255
SPEC1 and SPEC2, 255
STOCK, 278

TΣ(X), 246
T1 and T2, 263
t

e

= t′, 246



296 T. Mossakowski, A. Haxthausen, D. Sannella and A. Tarlecki

t
s
= t′, 246

TF , 244
true, 246

U : SP , 263
U : SP1

τ

−→ SP2, 263
U [T fit σ], 263
UEv , 265

v : SP1→SP2, 261

WHS, 282

X , 246
Xs, 246

�, 244
� ASP :: SP , 269
� SP ⇒ M, 255
� SP � Σ, 255
� UDD∗

⇒ C, 265
� UDD∗

� Cst , 264
|=, 243

Concept Index

Absurdity (proof rule), 248
algebraic specification, 241
amalgamation, 258, 266
annotations, 254
architectural design, 287
architectural specification, 261

internal correctness, 266
proof rules, 269

argument specification, 260
associativity annotation, 254
atomic formula, 246

Basic (proof rule), 257
basic data types, 290
basic specification, 244
behavioural refinement, 273
borrowing of proofs, 253

carrier set, 245
Casl language, 253

cell calculus, 272
CoFI, 242
Common Framework Initiative, 242
compatible models, 259
completeness, 244

of basic calculus, 250
of structured calculus, 259

Congruence (proof rule), 248
conjunction, institution with, 259
conservative extension, 257

in Casl, 260
consistent specification, 255, 260
constraint, sort generation, 246
constructor refinement, 272
correctness, of architectural specifica-

tion, 266
CR (proof rule), 257
Craig interpolation property, 258

data type, 254
definedness assertion, 246
definition link, 274
derivation, 249
Derive (proof rule), 257
design specification, 272
development graph, 261, 274
diagram semantics, 272

eigenvariable conditions, 249
embedding function, 251
enriched Casl, 271
entailment system, 244
exhaustive signature unions, 263
existential equation, 246
extended static analysis, 286
extensions of Casl, 290

first-order formula, 246
first-order logic, 244
fits

unit context fits static context,
266

unit context fits verification con-
text, 270

fitting morphism, 260



Casl – the Common Algebraic Specification Language 297

formula
atomic, 246
first-order, 246

free data type, 254
Function Strictness (proof rule), 248

generated data type, 254
generic specification, 260
global signature, 267
global specification, 267

HetCasl, 274
Heterogeneous Tool Set, 274
HETS, 274
homomorphism, 245

implementation, 272
implication, institution with, 259
import (of a specification), 261
incompleteness, of basic calculus, 250
inconsistent specification, 287
Induction (proof rule), 248
institution, 243

with conjunction, 259
with implication, 259
with symbols, 257
with unions, 243

Isabelle theorem prover, 274

local environment, 257
logic, 244
logical consequence, 244

many-sorted, model, 245
many-sorted, partial first-order logic,

244
many-sorted, signature, 244
membership predicate, 252
mix-fix syntax, 254
model, 243

many-sorted, 245
subsorted, 252

model semantics, 254
model-oriented specification, 242
models

compatible, 259

named specification, 260

oracle for conservative extensions, 257
overloading relation, 251

parametrized specification, 260
parametrized unit, 262
persistent unit function, 262
precedence annotation, 254
Predicate Strictness (proof rule), 248
program, 241
projection function, 252
proof calculus

for architectural specifications,
269

for basic specifications, 248
for development graphs, 274
for free specifications, 260
for refinement, 257
for structured specifications, 257
for subsorted specifications, 253

property-oriented specification, 242

reduct, 243, 245
subsorted, 252

refinement, 272
Reflexivity (proof rule), 248
requirement specification, 272
restrictions of Casl, 290

satisfaction, 247
condition, 243
relation, 243
subsorted, 253

semantic entailment, 244
sentence, 243, 246

subsorted, 252
sharing (among units), 266, 285
signature morphism, 245

subsorted, 251
sort generation constraint, 246
Sortgen-Intro (proof rule), 248
soundness, 244

of basic calculus, 250
of structured calculus, 258

SPASS theorem prover, 274



298 T. Mossakowski, A. Haxthausen, D. Sannella and A. Tarlecki

specification
architectural, 261
basic, 244
consistent, 255, 260
design, 272
fragment, 257
generic, 260
inconsistent, 287
model-oriented, 242
morphism, 256
named, 260
parametrized, 260
property-oriented, 242
requirement, 272
structured, 255
subsorted, 251

static
context, 263
semantics, 254

strong equation, 246
structured specification, 255
subsignature, 243
subsort, 251

relation, 251
subsorted

specification, 251
homomorphism, 252
model, 252
reduct, 252
satisfaction, 253
sentence, 252
signature, 251
signature morphism, 251

Substitution (proof rule), 248
Sum (proof rule), 257
sum1 (proof rule), 257
sum2 (proof rule), 257
symbol map, 257

term, 246
evaluation, 247

Tertium non datur (proof rule), 248
theorem link, 274
Totality (proof rule), 248
Trans (proof rule), 257

Trans1 (proof rule), 257
Trans2 (proof rule), 257
Trans-equiv (proof rule), 257

unions
institution with, 243

unit, 261
context, 264
environment, 264
evaluator, 265
expression, 262

variable
system, 246
valuation, 247

verification context, 268
view, 261

weakly amalgamable, 258
witnessed (unit environment is wit-

nessed by unit), 270



Duration Calculus

Michael R. Hansen∗

Department of Informatics and Mathematical Modelling, Technical University of
Denmark, DK-2800 Kgs. Lyngby, Denmark. mrh@imm.dtu.dk

Duration Calculus (DC) is an interval logic which was introduced to express
and reason about models of real-time systems. DC was introduced by Zhou
Chaochen, Tony Hoare and A.P. Ravn during the ProCoS I Project (ESPRIT
BRA 3104, 1989–1991) [6]. Formal techniques for the construction of safety-
critical systems were investigated in this project, and in an early case study of
gas burner systems, conducted by E.V. Sørensen, A.P. Ravn and H. Rischel,
it turned out that certain requirements for such systems were not expressible
in the real-time formalisms which were available at that time.

A key issue in the design of gas burners is the need to restrict the dura-
tion of the undesired state where gas is leaking. This state of the system is
unavoidable, as gas must flow for a little while before it can be ignited. But
the accumulated time periods in which gas is leaking over a time interval of
given size.

DC was introduced as a logical approach that supported modelling and
reasoning about durational constraints on the states of safety-critical real-time
systems [147]. DC was developed as an extension of Interval Temporal Logic
(ITL) [32, 85] because many timing properties occurring in the case studies
considered were, in fact, interval properties, and if one had a modal logic
for intervals as a basis, these requirements could be formalized in a succinct
manner.

We shall present the basic concepts of DC in this chapter, with an eye
to new applications within the area of security protocols. We shall give some
background on the introduction of DC and a brief survey of some work done
on DC. In [140], there is an overview of early research on DC, in [38], there is a
detailed account of the logical foundations of DC, and in the monograph [145],
there is a detailed account of DC. A comprehensive survey of interval logics can
be found in [27]. A comprehensive introduction to modal logics is presented
in [7].

∗ This work is partially funded by The Danish Council for Strategic Research under
project MoDES.
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Furthermore, in the monograph [90], there is a account of temporal log-
ics from a historical perspective, where logics based on notions of intervals
are traced back to studies of the meaning of natural language by medieval
logicians.

John Buridan2, for example, regarded the present as a duration and not
as a point in time, and he considered the truth of propositions relative to
the choice of the present. A proposition p is true during the present if and
only if (iff) there is a part of the present during which the truth of p is given.
As an example (from [90]), the proposition “Socrates is alive” is true in the
entire present (now) if there is a subinterval where it is given that “Socrates
is alive”.

Two notions of truth are in play here: a weak notion defining the truth
of propositions relative to the choice of the present, and a strong notion of
truth given for a certain interval, where the intuition behind the latter notion
is that the proposition is true throughout this specific interval, as illustrated
in Fig. 1.

The present (now)
z }| {

Time
| {z }

Socrates is alive

Fig. 1. The duration of the present.

Buridan’s logic is formalized in [90] using the notation:

T (I, p) : p is true wrt. the interval I.
given(I, p) : The truth of p is given for the interval I.
included(I ′, I) : The interval I ′ is included in I.

The formula given(I, p) must, for example, satisfy

given(I, p) ⇒ ∀I ′.(included(I ′, I) ⇒ given(I ′, p)) .

Furthermore, the truth of a proposition p wrt. an interval I is defined as
follows:

T (I, p) =̂ ∃I ′.(included(I ′, I) ∧ given(I ′, p)) .

In Buridan’s system, the conjunction T (I, p) ∧T (I,¬p) may be true in some
cases, as illustrated in Fig. 2.

It should be noticed that two kinds of negations occur in this system:

• negation of predicates, for example “alive” and “dead” are negations of
each other, and

2 French philosopher, approx. 1300–1360
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The present (now)
z }| {

Time

| {z }

Socrates is alive
| {z }

Socrates is dead

Fig. 2. A Buridan interpretation of “Socrates is alive”

• negation of propositions, for example “Socrates is alive” and “Socrates is
not alive” are each other’s negations.

We shall later show how this ‘durational semantics’ of these simple nat-
ural language sentences can be expressed in DC; but otherwise, this topic
will not be covered any further here. We recommend [90] for a comprehen-
sive treatment, which also includes more recent work in the area of artificial
intelligence.

1 Introduction

The basic concepts of DC will be introduced in this section on the basis of
a simple example. A formal development is given in Sect. 2. In these two
sections, we shall focus on the original Boolean state model of DC, and an
interval logic having contracting modalities, by which only subintervals can be
reached. We shall look at a few extensions in later sections.

The example used in this section is that of a shared processor. Applications
of DC in the context of shared processors and scheduling have been studied,
for example, in [13, 144]. The presentation here is based on [144,145].

1.1 Boolean State Model

A real-time system is a computing system with real-time requirements. We
shall model a real-time systems by a set P1, P2, . . . of Boolean-valued functions
over time, i.e.

Pi : Time → {0, 1} ,

where time is continuous and modelled by the real numbers

Time =̂ R .

Each function Pi is called a state variable, and it is a characteristic func-
tion for a certain aspect of a system’s behaviour. The collection of functions
P1, P2, . . . constitutes the Boolean state model (or state model or just model)
of the system.
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Consider, as a simple example, a shared processor, where n processes
{p1, . . . , pn} share a single processor. We would like to develop a framework
where different scheduling disciplines can be expressed and analyzed.

To formalize the behavior of a shared processor, the model must capture,
at least

• which processes are ready to run on the shared processor, and
• which process (if any) is currently running.

There are many ways in which to choose the state variables. Our choice is
based on [144]. Let Π = {1, . . . , n}. For each process pi, i ∈ Π , two state
variables are used:

Rdy
i
: Time → {0, 1}

Runi : Time → {0, 1} .

The intuition is that

• Rdy
i
(t) = 1 iff process pi is ready at time t, and

• Runi(t) = 1 iff process pi is running at time t.

Since only ready processes may run and at most one process may run at a
given time, the state variables must satisfy the well-formedness constraints

Runi(t) ⇒ Rdy
i
(t)

Runi(t) ⇒
∧

j �=i
¬Runj(t) ,

(1)

for any i, j ∈ Π and t ∈ Time.
These two constraints are examples of state expressions, which are Boolean

combinations of state variables. They are used to model composite states of
a system’s behaviour.

1.2 The Notion of a Duration

Suppose that each process pi, on a regular basis or on demand has to complete
a task, and to do so it needs a certain amount ki ∈ R+ of the processor’s time.
If pi starts on a task at time b and finishes that task at time e, then we have
that

∫
e

b

Runi(t)dt = ki ,

where we assume that the state variables are integrable in any bounded and
closed interval. A computing system would change its state at most a finite
number of times in any bounded and closed interval, so this assumption is
reasonable.

The term
∫

e

b
Runi(t)dt is called the duration of the state Runi in the

interval [b, e] – it is the accumulated length of all the time slots throughout
which pi is running. A notion such as that of duration is surely needed to
express the condition that pi finishes its task in a given interval.
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Real-time requirements can be expressed in terms of durations. Consider,
for example, the requirement that in any time period longer than 1 s there is
an interval throughout which pi is ready to run and in which pi finishes its
task. This requirement is formalized as follows:

∀b, e ∈ Time.e− b ≥ 1 ⇒

∃a, c ∈ Time.
b ≤ a ∧ a ≤ c ∧ c ≤ e

∧
∫

c

a
Rdy

i
(t)dt = c − a ∧

∫
c

a
Runi(t)dt = ki .

(2)

The formula
∫

c

a
Rdy

i
(t)dt = c − a expresses that Rdy

i
holds throughout

the interval [a, c]. We also say that Rdy
i
lasts throughout this interval. Using

the formalization in the introductory part of this chapter, this formula could
be expressed as given([a, c],Rdy

i
), i.e. the readiness of process i is given for

[a, c] and also for its subintervals.
Suppose that b and e are the beginning and ending points, respectively, of

the period under consideration and that this period is longer than 1 second.
Then the formula (2) may be paraphrased as follows: a subinterval [a, c] of
[b, e] must exist in which Rdy

i
lasts and pi finishes its task.

The fulfilment of this property depends on the scheduling strategy of the
processor. The important observation at this point is that even for simple
requirements such as (2) above, the formalization in first order logic is heavily
dominated by explicit time points (b, e, a and c), and it is not hard to imagine
that this inadequacy will scale up when one is formalizing scheduling strategies
and their correctness.

1.3 Duration Calculus and Interval Temporal Logic

Either a temporal logic or an interval logic could be used in order to avoid
explicit mention of time points. The notion of a duration obviously relies on
an interval and so do many real-time properties, and, therefore, DC was intro-
duced as an interval logic. More precisely, DC was introduced as an extension
of Interval Temporal Logic [32, 85], with the difference that ITL is based on
discrete time, while DC is based on a continuous-time domain.

We shall consider bounded and closed intervals of real numbers:

Intv =̂ { [b, e] | b, e ∈ R ∧ b ≤ e } .

As ITL is a modal logic of time intervals, a formula φ is true (or false) for a
given interval [b, e]:

φ
︷ ︸︸ ︷

b e .

The basic modality of ITL is called chop (written “�”), and with chop two
consecutive subintervals of a given interval can be reached. The formula φ�ψ
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(read as “φ chop ψ”) holds on [b, e] iff there exists an m, where b ≤ m ≤ e,
such that φ holds on [b,m] and ψ holds on [m, e]:

φ�ψ
︷ ︸︸ ︷
b m e

︸ ︷︷ ︸
φ

︸ ︷︷ ︸
ψ

.

The chop modality is an example of a binary modality. Other modalities
can be derived from chop using propositional logic, for example, the unary
(“for some subinterval”) modality �:

�φ =̂ true �(φ�true) read as “for some subinterval, φ” ,

where the formula “true” holds for any interval.
In modal logics, there are standard ways of defining dual modalities. The

dual of � is defined by

�φ =̂ ¬�(¬φ) reads: “for all subintervals: φ” , (3)

and the dual of chop is defined by:

φ� φ =̂ ¬((¬φ) �(¬ψ)) read as “φ dual-chop ψ” . (4)

The reading of φ� ψ is as follows:

φ� ψ holds on [b, e]
iff, for all m ∈ [b, e]: φ holds on [b,m] or ψ holds on [m, e].

After the next section, this can be calculated on the basis of a formal seman-
tics.

On the basis of the Boolean state model, DC extends ITL with durations,
which are terms of the form

∫
S ,

where S is a state expression, i.e., a Boolean combination of state variables.
The semantics of S is defined point-wise from the semantics of the state vari-
ables. For an interval [b, e], a term

∫
S denotes a real number

∫
e

b

S(t)dt .

Furthermore, there is a special term � (read as “length”) denoting the length
of an interval.

Primitive formulas are constructed from terms by use of arithmetic oper-
ations and relations. For example, the formula

∫
(Rdy

i
∧ ¬Runi) < 5

holds for intervals where the accumulated time for which process pi is ready
and not running is smaller than 5 (time units). This is an example of a real-
time requirement for a composite state.
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The following abbreviation,

��S  =̂
∫
S = � ∧ � > 0 , (5)

can be used in a DC formulation of the predicate logic formula (2). The for-
mula ��S  holds for non-point intervals throughout which S lasts, i.e. through-
out which S is 1. We shall use the following abbreviation for point intervals:

��   =̂ � = 0. (6)

The first-order formula (2), expressing a requirement for process pi, can
now be formalized in propositional DC as follows:

�(� ≥ 1 ⇒ �(
∫
Runi = ki ∧ ��Rdy

i
  )) . (7)

The well-formedness constraints (1), expressing an assumption about pi, can
be formalized as:

��Runi  ⇒ ��Rdy
i
  

��Runi  ⇒
∧

j∈Π\{i}
��¬Runj  .

(8)

They must hold for any interval.
Together, the collection of assumptions and requirements describes in a

succinct manner the model of a shared processor at a high level of abstraction.
Another goal is that DC can be used to reason about intervals. For the

example above, we can prove that the constraint

k1 + k2 + · · · + kn ≤ 1 (9)

must hold, as otherwise the requirements are not feasible for the n processes
under the given assumptions. To give a flavour of reasoning about intervals
using DC, we now give an informal argument for the case n = 2.

Consider an arbitrary interval [b, e] of length 1, where the assumptions
and requirements for p1 and p2 hold. For this interval, there are two (possibly
different) subintervals of [b, e] for which

∫
Run1 = k1 and

∫
Run2 = k2. Hence,

∫
Run1 ≥ k1 ∧

∫
Run2 ≥ k2 (10)

holds for [b, e]. Furthermore, we have that
∫
Run1 +

∫
Run2 =

∫
(Run1 ∨ Run2) (11)

as the states Run1 and Run2 are mutually exclusive by the assumptions (8),
and for any interval, the duration of a state cannot exceed that interval’s
length, i.e.

∫
(Run1 ∨ Run2) ≤ � . (12)

Therefore, by combination of (10), (11) and (12) and the assumption that the
length of [b, e] is 1, we have that

k1 + k2 ≤
∫
Run1 +

∫
Run2 =

∫
(Run1 ∨ Run2) ≤ � = 1 .
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Example: Duration of the Present

Let us reconsider the formalization of the duration of the present which was
mentioned in the introductory part of this chapter. It seems reasonable to
define given(I, S) in DC by

��S  ,

assuming S is a state expression and I is the “current” interval. Furthermore,
T (I, φ) can be defined by

�φ .

If we introduce a state variable A : Time → {0, 1} with the intuition that
A(t) = 1 iff “Socrates is alive” at time t, then the formula

���A  ∧ ���¬A  (13)

corresponds to the situation in Fig. 2, where “Socrates is” both “alive” and
“dead” in the present. Furthermore, observe that the negation of the predi-
cate “alive” corresponds to a negation of state expressions, while sentential
negations, such as “Socrates is not alive”, would correspond to negations of
formulas in DC:

¬���A  .

While (13) is satisfiable in Buridan’s theory, the following natural language
inference is, as pointed out in [90], invalid in his theory:

“If Socrates is alive, then he is not dead”.

Using the DC formalization above, this would correspond to a deduction of
¬���¬A  from ���A  . But this is not possible. One could try to experiment
with other definitions of T (I, φ); but we shall not pursue this topic any further
here.

2 Syntax, Semantics and Proof System

In this section, we present the syntax, semantics and proof system of DC. The
presentation is based on [38, 145, 147], and DC will be defined as a predicate
modal logic, where chop is the basic modality. This, and all derived modalities,
are examples of contracting modalities, as only subintervals of a given interval
can be reached using chop. With contracting modalities, only safety properties
can be expressed. In Sect. 3.2 we shall see examples of expanding modalities,
which are used to reach intervals outside a given interval, for example, to
express (abstract) liveness properties.
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2.1 Syntax

Reasoning about durations involves reasoning about real numbers, and hence
DC is introduced as a predicate modal logic, where the first-order part is
based on real arithmetic. Concerning the syntactical categories relating to
the variables, functions and relations of real arithmetic, the meaning of these
categories will be independent of time and time intervals.

The variables used in first-order quantification are called global variables,
and we assume that an infinite set GVar of global variables ranged over by
x, y, z, . . . is given.

Furthermore, we need the function symbols, such as + and −, and the
relation symbols, such as = and <, of real arithmetic in the language of DC.
In general we assume that there is an infinite set FSymb of global function
symbols fn, gm, . . . equipped with arities n,m ≥ 0. If fn has arity n = 0 then
f is called a constant. The meaning of a global function symbol fn, n > 0,
will be an n-ary function fn : Rn

→ R. The meaning of a constant f0 is a

real number f0
∈ R.

Similarly, we assume that there is an infinite set RSymb of global relation
symbols Gn, Hm, . . . equipped with arities n,m ≥ 0. The meaning of a global
relation symbol Gn, n > 0, will be an n-ary truth-valued function Gn : R

n
→

{tt,ff}. The constants “true” and “false” are the only two global relation
symbols with arity 0, and their meaning are the usual ones: “true” = tt and
“false” = ff.

When function symbols, for example, + and −, and relation symbols, for
example, ≥ and =, occur in formulas they appear in the usual notation and
are assumed to have their standard meaning.

Concerning the time-dependent part of the language, we have the following
syntactical categories:

• An infinite set SVar of state variables P,Q,R, . . . The meaning of a state
variable will be a Boolean-valued function of time.

• A special symbol � denoting the length of an interval.
• An infinite set PLetter of temporal propositional letters X,Y, . . . The mean-

ing of each temporal propositional letter will be a truth-valued interval
function.

The syntactical categories for state expressions S, Si ∈ SExp, terms θ, θi ∈

Term, and formulas φ, ψ ∈ Formula are defined by the following abstract
syntax:

S ::= 0 | 1 | P | ¬S1 | S1 ∨ S2

θ ::= x | � |
∫
S | fn(θ1, . . . , θn)

φ ::= X | Gn(θ1, . . . , θn) | ¬φ | φ ∨ ψ | φ�ψ | (∃x)φ .
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Abbreviations and Conventions

In state expressions and formulas we shall use the derived propositional con-
nectives for conjunction ∧, implication ⇒, bi-implication ⇔, and standard
abbreviations concerning quantifiers will be used, for example,

φ ∧ ψ =̂ ¬((¬φ) ∨ (¬ψ)),
φ ⇒ ψ =̂ ((¬φ) ∨ ψ),
φ ⇔ ψ =̂ (φ ⇒ ψ) ∧ (ψ ⇒ φ),
(∀x)φ =̂ ¬((∃x)¬φ).

Moreover, whenever ¬, (∃x), (∀x),� and � occur in formulas they have higher
precedence than the binary connectives and the binary modalities � and � ,
for example

(�φ) ⇒ (((∀x)(¬ψ)) �ϕ)

can be written as

�φ ⇒ ((∀x)¬ψ �ϕ) .

Furthermore, the following conventions for quantifiers will be used:

∃x > θ.φ =̂ (∃x)(x > θ ∧ φ) and similarly for ≥,≤, . . .,

∀x > θ.φ =̂ (∀x)(x > θ ⇒ φ) and similarly for ≥,≤, . . .,

∀x1, x2, . . . , xn.φ =̂ (∀x1)(∀x2) · · · (∀xn)φ,
∃x1, x2, . . . , xn.φ =̂ (∃x1)(∃x2) · · · (∃xn)φ .

The propositional connectives ¬ and ∨ occur both in state expressions and
in formulas but, as we shall see below, with different semantics. This does not
cause problems, as state expressions always occur in the context of

∫
.

2.2 Semantics

The meanings of state expressions, terms and formulas are, in this section,
explained in terms of the meanings of their constituent parts, i.e. the meaning
of global variables, state variables, and predicate letters. We shall assume
fixed, standard interpretations of the function and relation symbols of real
arithmetic.

The meaning of the global variables is given by a value assignment V ,
which is a function associating a real number with each global variable:

V : GVar → R .

Let Val stand for the set of all value assignments:

Val =̂ GVar → R .

Two value assignments V ,V ′
∈ Val are called x-equivalent if they agree on

all global variables except x, i.e. if V(y) = V
′(y) for every global variable y

which is different from x.
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An interpretation of state variables and propositional letters is a function

I :

⎛

⎝
SVar
∪

PLetters

⎞

⎠ →

⎛

⎝
Time → {0,1}

∪

Intv → {tt,ff}

⎞

⎠ ,

where

• I(P ) : Time → {0,1}, for every state variable P ,
• I(P ) has at most a finite number of discontinuity points in every interval,

and
• I(X) : Intv → {tt,ff}, for every propositional letter X .

Thus, each function I(P ) has the property of finite variability, and, hence,
I(P ) is integrable in every interval.

The semantics of a state expression S, given an interpretation I, is a
function

I[[S]] : Time → {0, 1} ,

defined inductively on the structure of state expressions by

I[[0]](t) = 0,
I[[1]](t) = 1,
I[[P ]](t) = I(P )(t),

I[[(¬S)]](t) =

{
0 if I[[S]](t) = 1,
1 if I[[S]](t) = 0,

I[[(S1 ∨ S2)]](t) =

{
1 if I[[S1]](t) = 1 or I[[S2]](t) = 1
0 otherwise.

Each function I[[S]] has at most a finite number of discontinuity points in any
interval and thus is integrable in every interval.

In the following, we shall use the abbreviations

SI =̂ I[[S]] and XI =̂ I(X) .

The semantics of a term θ in an interpretation I is a function:

I[[θ]] : (Val × Intv) → R ,

defined inductively on the structure of terms by:

I[[x]](V , [b, e]) = V(x),

I[[
∫
S]][b, e] =

∫
e

b
SI(t)dt,

I[[�]] (V , [b, e]) = e− b,

I[[fn(θ1, . . . , θn)]] (V , [b, e]) = fn(c1, . . . , cn),

where ci = I[[θi]] (V , [b, e]), for 1 ≤ i ≤ n.

The semantics of a formula φ in an interpretation I is a function

I[[φ]] : (Val × Intv) → {tt,ff} ,
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defined inductively on the structure of formulas below, where the following
abbreviations will be used:

I,V , [b, e] |= φ =̂ I[[φ]] (V , [b, e]) = tt
I,V , [b, e] �|= φ =̂ I[[φ]] (V , [b, e]) = ff .

The definition of I[[φ]] is

• I,V , [b, e] |= X iff XI([b, e]) = tt.

• I,V , [b, e] |= Gn(θ1, . . . , θn) iff Gn(c1, . . . , cn) = tt,

where ci = I[[θi]](V , [b, e]) for 1 ≤ i ≤ n.

• I,V , [b, e] |= ¬φ iff I,V , [b, e] �|= φ.

• I,V , [b, e] |= φ ∨ ψ iff I,V , [b, e] |= φ or I,V , [b, e] |= ψ.

• I,V , [b, e] |= φ�ψ iff I,V , [b,m] |= φ and I,V , [m, e] |= ψ,

for some m ∈ [b, e].

• I,V , [b, e] |= (∃x)φ iff I,V ′, [b, e] |= φ, for some V
′ x-equivalent to V .

A formula φ is valid, written |= φ iff I,V , [b, e] |= φ, for every interpretation
I, value assignment V and interval [b, e]. Moreover, a formula ψ is satisfiable
iff I,V , [b, e] |= ψ for some interpretation I, value assignment V and interval
[b, e].

Examples

We now give some examples of valid formulas. First, the validity of the fol-
lowing two formulas,

��   ∨ (true �

��S  ) ∨ (true �

��¬S  ) (14)

and

��   ∨ (��S  
�true) ∨ (��¬S  

�true) , (15)

relies on the finite variability of states, where ��S  (see (5)) means that S

lasts throughout a non-point interval. Consider, for example, the hypothetical
situation shown in Fig. 3, where the length of a “full” section of ��S  or ��¬S  

is half the length of the preceding section.

��S��
z }| {

��¬S��
z }| {

��S��
z }| {

��¬S��
z}|{

0 4 6 7 8

Fig. 3. A Zeno behaviour

Here, in a left neighbourhood of the point 8, S violates the finite-variability
assumption and oscillates infinitely often, i.e. exhibits a Zeno behaviour. In
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any non-point interval [b, 8], 0 ≤ b < 8, the formula (14) does not hold, as
both true �

��S  and true �
��¬S  would be false.

The next three formulas express basic properties of durations:
∫
S +

∫
¬S = �,

∫
S ≤ �,

∫
S1 ≥

∫
S2 if S2 ⇒ S1.

The following formulas are valid formulas about lasting periods:

��S  ⇔ (��S  
�
��S  ),

(��S1  ∧ ��S2  ) ⇔ ��S1 ∧ S2  ,

where the first formula holds because we have a continuous time domain, and
the last formula reflects the structure of state expressions.

A ‘Possible-World’ Semantics

In the presentation above, the semantics of DC was “merged” into the seman-
tics of interval temporal logic. The semantics for Interval Logic (IL) [18] is
given in terms of possible world semantics, where a frame (or a Kripke frame)
is a pair (W,R), where W is a set, whose elements are called worlds, and R

is a reachability relation for worlds.
For IL, which has chop as the basic modality, the set of worlds is the set

of bounded and closed intervals, and R ⊆ W × W × W is a ternary relation
on intervals

([t1, t
′

1], [t2, t
′

2], [b, e]) ∈ R iff b = t1 ∧ t′1 = t2 ∧ t′2 = e ,

describing a partitioning of an interval [b, e] into consecutive subintervals,
corresponding to the chop modality.

A model consists of a frame and an interpretation function, which defines
the truth value of atomic formulas in the possible worlds (intervals).

We can define the truth of atomic formulas for a given interpretation I,
value assignment V and interval w ∈ W , as we have seen earlier in this section.
Hence, in a possible-world framework, the semantics for chop is defined as
follows:

(W,R), I, V , w |= φ�ψ

iff, for some w1, w2 ∈ W , where (w1, w2, w) ∈ R:
(W,R), I, V , w1 |= φ and (W,R), I, V , w2 |= ψ .

Possible-world semantics provides a classical way TO GIVE semantics to
modal logics; see for example [45, 46]. A excellent, recent account of proposi-
tional modal logic is given in [7].
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2.3 Proof System

The presentation of the proof system can be divided into one part for predicate
interval logic and another part concerning the way DC extends ITL. The first
part is based on the proof system S′ for IL, which we presented and shown to
be complete with respect to abstract value and time domains in [18]. In the
second step we present the proof system for state durations, which was shown
to relative be complete with respect to IL in [37].

Proof System: Interval Logic

The proof system S′ is a Hilbert-style proof system.
In the formulation of axioms and rules, the standard notion of a free

(global) variable is needed. Furthermore, it is necessary to distinguish terms
which are dependent on time intervals from terms which are independent of
time intervals, and similarly for formulas.

Terms and formulas which are interval-dependent are called flexible; terms
and formulas which do not depend on time intervals are called rigid. A term
is called flexible if � or a duration

∫
S occurs in the term. A formula is called

flexible if �, a duration
∫
S or a propositional letter occurs in the formula. A

term or formula which is not flexible is called rigid.
Note that a rigid formula may contain the chop modality.
The axioms of IL are:

A0 � ≥ 0 .

A1
((φ�ψ) ∧ (¬φ� ϕ)) ⇒ (φ�(ψ ∧ ϕ)) .
((φ�ψ) ∧ (ϕ�

¬ψ)) ⇒ ((φ ∧ ϕ) �ψ) .

A2 ((φ�ψ) �ϕ) ⇔ (φ�(ψ �ϕ)) .

R
(φ�ψ) ⇒ φ if φ is a rigid formula.
(φ�ψ) ⇒ ψ if ψ is a rigid formula.

E
(∃x.φ�ψ) ⇒ ∃x.(φ�ψ) if x is not free in ψ.
(φ�

∃x.ψ) ⇒ ∃x.(φ�ψ) if x is not free in φ.

L1
((� = x) �φ) ⇒ ((� �= x) � φ) .
(φ�(� = x)) ⇒ (φ� (� �= x)) .

L2 (x ≥ 0 ∧ y ≥ 0) ⇒ ((� = x + y) ⇔ ((� = x) �(� = y))) .

L3
φ ⇒ (φ�(� = 0))
φ ⇒ ((� = 0) �φ) .
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These axioms are basically those of [18], except that we use an abbreviation
for the dual modality of chop. The first of the axioms for L1, for example, has
in [18] the form

((� = x) �φ) ⇒ ¬((� = x) �

¬φ) .

Hence, the advantage of using the dual-chop modality is that double negations
concerning chop can be avoided. The more direct form obtained by using �

is also an advantage when conducting proofs.
The inference rules of IL are:

MP if φ and φ ⇒ ψ then ψ. (Modus ponens)

G if φ then (∀x)φ. (Generalisation)

N
if φ then φ� false.
if φ then false � φ.

(Necessity)

M
if φ ⇒ ψ then (φ�ϕ) ⇒ (ψ �ϕ).
if φ ⇒ ψ then (ϕ�φ) ⇒ (ϕ�ψ).

(Monotonicity)

The first necessity rule reads: if φ holds, the φ holds for all prefix intervals
(φ� false). The second rule has a similar reading for suffix intervals. These
rules appear weaker than the necessity rules in [18], where the first rule has
the following form: if φ then ¬(¬φ�ψ). But we shall see later (on p. 315) that
the “old” rules can be derived from the new rules.

Predicate Logic

The proof system also contains some axioms of first-order predicate logic
with equality. Any axiomatic basis can be chosen. Special care must, however,
be taken when universally quantified formulas are instantiated and when an
existential quantifier is introduced, as we shall illustrate below.

A term θ is called free for x in φ if x does not occur freely in φ within
a scope of ∃y or ∀y, where y is any variable occurring in θ. Furthermore, a
formula is called chop free if � does not occur in the formula.

The axiom schemes concerning quantification are

Q1 ∀x.φ(x) ⇒ φ(θ)

Q2 φ(θ) ⇒ ∃x.φ(x)

(
if θ is free for x in φ(x), and
either θ is rigid or φ(x) is chop-free

)

.

The condition that θ is free for x in φ(x) is standard for predicate logic.
The second side-condition is needed, because different occurrences of x in φ(x)
may refer to different intervals owing to occurrences of the chop modality, and
a flexible term θ may have different meanings in different intervals.

To illustrate the need for the second part, consider the following formula
∀x.φ(x):
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∀x.(((� = x) �(� = x)) ⇒ � = 2x) ,

which is valid and not chop-free. If we instantiate φ(x) with �, which is not
rigid, we obtain the following get φ(�):

((� = �) �(� = �)) ⇒ � = 2� ,

which is false on all non-point intervals. The problem in this example is that
the flexible term � is substituted into three different parts of a formula, where
the parts, owing to the chop modality, will refer to different intervals.

The proof system has to contain some axioms for the first-order logic of
real arithmetic. We shall not be explicit about these axioms, but just write
“PL” in our proofs when we exploit properties of predicate logic or properties
of real numbers.

The system presented so far has neither axioms nor rules concerning du-
rations. It is a system for “pure” interval logic. We introduce the notions of
deduction and proof now, so that we can investigate this pure interval logic.

Deduction and Proof

A deduction of φ in IL from a set of formulas Γ is a sequence of formulas

φ1

...
φn ,

where φn is φ, and each φi is either a member of Γ , an instance of one of the
above axiom schemes or obtained by applying one of the above inference rules
to previous members of the sequence. We write Γ � φ to denote that there
exists a deduction of φ from Γ in IL, and we write Γ, φ � ψ for (Γ ∪{φ}) � ψ.

In the special case were Γ = ∅, the deduction is called a proof of φ. In this
case we call φ a theorem, and we write � φ for ∅ � φ.

As an illustration of a deduction, we derive the monotonicity rules for the
dual of chop:

IL1
φ ⇒ ψ � (φ� ϕ) ⇒ (ψ � ϕ),
φ ⇒ ψ � (ϕ� φ) ⇒ (ϕ� ψ) .

Proof. Here is a deduction establishing the first part. (The second part is
similar.)

1. φ ⇒ ψ Assumption
2. ¬ψ ⇒ ¬φ 1,PL
3. ¬(ψ � ϕ) ⇒ ¬ψ �

¬ϕ Definition of � , PL
4. (¬ψ �

¬ϕ) ⇒ (¬φ�
¬ϕ) 2,M

5. ¬(ψ � ϕ) ⇒ (¬φ�
¬ϕ) 4, Definition of � , PL

6. (φ� ϕ) ⇒ (ψ � ϕ) 5, Definition of � , PL
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The following theorems are not difficult to establish.

IL2 (φ � (ψ � ϕ)) ⇔ ((φ � ψ) � ϕ) .

IL3 �φ ⇔ ¬�(¬φ) .

IL4 (φ�ψ) ⇔ ¬(¬φ�
¬ψ) .

IL5 �φ ⇔ (false � (φ� false)) .

The associativity of � (IL2) follows from the associativity of chop. The du-
ality properties IL3 and IL4 follow from the definitions of � (3) and � (4),
respectively, by repeated use of the law of double negation ¬(¬φ) ⇔ φ and
the monotonicity rules M. The connection between � and � (IL5) is easily
established by expansion of the definitions.

The necessity rules given in [18], for example “if φ then ¬(¬φ�ψ)”, are
derived from the rules N, using the monotonicity rules (IL1) for � and
’false ⇒ ¬ψ’. Remember that ¬(¬φ�ψ) is equivalent to φ�

¬ψ.

Conventions

Because of the associativity of � (A2) and � (IL2), we avoid brackets
in formulas containing chains of either �’s (A2) or � ’s. For example,
(φ1

� φ2)
� φ3 will be written as φ1

� φ2
� φ3. Furthermore, we shall not men-

tion (A2) and (IL2) explicitly when conducting proofs.

Possible-World Semantics and the Proof System: S4

The literature contains an extensive study of propositional modal logics that
have a monadic modality, typically named � (or �), as the basic modality.
In a possible-world semantics (see p. 311), for an interval logic based on a
monadic modality, the corresponding frame has a binary reachability relation
Rs ⊆ W ×W , where

([c, d], [b, e]) ∈ Rs iff [c, d] ⊆ [b, e] .

The subset relation is reflexive and transitive, and below we give two axioms
formalizing a reflexive and a transitive reachability relation, respectively.

A normal modal system [46] comprises axioms and rules for propositional
logic together with an axiom, often called K (after S. Kripke),

�(φ ⇒ ψ) ⇒ (�φ ⇒ �ψ) ,

and an inference rule, often called N (the rule of necessitation),

If φ then �φ .

This weak system (called K in [46]) does not place any demand on the reach-
ability relation in a frame, and it is the basis for a class of modal logics. The
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modal logic S4 (see e.g. [45]), is a logic that extends K with an axiom (often
called T) formalizing the condition that the accessibility relation is reflexive,

�φ ⇒ φ

and an axiom (often called 4) formalizing that the accessibility relation is
transitive

�φ ⇒ ��φ .

We can show that IL is an extension of S4, by establishing that the above
three axioms (K, T and 4) are theorems of IL and by establishing a deduction
in IL for the rule of necessitation:

IL6 �(φ ⇒ ψ) ⇒ (�φ ⇒ �ψ) .

IL7 φ � �φ .

IL8 �φ ⇒ φ .

IL9 �φ ⇒ ��φ .

A proof of K (IL6) can be given as follows:

1. ((¬ψ �true) ∧ (φ� false)) ⇒ ((¬ψ ∧ φ) �true). A1
2. (true �

¬ψ �true) ∧ (false � φ� false)
⇒ (true �((¬ψ �true) ∧ (φ� false))). A1

3. (true �
¬ψ �true) ∧ (false � φ� false)

⇒ (true �(¬ψ ∧ φ) �true). 1, 2,M
4. (�¬ψ ∧ �φ) ⇒ �(¬ψ ∧ φ). 3, IL5,Defn. of �

5. �(φ ⇒ ψ) ⇒ (�φ ⇒ �ψ). 4, IL3,PL.

A deduction of the rule of necessitation in S4 (IL7) follows by applying N
twice and exploiting IL5. A proof of T (IL8) can be established by using L3
and M, exploiting the fact that � = 0 ⇒ true. We give just the main proof
steps for IL9. Observe first that

1. � (true �true) ⇔ true .

The direction ⇒ follows from R since “true” is a rigid formula, and the other
direction follows from L3 and monotonicity using � = 0 ⇒ true. Using 1.
and M twice, we obtain

2. � (true �true �

¬φ�true �true) ⇒ (true �

¬φ�true) ,

A proof of IL9 follows by using the definition of � and propositional logic:

3. � ¬�(¬φ) ⇒ ¬��(¬φ) ,

Finally the definition of �.
The converse of IL9, i.e.

IL10 ��φ ⇒ �φ ,
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is easily established in S4:

1. �φ ⇒ φ. IL8
2. �(�φ ⇒ φ). 1, IL7
3. �(�φ ⇒ φ) ⇒ (��φ ⇒ �φ). IL6
4. ��φ ⇒ �φ. 2, 3,MP

The theorem IL10 corresponds to a denseness condition on the reachability
relation Rs, i.e. if i1 is a subinterval of i, then there is a subinterval i′ of i

such that i1 is a subinterval of i′.
From IL9 and IL10, it is easy to see that a non-empty series of �’s can be

replaced with a single �:

IL11 �
iφ ⇔ �φ for i > 0,

where �
0φ =̂ φ and �

n+1φ =̂ �(�nφ). A similar result for � is easily estab-
lished from IL11 observing that �

i
¬ψ ⇔ �¬ψ for i > 0, and exploiting IL3

repeatedly:

IL12 �
iψ ⇔ �ψ for i > 0.

The theorems IL6–IL10 are the basis for establishing a deduction theorem
for IL [38, 145]:

Theorem 1 (Deduction for IL). If a deduction

Γ, φ � ψ

involves no application of the generalization rule G in which the quantified
variable is free in φ, then

Γ � �φ ⇒ ψ .

Proof System: State Durations

The axioms and rules of DC must reflect the structure of Boolean state ex-
pressions and must formalize the finite variability of state variables.

The axioms of DC are:

DCA1
∫
0 = 0 .

DCA2
∫
1 = � .

DCA3
∫
S ≥ 0 .

DCA4
∫
S1 +

∫
S2 =

∫
(S1 ∨ S2) +

∫
(S1 ∧ S2) .

DCA5 ((
∫
S = x) �(

∫
S = y)) ⇒ (

∫
S = x + y) .

DCA6
∫
S1 =

∫
S2, provided S1 ⇔ S2 holds in propositional logic.

In order to formalize the finite variability of state expressions, we introduce
the notion of state induction. Suppose that we want to prove that a formula
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φ holds for all intervals. Consider an arbitrary state expression S and an
arbitrary interval [t0, tn]. Owing to the finite variability, the interval [t0, tn]
can be partitioned into a finite number of sections, where either ��S  or ��¬S  

holds on each section. This situation is illustrated in Fig. 4.

��S��
z }| {

��¬S��
z }| {

��S��
z }| {

· · ·

��S��
z}|{

��¬S��
z }| {

t0 t1 t2 t3 tn−1 tn

Fig. 4. Finite variability of S

The main idea of state induction is the following.

• Base case: φ is established for a point interval.
• Induction step: it is established that φ holds for an interval of the form

X �(��S  ∨ ��¬S  ), under the assumption that X ⇒ φ. Hence, from a
arbitrary interval X on which φ holds,

φ
︷ ︸︸ ︷

X

,

we can conclude that φ holds for a larger interval, where X is extended by
a section throughout which either S or ¬S holds,

φ
︷ ︸︸ ︷

X ��S  ∨ ��¬S  
.

Consider the situation in Fig. 4. The base case guarantees that φ holds for
the point interval [t0, t0]. Applying the induction step once (X being [t0, t0])
we know that φ holds on [t0, t1]. After n repetitions of the inductive step we
can conclude that φ holds on the full interval [t0, tn]. Hence, we can conclude
that φ holds on any interval, under the assumption of finite variability.

Notice that this induction principle would not work for the hypothetical
situation shown in Fig. 3, as it would not be possible, for example, to go
beyond time point 8 when the above process is started at time 0.

Let H(X) be a formula containing a propositional letter X and let
S1, S2, ..., Sn be any finite collection of state expressions which are complete
in the sense that

(
n∨

i=1

Si) ⇔ 1 .

For a complete collection of state expressions: S1, S2, ..., Sn, there are two
induction rules:
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IR1 If H(��   ) and H(X) ⇒ H(X ∨
∨

n

i=1
(X �

��Si  ))
then H(true)

and

IR2 If H(��   ) and H(X) ⇒ H(X ∨
∨

n

i=1
(��Si  

�X))
then H(true) ,

where H(φ) denotes the formula obtained from H(X) by replacing every oc-
currence of X in H with φ.

In these rules H(��   ) is called the base case, H(X) is called the induction
hypothesis and X is called the induction letter.

The deduction theorem for IL (Theorem 1) extends to DC [38].

Theorem 2 (Deduction for DC). If a deduction

Γ, φ � ψ

involves

• no application of the generalization rule G in which the quantified variable
is free in φ, and

• no application of the induction rules IR1 and IR2 in which the induction
letter occurs in φ,

then

Γ � �φ ⇒ ψ .

The deduction theorems may be used to simplify proofs. In connection
with proofs by induction, the following theorem is particularly convenient, as
we shall see below. For a proof of the theorem, we refer to [145].

Theorem 3 . Suppose that {S1, S2, . . . , Sn} is a complete set of state expres-
sions. Then

Γ � H(��   ) and
Γ,H(X) � H(X ∨

∨
n

i=1
(X�

��Si  ))

}

implies Γ � H(true) ,

and

Γ � H(��   ) and
Γ,H(X) � H(X ∨

∨
n

i=1
(��Si  

�

X))

}

implies Γ � H(true) ,

provided the deductions from Γ,H(X) involve no application of the induction
rules, where the induction letter occurs in H(X).

The two induction rules can be used to prove properties of the finite vari-
ability of states, for example the formulas (14) and (15), which imply the
non-existence of infinite oscillation of the state S around a point:

DC1 ��   ∨ (true �
��S  ) ∨ (true �

��¬S  )

and
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DC2 ��   ∨ (��S  
�true) ∨ (��¬S  

�true) .

The proof of DC1, for example, is by induction using H(X) =̂ X ⇒ DC1
as the induction hypothesis and {S,¬S} as a complete collection of state
expressions. Using Theorem 3 (and propositional logic), the proof is completed
by establishing the base case H(��   ), i.e. ��   ⇒ DC1, which is trivial, and three
easy deductions:

• (X ⇒ DC1) � X ⇒ DC1,
• (X ⇒ DC1) � (X �

��S  ) ⇒ DC1, and
• (X ⇒ DC1) � (X �

��¬S  ) ⇒ DC1.

An essential property of a proof system is that it is sound, i.e. that every
theorem is valid.

Theorem 4 (Soundness).

� φ implies |= φ .

The proof of soundness is by induction on the structure of proofs, i.e. the
soundness of each axiom and each inference rule of DC must be proved. The
axioms and inference rules of IL are treated in [18]. The axioms of DC are
simple and are left for the reader. The soundness of IR1 and IR2 relies on the
finite variability of states, and we refer to [145] for a proof.

Another important property of a proof system is that it is complete, i.e.
every valid formula is provable. As DC extends real-number arithmetic, and,
furthermore, natural-number reasoning is used in several case studies, the
issue of completeness is a complex matter. The paper introducing DC [147]
contains a proof for the design of a simple gas burner system with respect
to a specification of requirements. This proof used only induction on states.
But a more intuitive proof can be given using induction on natural numbers
[145,151]. Also, in the formalization and proof for a deadline-driven scheduler
[74, 139, 145]), properties of natural numbers were used to characterize the
deadlines for processes with periodic requests.

We shall not go into details concerning completeness issues for the arith-
metical parts, but shall mention a few classical results. In [128] Tarski proved
completeness and decidability results for a theory of reals, where atomic for-
mulas involve equality (=) and ordering relations (<,≤, >,≥) and terms are
constructed from rational constants and (global) variables using operations
for addition, subtraction, negation and multiplication.

For natural-number theory, Presburger gave, in 1930, a decision algorithm
for linear arithmetic (excluding multiplication), while Gödel, in 1931, estab-
lished his famous incompleteness theorem for a theory having addition, sub-
traction, negation and multiplication as operations.

Concerning theorem proving with real numbers, we refer to [43].
For DC, there is a relative completeness result with respect to ITL [37,145],

which shows that there is a deduction from the collection of valid ITL formulas
for every valid formula of DC,. In fact, the proof of relative completeness was
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based on DC1 and DC2, and not on the induction rules IR1 and IR2. It is not
known whether the induction rules can be derived from DC1 and DC2.

The completeness of IL, with abstract value and time domains, was proved
in [17], and in [28] there is a completeness result for DC with respect to
abstract value and time domains also.

We end this section with proofs of a few theorems about durations to hint
at how some of the formulas which have occurred earlier can be proved. In
these proofs, we use predicate logic without explicitly mentioning it.

DC3
∫
S +

∫
¬S = � .

The following is a proof of DC3:

1.
∫
S +

∫
¬S =

∫
(S ∧ ¬S) +

∫
(S ∨ ¬S) DCA4

2.
∫
S +

∫
¬S = � 1, DCA1, DCA2, DCA6

DC4
∫
S ≤ � .

A proof of DC4 can be derived straightforwardly from DC3 by (
∫
¬S ≥ 0)

(DCA3).

DC5
∫
S1 ≥

∫
S2, if S2 ⇒ S1.

In the following proof of DC5, we exploit the fact that S1 ⇔ (S2 ∨ (¬S2 ∧ S1))
when S2 ⇒ S1:

1.
∫
S1 = (

∫
S2 +

∫
(¬S2 ∧ S1) −

∫
(S2 ∧ (¬S2 ∧ S1))) DCA6, DCA4

2.
∫
S1 = (

∫
S2 +

∫
(¬S2 ∧ S1)) 1,DCA1, DCA6

3.
∫
(¬S2 ∧ S1) ≥ 0 DCA3

4.
∫
S1 ≥

∫
S2 2, 3

DC6 ((
∫
S ≥ x)�(

∫
S ≥ y)) ⇒ (

∫
S ≥ x + y) .

In this proof, we use first-order reasoning about reals:

(
∫
S ≥ x) �(

∫
S ≥ y)

⇒ ∃z1 ≥ 0.(
∫
S = x + z1)

�
∃z2 ≥ 0.(

∫
S = y + z2) M

⇒ ∃z1, z2 ≥ 0.((
∫
S = x + z1)

�(
∫
S = y + z2)) E

⇒ ∃z1, z2 ≥ 0.(
∫
S = x + z1 + y + z2) DCA5

⇒
∫
S ≥ x + y .

3 Extensions of Duration Calculus

In this section we shall discuss some limitations of the basic version of DC, and
some of the extensions which have been studied and suggested to overcome
these limitations.

When one is extending a formalism, there are several issues, for example,
the following
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1. What can be done in the extension which was not possible before?
2. What is more convenient in the extension?

The focus is often on the first point only. In this section, however, we shall
study some extensions to DC with an eye to the second issue.

Some parts of the discussion will be based on the shared-processor model
introduced in Sect. 1. Suppose for the moment that we want to specify a
Round-Robin scheduling discipline with a time-slice τs. So, first p1 runs on
the processor for a time τs, then p2 takes over and runs for a time τs, etc.
When pn has finished its time slice on the processor, the whole process repeats.
Note, however, that a process is skipped if it is not ready to run, and stops
running if it finishes its task before the end of the time slice.

A property of this discipline is:

(TS) When a process pi runs on the processor, it will keep running for the
whole time slice unless it finishes its task.

This may be formalized in a propositional fragment of DC by the following
two formulas:

�((��¬Runi  
�

��Runi  
�

��¬Runi ∧ Rdy
i
  ) ⇒ � > τs) (16)

and

�(��Runi  ⇒ � ≤ τs) . (17)

The first formula (16) expresses that pi keeps running for at least τs when
it can do so. Notice that in order to capture the two time points where pi

starts running on the processor and stops running again, we have to consider
a bigger interval covering both ends, where pi does not run at either of the ends
for some time. This explains the form of the left-hand side of the implication
in (16).

The second formula (17) supplements the first by expressing that the pro-
cess keeps running for at most τs, and together these two formulas guarantee
the property (TS). This may, however, be an “over-specification” of (TS), as
(17) prevents the possibility that p2 keeps running, which would be meaningful
when no other process is ready to run.

Another way to capture the length of the interval throughout which pi is
running is by using first-order quantification:

∀x.�((��¬Runi  
�(��Runi  ∧ � = x) �

��¬Runi ∧ Rdy
i
  ) ⇒ x ≥ τs) . (18)

But there is a way in which (18) can be expressed in propositional DC. It can
be done by a formulation of the form that an interval with a counter-example
does not exist:

¬�(��¬Runi  
�(��Runi  ∧ � < τs)

�

��¬Runi ∧ Rdy
i
  ) . (19)

So, even though (TS) can be formalized in propositional DC, the formulas
above illustrate an inconvenience in that we need to cover the full interval in
which pi is running.
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3.1 Point Properties

When a state expression S occurs in a formula, it occurs in the context of a
duration

∫
S and, therefore, it is not possible to express that S has a specific

value at a given time t. To express properties about time points, Mean Value
Calculus [152] was introduced. In that calculus, an event is a Boolean-valued
δ-function, i.e. a Boolean-valued function with value of 1 at discrete points.
An event takes place at a time point iff the δ-function of the event is 1 at the
point.

Integrals of Boolean-valued functions P are replaced by their mean values
P :

P : Intv → [0, 1] ,

with the definition:

P ([b, e]) =

{∫
e

b
P (t)dt/(e− b) if e > b

P (e) if e = b,

for any interval [b, e]. Therefore, one can describe point properties of Boolean-
valued functions by using their mean values in point intervals, and at the same
time, one can also define the integral of a Boolean-valued function P :

∫
P =̂ P · � .

With respect to our example above, mean values are not particularly useful
for expressing (TS) or any other property of the shared processor. However,
the events of Mean Value Calculus may be used as follows. Let ↑S denote the
event where the state expression S goes high, i.e. S changes from 0 to 1. In
Mean Value Calculus ↑S is a formula, which is true only for point intervals at
which S goes high. The property (TS) can then be represented more directly
in Mean Value Calculus than in DC, since using events we do not need to
cover the interval under consideration:

�((↑Runi

�

��Runi  
�

↑(¬Runi ∧ Rdy
i
)) ⇒ � = τs) . (20)

A alternative approach was taken in [142], where atomic formulas were
used for events, while keeping the basic calculus for the integral of Boolean-
valued function.

3.2 Other Interval Modalities

In the area of artificial intelligence, Allen proposed a logic in [1, 2] that had
atomic formulas for binary relations on intervals. He showed that there are
thirteen binary relations for the relative positions of two intervals, and a binary
predicate symbol was introduced for each of them. An example of an atomic
formula is MEETS(i1, i2), which holds if the right end point of the interval i1
equals the left end point of the interval i2. A system based purely on first-order
logic was developed with axioms like the following:



324 Michael R. Hansen

∀i1, i2, i3.( MEETS(i1, i2) ∧ DURING(i2, i3)
⇒ (OVERLAPS(i1, i3) ∨ DURING(i1, i3) ∨ MEETS(i1, i3))) ,

where DURING and OVERLAPS are two other predicate symbols in the
system.

Furthermore, Halpern and Shoham introduced a modal interval logic in
[33, 34] that had six unary modalities in a general setting, where they just
assumed that the time domain has a total order. An example is <B> φ,
which holds on an interval i if there is an interval i′ on which φ holds, where
i′ begins at the same point as i and ends inside i. Each of the thirteen binary
relations on intervals corresponds to a unary modality. The logic of Halpern
and Shoham was shown to be adequate in the sense that all thirteen relation-
ships of two intervals, established by Allen were expressible. Furthermore, it
was described how formulas can express properties of the time domain, such as
discreteness and density. Unfortunately, except for the simplest time domains,
the validity problem was shown to be undecidable.

With the chop modality, one can only reach subintervals of the interval
under consideration, and such modalities are called contracting. The modali-
ties, for example, � and �, derived from chop are also examples of contracting
modalities. So it is clear that many of the thirteen binary relations on intervals
are not expressible in a modal logic based on chop.

With contracting modalities one can express only safety properties, while
(unbounded) liveness properties such as “eventually there is an interval where
φ holds” cannot be expressed. In the following we shall consider expanding
modalities, with which one can reach intervals outside that under considera-
tion. Using such modalities unbounded liveness properties, as well as proper-
ties of the past, can be expressed and reasoned about.

Below, we shall discuss three interval logics with expanding modalities.
For a comprehensive survey of interval logics, we refer to [27].

Venema’s Propositional Logic

In [129], Venema developed the work of Halpern and Shoham further. An
interesting geometrical interpretation was introduced, with the following idea:
an interval [i, j] is considered a point (i, j) in the plane. Since i ≤ j, this point
will be to the left of (or above) the line y = x, i.e. in the north-western half
plane.

The unary interval modalities are now interpreted as compass modalities.
For example, in this interpretation, the formula <B> φ reads: there is a
southern point (below the current point) where φ holds.

It was shown that two of the six unary modalities of Halpern and Shoham
can be expressed by the others and that chop cannot be defined from the unary
modalities in a propositional framework. In [130], a propositional interval logic
with three binary interval modalities, � (denoted by C in [130]), T and D,
was presented.

The modalities T and D are expanding and are defined as follows:
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• The formula φTψ holds on [b, e] iff there exists c ≥ e such that φ holds on
[e, c] and ψ holds on [b, c]:

φTψ
︷ ︸︸ ︷

φ
︷ ︸︸ ︷

b e c
︸ ︷︷ ︸

ψ

for some c ≥ e.

• The formula φDψ holds on [b, e] iff there exists a ≤ b such that φ holds on
[a, b] and ψ holds on [a, e]:

φ
︷ ︸︸ ︷

φDψ
︷ ︸︸ ︷

a b e
︸ ︷︷ ︸

ψ

for some a ≤ b.

In this logic, all thirteen unary interval modalities are definable, and live-
ness can be specified, as for example shown in [122], where a railway crossing
system was considered. Furthermore, there is a complete axiomatisation of a
propositional modal logic of the three modalities C,T and D [130]. However,
owing to the propositional framework, some of the axioms and rules of this
logic are quite complicated.

The formalizations and proofs in connection with case studies using DC
often contain a certain amount of real arithmetic in order to reason about
durations of states. It would, therefore, be artificial to restrict oneself to a
propositional fragment when dealing with such case studies.

Neighbourhood Logic

A first-order logic with expanding modalities, called neighbourhood logic (NL),
was introduced in [143]. There are two basic modalities in NL, which are both
expanding:

• The formula �lφ, which reads “for some left neighborhood φ”, is defined
as follows: �lφ holds on [b, e] iff there exists a ≤ b such that φ holds on
[a, b]:

φ
︷ ︸︸ ︷

�lφ
︷ ︸︸ ︷

a b e

for some a ≤ b.

• The formula �rφ, which reads “for some right neighborhood φ”, is defined
as follows: �rφ holds on [b, e] iff there exists c ≥ e such that φ holds on
[e, c]:

�rφ
︷ ︸︸ ︷

φ
︷ ︸︸ ︷

b e c

for some c ≥ e.
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NL is an adequate interval logic in the sense that all unary interval modal-
ities [33, 34] are derivable in NL, and is, therefore, a good candidate for use
in case studies.

Furthermore, chop can be defined from the two neighbourhood modalities
in a first-order framework:

φ�ψ ⇔ ∃x, y.(� = x + y) ∧ �
c

r
((� = x) ∧ φ ∧ �r((� = y) ∧ ψ)) ,

where

�
c

r
ψ =̂ �l�rψ

is a derived modality for a right neighbourhood of the start point of the current
interval.

The two binary modalities T and D are definable as well.
Later, we shall use the following two modalities of NL:

�iφ =̂ � > 0 �(φ�� > 0) reads “for some inside interval: φ”.
�

c

l
ψ =̂ �r�lψ reads “for some left neighbourhood of the end point: φ”.

Also the dual modalities �r (“for all right neighbourhoods”), �i (“for all inside
intervals”), �

c

r
(“for all right neighbourhoods of the start point”) and �

c

l
(“for

all left neighbourhoods of the end point”), will be used. They are defined in
the standard way, e.g.

�rφ =̂ ¬�r(¬φ) .

Similarly to the axiomatisation of IL in [17], there is a complete proof
system for NL [5]. This proof system is much more intuitive than the propo-
sitional calculus for the modalities C,T and D given in [129]. It is, however,
not as elegant as that of IL, since axioms and rules come in two versions
corresponding to the two basic modalities for left and right neighbourhoods.

It is possible to base DC on NL rather than on ITL. The only problem is
that extra care must be taken in connection with the induction rules, as the
original induction rules are not sound in an NL-based version. The problem is
that intervals of unbounded size can be reached with the expanding modalities.
For further details we refer to [114, 145].

Signed Interval Logic

Another approach to achieving expanding modalities was introduced in [21].
The main idea is that intervals have a direction.

This logic is based on the chop modality, but the “chop point” is allowed
to be outside the interval under consideration. The formula φ�ψ holds on
the interval from i to j if there is a point k such that φ holds on the interval
from i to k and ψ holds on the interval from k to j. The “chop-point” k can
be any point, not just one between i and j.

In the figure below, k is chosen to be a future point and the arrows indicate
the direction of the interval:
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i

φ �ψ
︷ ︸︸ ︷

> j

i

φ
︷ ︸︸ ︷

> k for some k.
<︸ ︷︷ ︸

ψ

An interval where the start point is before the end point (such as the intervals
from i to j and i to k above) is called a forward interval ; otherwise it is called
a backward interval (such as that from k to j). A point interval is both a
forward and a backward interval. Thus, chop becomes an expanding modality
using forward and backward intervals in this framework.

The theory for this logic, called signed interval logic (SIL), was first devel-
oped in [105], where a complete Hilbert-style proof system, similar to that of
IL, was developed. This proof system is much simpler than that of NL. This
simplification is, however, not for free, as one has to deal with both forward
and backward intervals.

Aiming at theorem proving, in the context of Isabelle and Isabelle/HOL,
the theory of SIL was developed further in [106–108]. In particular, a sound
and complete labelled natural deduction (LND) system was established for
SIL. This labelled natural deduction system was inspired by work on labelled
modal logics [10,11,131], in which the possible worlds of the Kripke semantics
are made part of the syntax in the form of labelled formulas. A labelled formula
has, in SIL, the form

(i, j) : φ ,

where i and j denote the interval’s end points, and φ is an “ordinary” SIL
formula, which does not contain any labels.

The benefit of this approach is that it is possible to have a “proper” natural
deduction system, with exactly one introduction rule and one elimination rule
for each connective and modality.

SIL has the following introduction rule for chop:

(i, k) : φ (k, j) : ψ

(i, j) : φ�ψ .

The elimination rule for chop is:

(i, j) : φ�ψ

[(i, k) : φ] [(k, j) : ψ]
...

(m,n) : ϕ

(m,n) : ϕ .

This proof system has many advantages to the Hilbert style systems and
sequent calculus systems for IL, NL and SIL. We quote p. 11 of [108]:
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A number of examples have been conducted in both the sequent calculus
and the LND encoding, primarily the latter, though, as it soon became
apparent that the LND system was much more convenient. The three main
reasons being:
• Reasoning in the LND system is much more intuitive; the intervals,

which are part of the logic, can easily be visualized and the connection
to the semantics is clearer.

• A higher degree of automation is possible in the LND encoding; this
fact owes a lot to the proper natural deduction system defined for SIL.

• Isabelle is inherently a system for doing reasoning in a natural deduction
system; the sequent calculus system encoding can seem less natural to
use.

The LND system for SIL was encoded in Isabelle and in Isabelle/HOL,
thereby providing an excellent platform for encoding other interval logics, for
example IL, DC, NL and NL-based DC.

A general approach to the encoding of interval logics in LND SIL was de-
scribed is [108]. First, one defines the modalities in the logic under considera-
tion in terms of SIL formulas. Then, one derives introduction and elimination
rules for each modality. Reasoning in the encoded logic can then be conducted
without the need to expand the definitions of the modalities.

The way in which one can deal with interval logics, such as IL and NL,
which rely on forward intervals only, is to define (in SIL) the modalities for

forward intervals only. For example, the chop modality of IL (denoted
IL

�below)
is defined by

φ
IL

� ψ =̂ (fwd ∧ φ)
SIL

� (fwd ∧ ψ) , (21)

where
SIL

� is the chop modality for SIL and fwd is a formula (� ≥ 0), which is
true for forward intervals only.

Hilbert-style proofs (�IL φ) in interval logic and deductions in the LND
system for SIL (Γ �

LND
SIL

(i, j) : ψ) are related as follows [108]:

Theorem 5 .

�IL φ iff (i, j) : fwd �
LND
SIL (i, j) : φ .

In this theorem, φ is the SIL formula obtained from the IL formula φ by
replacing the IL chop modality with its SIL definition according to (21).

The encoding of NL-based DC was developed further in [100, 101] aiming
at a formal framework for analyzing temporal properties of security protocols.

Examples

We shall now give some examples using NL. We prefer NL rather than Ven-
ema’s propositional logic, since reasoning about durations often requires a
first-order setting, and we see the main role of SIL as a meta-logic which is
used for the encoding of other interval logics.
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In an NL-based DC, we can model a variety of abstract liveness properties
in a succinct manner. For our shared-processor model of Sect. 1, we can express
the fact that all n processes eventually get the same amount of the processor’s
time:

∧

i�=j

∀ε > 0.∃T.�r(� > T ⇒ |
∫
Runi −

∫
Runj | < ε) ,

where i, j ∈ {0, . . . , n}.
We can specify that a state will occur infinitely often in the future by

inf (S) =̂ �r�r�r��S  ,

and a strong fairness condition for the shared-processor example can be spec-
ified as

inf (Rdy
i
) ⇒ inf (Runi) ,

expressing that if pi is ready to run infinitely often, then pi will actually run
on the processor infinitely often.

The operator ↑ of Mean Value Calculus can be defined as follows:

↑S =̂ � = 0 ∧ �l��¬S  ∧ �r��S  .

The property (TS) for our shared processor example, can be expressed in the
same way as for Mean Value Calculus (20).

3.3 Refined Models for Reactive Real-time Systems

A variety of extensions of the Boolean state model of DC have been devel-
oped in order to support specification and verification of reactive real-time
computing systems. We refer to [145] for a survey.

The method described below for handling events of a reactive system orig-
inates from [112], and was also used in [84,100,101], for example, where finite
traces (and possibly also readiness and refusal sets) were introduced as func-
tions of time. The reason for choosing this approach is, as we shall later sketch,
that there is a clean separation of an untimed description of the events in a
reactive system, from the timing properties. The presentation below is based
on [101].

Let Event denote the set of all events which may occur. An untimed trace
is a finite sequence of events

e1 e2 · · · en ∈ Event∗ ,

describing the history of the events that have occurred so far, where e1 is the
first event and en is the most recent event.

To describe the timed behaviour of the events, a special trace variable Tr
is introduced:

Tr : Intv → Event∗ .
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The intuitive idea here is that for a given interval [b, e], the trace variable
gives the trace which is observed at the right end point e of the interval.

Predicates on traces can be used to express timing properties. An example
of a predicate is Tr = h, where h is a rigid expression for an untimed trace.

The trace should satisfy a collection of well-formedness properties. Some
will be shown below; for the remaining ones, we refer to [101].

First, all intervals with the same end point should have the same trace:

Tr = h ⇒ �
c

l
(Tr = h) .

Note that the two occurrences of the flexible variable Tr appear in different
interval contexts.

The trace should exhibit finite variability – only a finite number of events
may occur in a bounded and closed interval. In order to express finite vari-
ability of traces, the predicate Throughout(h) is introduced:

Throughout(h) =̂ � > 0 ∧ �i(Tr = h) ,

which is true for non-point intervals inside which the trace is constantly equal
to h. The “inside” modality is used so that no constraints on the end points
are imposed, and, for example, the formula

Throughout(h)� Throughout(h · e)

is satisfiable, where h · e the list obtained from the list h by adding the event
e to the end.

The trace is stable if it is constant throughout a non-point interval, i.e.

Stable =̂ ∃h.Throughout(h) .

The finite variability of traces can be formalized by requiring that for any
time point, there is a left and a right neighbourhood where the trace is stable,
i.e. by taking the following two formulas,

�lStable and �rStable , (22)

as axioms.
Events can be added to the trace as time progresses. We capture this

monotonicity of traces by the two properties (23) and (24) below. In these
formulas, the notation h1 " h2 is used to denote that the sequence h1 is a
prefix of h2, i.e. h1 is causally before h2.

The trace can only grow as time progresses, i.e. the trace of a given interval
is a prefix of the trace of any right neighbourhood:

Tr = h ⇒ �r(h " Tr) . (23)

Similarly, the trace of any interval in the past is a prefix of the current trace:

Tr = h ⇒ �
c

l
�l(Tr " h) . (24)

These properties are, in fact, sufficient to completely describe the mono-
tonicity and the following, for example, is a theorem:



Duration Calculus 331

Tr = h ⇒ �i(Tr " h) ,

i.e. the trace on any proper inside interval is a prefix of the trace of the current
interval.

An advantage of having such traces in the model is that timeless events
can be related to states with a duration as described below. An event e occurs
at a time point (i.e. � = 0), if the trace is extended by e at that point:

Occurs(e) =̂ � = 0 ∧ ∃h ∈ Event∗.

(
�l(Tr = h)

∧ �r(Tr = h · e)

)

.

To illustrate this framework, suppose that the shared processor is a server
in a network, where n agents are sending requests to the server, which then
sends an acknowledgement back when the request has been processed. Let
req

i
denote the event that agent i sends a request to the server, and let acki

denote the event that the server sends an acknowledgement back to agent i.
We assume that it takes ki time units for the processor to finish its task for
agent i.

These network events can be connected with the server’s activity as follows.
When the event req

i
occurs, the process pi is ready to run on the server

immediately afterwards,

Occurs(req
i
) ⇒ �r��Rdy

i
  ,

and when the server has finished its task for pi, i.e.
∫
Runi = ki, then the

server sends an acknowledgement back to agent i,
(

Occurs(req
i
) �

( ∫
Runi = ki

∧ true �
��Rdy

i
  

))

⇒ (true �Occurs(acki)) .

In [100, 101], a theory of (timed and untimed) traces was developed, aim-
ing at a formal framework for the temporal analysis of security protocols.
For example, the theory of traces was extended with alphabets for agents,
and standard operations such that parallel activities can be modelled. The
theory also supports modelling and analysis of passive attacks (e.g. message
interception) and active attacks (e.g. message interruption and message mod-
ification) in a network. The theory was formalized using the Isabelle/HOL
proof assistant. The formalization is based on an encoding of NL and DC in
SIL [106–108]. The separation of the timeless event sequences and the timed
traces has the advantage that the inductive proof methods of Paulson [98]
can be used to reason about the untimed behaviour, while timing issues are
handled in the DC framework.

In [41], models of availability were studied within the framework of this
section. The scenario is the following: A collection of clients C1, C2, . . . ex-
change messages with a server S. Some clients are, however, bad (and are
called attackers) and want to waste the server’s time, thereby degrading the
server’s availability for the good clients. We want to design the server so that
it fulfills some availability requirements. It is not, however, obvious how to for-
malize such requirements. Another problem is that if there are enough strong
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attackers, then they alone can keep the server busy, thereby preventing the
server from processing the tasks of the good clients. Thus, any reasonable for-
malization of availability requirements should take some assumptions about
the strength of attackers into account.

Work on availability often takes an operational approach, and, for example
Meadows [82] has introduced a formal framework for the communication be-
tween (possibly hostile) participants, where the concept of the strength of the
hostile participants is considered. This framework is rather close to a possible
implementation, as it essentially describes the sequence of verification actions
the server should perform in order to detect attackers of given strength, but
it is not obvious how to extract information about the availability from the
framework.

A more declarative framework for the analysis of security protocols was
presented in [41], where availability requirements and various assumptions, for
example about the strength of attackers, can be described in an abstract man-
ner. For example, we can express that normal service is available to trusted
clients pi, for i ∈ γ ⊆ {1, . . . n}, a fraction x of the time:

�(� > T ⇒ (Σi�∈γ

∫
Runi) ≤ (1 − x) · �) .

The condition � > T occurs in this formula because, for small intervals, the
property (Σi�∈γ

∫
Runi) ≤ (1 − x) · �) is not feasible.

Assumptions about the strength of attackers are modelled in a similar way.
Consider a collection of attackers pj, j ∈ β ⊆ {1, . . . , n}, and assume that they
have the ability to waste at most a fraction xβ of the processor’s time, before
they are detected and interrupted at the server. This assumption is formalized
as

� ≥ T ⇒ (Σj∈β

∫
Runj) ≤ xβ · � .

On the basis of the cost model of [82], a first attempt was made in [41] to use
symbolic reasoning to extract system design parameters from these more ab-
stract specifications of availability requirements and the strength of attackers.

4 Decidability, Undecidability and Model Checking

Interval logics are typically quite expressive logics, which are often undecid-
able. For example, the propositional interval logic HS with unary modalities
begins, ends and their inverses, devised by Halpern and Shoham [34], has been
shown to be highly undecidable for a collection of classes of interval models.

The first results for Duration Calculus [146] showed a decidability result
for a simple subset of DC called RDC . The formulas of RDC are given by the
following abstract syntax:

S ::= 0 | 1 | P | ¬S1 | S1 ∨ S2

φ ::= ��S  | ¬φ | φ ∨ ψ | φ�ψ .
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Decidability results were established for both a discrete-time and a continuous-
time interpretation.

In a discrete-time interpretation state variables are allowed to change value
at natural-number time points only. Furthermore, only intervals that have
natural-number end points are considered, and, finally, chop points must be
natural numbers.

Theorem 6 [146]. The satisfiability problem for RDC is decidable for dis-
crete and continuous time.

The theorem is proved by reducing the satisfiability problem for RDC to
the emptiness problem for regular languages, which is decidable. The main
idea of this reduction is that a letter in the alphabet describes a section of
an interpretation. A letter is a conjunction of state variables or a negation
of state variables. ��S  is translated as L+, where L is the set of letters “for
which S is true”. Disjunction, negation and chop correspond to the union,
complement and concatenation, respectively, of regular languages.

Seemingly small extensions to RDC were shown to be undecidable [146]
by reducing the halting problem of two-counter machines to the satisfiability
problem. The subsets considered were:

• RDC 1, which is defined by

φ ::= � = 1 | ��S  | ¬φ | φ ∨ ψ | φ�ψ .

• RDC 2, which is defined by

φ ::=
∫
S1 =

∫
S2 | ¬φ | φ ∨ ψ | φ�ψ .

• RDC 3, which is defined by

φ ::= � = x | ��S  | ¬φ | φ ∨ ψ | φ�ψ | ∀x.φ .

The theorems established were:

Theorem 7 [146]. The satisfiability problem for RDC 1 is undecidable for
continuous time.

Theorem 8 [146]. The satisfiability problems for RDC 2 and RDC 3 are un-
decidable for discrete and continuous time.

The satisfiability problem for RDC 1 is decidable for a discrete-time inter-
pretation as the formula � = 1 is expressible in RDC as ��1  ∧ ¬(��1  

�

��1  ).
The complexity of the satisfiability problem for RDC is non-elementary.

Sestoft [125] established this result for discrete time and for continuous time
was shown in [103].

In the tool DCVALID [93] RDC , with a discrete-time interpretation is
translated into monadic second-order logic over finite strings, which is a slight
variant of the weak monadic second-order theory of one successor (WS1S)
[12, 19]. The second-order theory is decidable and is used, for instance in the
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MONA system [64]. In this translation extensions to RDC are considered,
for example quantification over state variables, so that the full power of the
chosen second-order logic is exploited.

In [104], it was shown that the language L<

2 of the monadic second-order
theory of order is decidable for signal structures, where signal structures cap-
ture the finitely variable interpretations of state variables under a continuous
time interpretation. Using this result the decidability of RDC and other spec-
ification formalism were established by translations to L<

2 .
The techniques described in [93,104] were used in [8] to achieve decidability

results for a hybrid version of RDC where nominals are added to the language.
Each nominal names a unique interval. In this way more power is added to the
logic without sacrificing the complexity of the decision procedure. The new
formulas of this logic, called Hybrid Duration Calculus or Hybrid DC, are:

nominals: a,

satisfaction: a : φ,
down-arrow binder: ↓a.φ,

existential modality: Eφ .

The formula a holds in the specific interval named by a only, the formula a : φ
holds if φ holds in the interval named by a, ↓a.φ holds if φ holds under the
assumption that a names the current interval, and Eφ holds if there is some
interval where φ holds. It was shown that propositional neighbourhood logic
is expressible in Hybrid DC.

There are certainly more results than those mentioned above. For exam-
ple, decidable subsets were also considered in [23,24,36,51,69,91,115]. Refer-
ences [94, 125] concern the implementation of tools to check the validity of a
subclass of DC and its higher-order version. In [26], there is a bounded model
construction for discrete-time DC, which was shown to be NP-complete. Fur-
thermore, in [22], a robust interpretation for a subset of DC was considered,
and a semi-decision result was obtained. Model-checking of certain classes
of formulas with respect to automata-based implementations was considered
in [9, 23, 62, 71, 72, 138, 150]. A proof assistant for DC based on PVS [89] was
developed in [80,123,126]. A decision procedure [146] for DC was incorporated
into this proof assistant.

5 Some Links to Related Work

We end this chapter by giving a brief discussion of and links to some related
work on DC which we have not mentioned previously.

5.1 Real State Model

A real state model consists of a set of real-valued functions which describe the
behavior of physical components of an embedded software system. In [151], it
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is investigated how DC can be combined with real analysis, so that real state
models can be specified in the framework of DC. See also [143].

In [121], there is another extension of DC, which allows the specification
and verification of spatial properties, as well as temporal properties.

5.2 Dependability

The papers [49, 75–78] study the dependability of an implementation, repre-
sented as a finite automaton with transition probabilities, with regard to a
given requirement formalized in DC.

5.3 Finite-Divergence Model

A model with finite divergence allowing Zeno phenomena with infinitely many
state changes in bounded intervals was studied in [40].

5.4 Super-dense Computation

A super-dense computation is a sequence of operations which is assumed to
be timeless. This is an abstraction used for instance, in the analysis of digi-
tal control systems, where the cycle time of an embedded computer may be
nanoseconds, while the sampling period of a controller may be seconds. There-
fore, the computation time of the embedded software of the digital control
system is negligible. In [142] a chop modality called super-dense chop was in-
troduced allowing a point to be chopped into multiple points in a finer space.
Generalizing the projection operator of interval temporal logic in [86], [31]
introduced the visible and invisible states, and compute non-negligible time
through projection onto the visible state. See also [95, 102].

5.5 Infinite Intervals

An alternative to the use of expanding modalities is to introduce infinite in-
tervals into DC. An extension of DC allowing both finite and infinite intervals
was established in [148].

5.6 Higher-order and Iteration Operators

When DC applied is to real-time programming, advanced operators are needed
to explain the programming notions of local variables and channels and of
loops. References [29,30,57,141] investigated the semantics and proof rules of
the (higher-order) quantifiers over states and the µ operator.
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5.7 Case Studies of Embedded Software Systems

DC has been applied in a number of case studies. Examples are an autopilot
[111], a railway crossing [124] and interlock [112], a water level monitor [20,59],
a gas burner [112], a steam boiler [21, 70, 119], an aircraft traffic controller
[53], a production cell [99], a motor-load control system [137], an inverted
pendulum [133], chemical concentration [135], heating control [136], redundant
control [61], a hydraulic actuator system [109], and the optimal design of a
double-tank control system [58]. Furthermore, [14,52,132,149] discuss design
methods for embedded software systems.

5.8 Real-time Semantics, Specification and Verification

DC has been used as a meta-language to define real-time semantics of other
languages, for example CSP and OCCAM-like languages [54,55,117,118,142,
144,149], SDL [83,84], Esterel [96], Constraint Diagrams [63], Fault Trees [35],
the RAISE Specification Language (RSL) [73], B [15], Verilog [47, 120], cir-
cuits [39], Fischer’s mutual exclusion protocol [113], the biphase mark pro-
tocol [48, 50] deadline-driven scheduler [139], and other well-known real-time
schedulers [13, 16]. In [44], CSP, Object-Z and DC were combined into a uni-
form framework for the specification of processes, data and time, based on a
smooth integration of the underlying semantic models.

5.9 Refinement of DC Specifications

In [81], there was a first attempt to define refinement laws for a restricted set
of formulas towards implementable formulas. A full exposition of these ideas
was given in [110]. References [88, 117, 118] developed techniques to refine
implementable formulas into an executable program. References [52,65,66,116]
represent work on refining DC formulas into automata. References [134–136]
proposed approaches to refining DC specifications into programs following the
paradigms of Hoare logic and assumption–commitment logic.
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121. A. Schäfer (2004). A Calculus for Shapes in Time and Space. In Theoretical

Aspects of Computing, ICTAC 2004, LNCS 3407. Springer Berlin Heidelberg
New York:463–477

122. J.U. Skakkebæk (1994) Liveness and fairness in duration calculus. In CON-

CUR’94: Concurrency Theory, LNCS 836. Springer, Berlin Heidelberg New
York: 283–298

123. J.U. Skakkebæk (1994) A Verification Assistant for a Real-Time Logic. PhD
Thesis, Department of Computer Science, Technical University of Denmark

124. J.U. Skakkebæk, A.P. Ravn, H. Rischel, C. Zhou (1992) Specification of em-
bedded, real-time systems. In Proceedings of 1992 Euromicro Workshop on

Real-Time Systems. IEEE Computer Society Press
125. J.U. Skakkebæk, P. Sestoft (1994) Checking validity of duration calculus for-

mulas. Technical report, ProCoS II, ESPRIT BRA 7071, report no. ID/DTH
JUS 3/1, Department of Computer Science, Technical University of Denmark

126. J.U. Skakkebæk, N. Shankar (1994) Towards a duration calculus proof assis-
tant in pvs. In Techniques in Real-Time and Fault-Tolerant Systems, LNCS
863. Springer, Berlin Heidelberg New York:660–679

127. E.V.Sørensen, A.P. Ravn, H. Rischel(1990) Control program for a gas burner:
Part 1: Informal requirements, ProCoS case study 1. Technical Report
ID/DTH EVS2

128. A. Tarski (1948) A decision method for elementary algebra and geometry.
RAND Corporation, Santa Monica, California

129. Y. Venema (1990) Expressiveness and completeness of an interval tense logic.
Notre Dame Journal of Formal Logic, 31(4):529–547

130. Y. Venema (1991) A modal logic for chopping intervals. Journal of Logic and

Computation 1(4):453–476



344 Michael R. Hansen

131. L. Vigano (2000) Labelled non-classical logics. Kluwer Academic Punlishers
132. J. Wang, H. Weidong (1996) Formal specification of stability in hybrid control

systems. In Hybrid Systems III, LNCS 1066. Springer, Berlin Heidelberg New
York:294–303

133. B.H. Widjaja, W. He, Z. Chen, C. Zhou (1996) A cooperative design for hybrid
control systems. In Proceedings of Logic and Software Engineering Interna-

tional Workshop in Honor of Chih-Sung Tang. World Scientific:127–150
134. Q. Xu, M. Swarup (1998) Compositional reasoning using assumption-

commitment paradigm. In Compositionality - The Significant Difference,
LNCS 1536. Springer Berlin Heidelberg New York:565–583

135. Q. Xu, H. Weidong (1996) Hierarchical design of a chemical concentration
control system. In Hybrid Systems III: Verification and Control, LNCS 1066.
Springer Berlin Heidelberg New York:270–281

136. Q. Xu, Z. Yang (1996) Derivation of control programs: a heating system.
UNU/IIST Report No. 73, International Institute for Software Technology,
Macau

137. X. Yu, J. Wang, C. Zhou, and P.K. Pandya (1994) Formal design of hybrid
systems. In Techniques in Real-Time and Fault-Tolerant Systems, LNCS 863.
Springer, Berlin Heidelberg New York:738–755

138. J. Zhao, D.V. Hung (1998) On checking real-time parallel systems for linear
duration properties. In Formal Techniques in Real-Time and Fault-Tolerant

Systems, LNCS 1486. Springer, Berlin Heidelberg New York:241–250
139. Y. Zheng, C. Zhou (1994) A formal proof of the deadline driven scheduler. In

Techniques in Real-Time and Fault-Tolerant Systems, LNCS 863. Springer,
Berlin Heidelberg New York:756–775

140. C. Zhou (1993) Duration Calculi: An overview. In Proceedings of Formal

Methods in Programming and Their Applications, LNCS 735. Springer Berlin
Heidelberg New York:256–266

141. C. Zhou, D.P. Guelev, N. Zhan (2000) A higher-order duration calculus. In
Millennial Perspectives in Computer Science. Palgrave:407–416.

142. C. Zhou, M.R. Hansen (1996) Chopping a point. In BCS-FACS 7th Refine-

ment Workshop. Electronic Workshops in Computing, Springer Berlin Heidel-
berg New York

143. C. Zhou, M.R. Hansen (1998) An adequate first order logic of intervals. In
Compositionality: The Significant Difference, LNCS 1536. Springer Berlin Hei-
delberg New York:584–608

144. C. Zhou, M.R. Hansen, A.P. Ravn, H. Rischel (1991) Duration specifications
for shared processors. In Symposium on Formal Techniques in Real-Time and

Fault Tolerant Systems, LNCS 571. Springer Berlin Heidelberg New York:21–
32

145. C. Zhou, M.R. Hansen (2004) Duration Calculus: A formal approach to real-
time systems. Springer

146. C. Zhou, M.R. Hansen, P. Sestoft (1993) Decidability and undecidability re-
sults for duration calculus. In STACS’93, LNCS 665. Springer Berlin Heidel-
berg New York:58–68

147. C. Zhou, C.A.R. Hoare, A.P. Ravn (1991) A calculus of durations. Information

Processing Letters 40(5):269–276
148. C. Zhou, D.V. Hung, X. Li (1995) A duration calculus with infinite intervals.

In Fundamentals of Computation Theory, LNCS, Springer p. 16–41



Duration Calculus 345

149. X. Zhou, J. Wang, A.P. Ravn (1996) A formal description of hybrid systems. In
Hybrid Systems III, LNCS 1066. Springer Berlin Heidelberg New York:511–
530

150. C. Zhou, J. Zhang, L. Yang, X. Li (1994) Linear duration invariants. In Tech-

niques in Real-Time and Fault-Tolerant Systems, LNCS 863. Springer, Berlin
Heidelberg New York:86–109

151. C. Zhou, A.P. Ravn, M.R. Hansen (1993) An extended duration calculus for
hybrid systems. In Hybrid Systems, LNCS 736. Springer, Berlin Heidelberg
New York:36–59

152. C. Zhou, X. Li (1994) A mean value calculus of durations. In A Classical

Mind: Essays in Honour of C.A.R. Hoare. Prentice Hall International:431–451

DC Indexes

DC Symbol Index

(i, j) : φ, 327
E φ, 334
R, 311
S, 307
SI , 309
T (I, p), 300
Val, 308
W , 311
X , 307
XI , 309
�, 304
�, 304
�iφ, 326
�lφ, 325
�

c

l
φ, 326

�rφ, 325
�

c

r
φ, 326

Γ � φ, 314
��S  , 305
��   , 305
↓a.φ, 334
�, 304∫
S, 304

Intv, 303
Time, 301
RDC , 332
RDC 1, 333
RDC 2, 333

RDC 3, 333
|= φ, 310
P , 323
φ, 303
φDψ, 324
φTψ, 324
θ, 307
� , 304
� φ, 314
�, 304
a, 334
a : φ, 334
I(P ), 309
I,V , [b, e] |= φ, 310
I[[S]], 309
I[[φ]], 310
I[[θ]], 309
V , 308
given(I, p), 300
included(I ′, I), 300

DC, 299

Event, 329

IL, 311
ITL, 299

NL, 325



346 Michael R. Hansen

SIL, 327

Tr, 329

DC Concept Index

Boolean state model, 301

chop, 303
completeness, 320
conventions, 308, 315

decidability, 332
deduction, 314
deduction theorem, 317, 319
dependability, 335
discrete-time, 333
down-arrow binder, 334
dual-chop, 304
duration, 302
Duration Calculus, 303

event, 323

finite variability, 309, 310, 317, 330
finite-divergence, 335
flexible

formula, 312
term, 312

global variable, 307

Hybrid Duration Calculus, 334
hybrid modal logic, 334

induction rules, 319
infinite interval, 335
interpretation, 309
interval

backward, 327
forward, 327

Interval Temporal Logic, 303

Kripke semantics, 311

labelled
formula, 327

natural deduction system, 327

Mean Value Calculus, 323
modality

chop, 303
compass, 324
contracting, 306
dual, 304
expanding, 324
neighbourhood, 325

Monadic second order logics, 334

Neighbourhood Logic, 325
nominal, 334

point properties, 323
possible world semantics, 311, 315
proof, 314

system, 312
interval logic, 312
state durations, 317

rigid
formula, 312
term, 312

S4, 316
satisfiable formula, 310
semantics, 308

formula, 310
state expressions, 309
term, 309

Signed Interval Logic, 326
soundness, 320
state

expression, 302
complete set of, 319
induction, 317
model, 301
real, 334
variable, 301

super-dense computation, 335
syntactical categories, 307
syntax, 307

formula, 307
state expression, 307
term, 307



Duration Calculus 347

term
duration, 304
length, 304

theorem, 314
trace, 329

undecidability, 332

valid
formula, 310
assignment, 308

x equivalent, 308

Zeno behavior, 310, 311



The Logic of the RAISE Specification

Language

Chris George1 and Anne E. Haxthausen2

1 International Institute for Software Technology, United Nations University,
Macao, cwg@iist.unu.edu

2 Department of Informatics and Mathematical Modelling, Technical University of
Denmark, Lyngby, Denmark, ah@imm.dtu.dk

Summary. This chapter describes the logic of the RAISE Specification Language,
RSL. It explains the particular logic chosen for RAISE, and motivates this choice
as suitable for a wide-spectrum language to be used for designs as well as initial
specifications, and supporting imperative and concurrent specifications as well as
applicative sequential ones. It also describes the logical definition of RSL, its ax-
iomatic semantics, as well as the proof system for carrying out proofs. Finally, a
case study illustrates specification and verification methods in RAISE.
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1 Introduction

An important technique for increasing the reliability of software systems is
to use formal development methods. Formal methods provide mathematically
based languages for specifying software systems and proof systems for verifi-
cation purposes. During the last two decades a whole range of formal methods
have been developed. One of these is RAISE.

The goal of this chapter is to describe and motivate the logic of the RAISE
specification language, RSL. This logic is non trivial and interesting because
the language supports many different specification styles.

It should be noted that for a given, formal language the term ‘logic’ can
be used in two different but related senses. It may refer to the meanings of
the ‘logical’ (truth-valued) expressions of a language. Alternatively, ‘logic’ may
refer to the proof system, to the inference rules by which one may reason about
terms of the language. In designing a language, choices made in the assignment
of meanings to expressions influence the possible design of the proof system.
For this reason we have chosen to use the term ‘logic’ as encompassing both
senses.

In the remaining part of this section, we give a short introduction to RAISE
including a survey of the major specification styles supported by RSL. Then,
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in Sect. 2, we describe the rationale behind the design choices made for the
meanings of ‘logical’ (truth-valued) expressions in RSL. Next, in Sect. 3, we
outline how RSL is formally given an axiomatic semantics in the form of
a collection of inference rules that defines well-formedness and meanings of
RSL constructs. In Sect. 4 we describe how a proof system is derived from
the axiomatic semantics in such a way that it is suitable for doing proofs
in practice using a computer based tool. After that, in Sect. 5, a case study
shows how a harbour information system can be specified and verified in
various ways. Finally, in Sect. 6, we state our conclusions.

1.1 RAISE Background

RAISE (“Rigorous Approach to Industrial Software”) is a product consisting
of a formal specification language (RSL) [1], an associated method [2] for
software development and a set of supporting tools.

The Method

The RAISE method is based on stepwise refinement using the invent and
verify paradigm. Specifications are written in RSL. The notion of refinement
will be described in Sect. 2.4.

The Language

RSL is a formal, wide-spectrum specification language that encompasses and
integrates different specification styles in a common conceptual framework.
Hence, RSL enables the formulation of modular specifications which are alge-
braic or model-oriented, applicative or imperative, and sequential or concur-
rent. Below, we outline the major syntactic aspects of the language.

A basic RSL specification is called a class expression and consists of dec-
larations of types, values, variables, channels, and axioms. Specifications may
also be built from other specifications by renaming declared entities, hiding
declared entities, or adding more declarations. Moreover, specifications may
be parametrised.

User-declared types may be introduced as abstract sort types as known
from algebraic specification, for example

type Colour

or may be constructed from built-in types and type constructors in a model-
oriented way, for example

type

Database = Key →m Nat-set,
Key = Text
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In addition, RSL provides predicative subtypes, union and short record types
as known from VDM, and variant type definitions similar to data type defi-
nitions in ML.

Values may be defined in a signature-axiom style as known from algebraic
specification, for example

value

black, white : Colour
axiom

black �= white

They may also be defined in a pre–post style, for example

value

square root : Real → Real

square root(x) as r post r ≥ 0.0 ∧ r ∗ r = x
pre x ≥ 0.0

or in an explicit style as known from model-oriented specification, for example

value

reverse : Int∗ → Int∗

reverse(l) ≡

if l = 〈〉 then 〈〉 else reverse(tl l) ̂ 〈hd l〉 end

Functions may be imperative, reading from and/or writing to declared vari-
ables:

variable v : Int

value

add to v : Int → write v Unit

add to v(x) ≡ v := v + x

where Unit is the type containing the single value (). In the function type it
is stated which variables the function may access.

Functions may describe processes communicating synchronously with each
other via declared channels:

channel i : Int, o : Bool

value

test : Int → in i out o Unit

test(x) ≡ let inval = in? in o!(inval=x) end

In Sect. 2, various kinds of value expressions and their meaning will be
described.

RSL has also been extended to support real time [3–6].
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Semantic Foundations of RSL

RSL has been given a denotational [7] and an axiomatic semantics [8], and
a subset of the language has been given an operational semantics [9]. The
construction of the denotational model and a demonstration of its existence
were presented in [10].

Tool Support

The RAISE tool provide support for constructing, checking and verifying
specifications and development relations, and for translating concrete spec-
ifications into several programming languages.

History

RAISE was developed during the years 1985–1995 in the CEC-funded projects
ESPRIT RAISE (ESPRIT 315) and LaCoS (ESPRIT 5383). RAISE builds
upon ideas reflected in a number of other formal methods and languages. The
model-oriented language features were inspired by VDM [11] and Z [12], the
algebraic features by algebraic specification languages like OBJ [13], Clear [14],
ASL [15], ACT ONE [16] and Larch [17], the concurrency features by CCS [18]
and CSP [19], and the modularity features by ML [20], Clear, ASL, ACT ONE
and Larch.

Applications

RAISE has been used on many applications. The initial ones were within
the LaCoS project [21]. It has been used for many years at UNU-IIST, and
a collection of case studies from there, illustrating a wide range of styles of
use, has been published recently [22]. Also, at the Technical University of
Denmark, it has been used in a range of applications have been done, for
example [23–26].

2 The RSL Logic

There are a number of possible choices for the logic of a specification lan-
guage. In this section we present the rationale behind the design of the RSL
logic. Section 2.1 introduces the problem of potentially undefined expressions,
Sect. 2.2 presents the logic of the applicative subset of RSL, Sect. 2.3 extends
this to imperative and concurrent RSL, Sect. 2.4 presents the RSL definition
of refinement and relates it to the logic, and Sect. 2.5 introduces the notion
of confidence conditions.



The Logic of RSL 353

2.1 Definedness

A fundamental question to decide about a logic for a specification language is
what to do about problematic expressions like 1/0, or hd 〈〉, or while true do

skip end. Such expressions do not have very obvious denotations (meanings).
Expressions like these may seem more likely to arise in early specifications

or in implementations, but as RSL is a “wide-spectrum” language, intended
to support both initial specification and development to code, any of these
kinds of expression may occur.

There are two facts to make clear from the start. First, in a reasonably
expressive language, such expressions cannot be avoided by purely mechanical
means. The equality of an integer expression with zero, for example, is not
decidable. If we wish to ensure that such expressions do not occur, then we
need to perform such a proof. We can choose to perform such proof as part of
“type checking”, as in PVS [27] for example, or at some later time. In contrast,
it is possible in a typed language mechanically to either reject an expression
as ill-typed (1 + true, for example) or assign it a type. So our “problematic”
expressions will have types.1

The second fact is that there is a variety of schemes available to deal with
such expressions in a logic. This is not a question of fundamental research,
but of choosing from the options available. The choices made will affect the
ease with which people can learn and use a language, and the ease of creating
and using proof tools for that language. There are two factors in particular
that influenced the choices made in the design of RSL:

1. As mentioned above, RSL is a “wide spectrum” language intended to sup-
port development to specifications very close to programming languages.
This in turn means that the ability to conveniently translate at least the
constructs likely to appear in such detailed specifications into a program-
ming language, is something to consider.

2. The design of RSL is as regular as possible. This means that apart from
having type Bool, there are as few restrictions as possible placed on what
kind of expressions may occur in a predicate. In particular, expressions do
not need to be applicative: they may have effects by accessing variables
and even channels.

One possible approach to problematic expressions like 1/0 is to say that
“every expression denotes a value in its type, but it might not be possible or
sensible to say which”. In this approach 1/0 could be some unknown integer,
but while true do skip end would have to be equivalent to skip, since skip

is the only value in the type Unit. This (a) seems counter-intuitive and (b)
seems to preclude any analysis of termination since the logic would equate a
non-terminating expression with a terminating one.

1 In languages like RSL which allow overloading there may be a (finite) collection
of possible types, but this does not materially affect the following discussion.
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Some languages, Z [12] and B [28] for example, take the approach that all
expressions denote. It is argued that this gives a simple and intuitive logic. Ex-
amples like those based on non-termination can be considered as less relevant
to Z, which aims to define initial specifications rather than implementations,
though this seems less justified for B. These languages, unlike VDM [11] and
RSL, for example, also distinguish between Boolean expressions, predicates,
and expressions of other types: they have no Boolean type.

RSL, like VDM, from which much of RSL’s inspiration came, has a Boolean
type, Bool, and allows in its logic for expressions that might not denote values
in their types. The definedness of expressions then becomes a concept needed
in the proof theory. The semantics of such languages may, as in RSL’s case, be
loose: there are some expressions whose definedness is not specified, and 1/0
is an example. A programming language implementation in which it raises an
exception is acceptable, as is one where it evaluates to 1, say. Looseness is
not a critical issue: much more important is how in writing and developing
specifications, we can avoid such expressions occurring. We will return to this
issue later, in Sect. 2.5.

2.2 Applicative RSL

The discussion about logic for RSL becomes more complicated when we in-
clude expressions that can write to variables, or access channels, i.e. expres-
sions that can have effects. We will try to give a simple exposition by dealing
with applicative expressions first, and explain the additions we need for im-
perative expressions later. But we shall also try to avoid misleading readers
by indicating in the first part where the explanation refers only to applicative
expressions.

Equivalence

A basic issue when expressions might not denote values is the meaning of
equality. RSL has two “equality” operators, ≡ and =. The first of these,
equivalence, is more relevant to the discussion of logic, and we will discuss
equality = later in this section.

≡ is sometimes called a “strong” equality, as it allows undefined expres-
sions to be compared. It has the mathematical properties of a congruence,
which means that it is an equivalence relation (it is reflexive, transitive and
commutative) and (for applicative expressions) it allows substitution: an ex-
pression can be replaced by an equivalent one in any context.

The important properties we shall need for equivalence are the following:

1. A defined expression is never equivalent to an undefined one, for example
the equivalence

while true do skip end ≡ skip
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is false.
2. Equivalence always returns true or false, i.e. it is always defined.

Equivalence is in fact the same as semantic equality: two expressions are
equivalent if they have the same semantics.

A logic that allows undefined expressions and includes a strong equality is
often referred to as “three-valued”. We prefer to say that there are just two
Boolean values (true and false), and say that only defined expressions have
values. There are three “basic” undefined expressions in RSL: chaos (equiv-
alent to while true do skip end), stop (the external choice over the empty
set) and swap (the internal choice over the empty set). stop represents dead-
lock and arises in RSL because it includes concurrency. The effect of swap is
not specified: it may be to terminate, to deadlock, to allow an internal choice
or to diverge. In practice, we normally want to avoid the possibility of unde-
fined expressions in specifications, and making the main choice one between
definedness and otherwise is mostly sufficient. We shall in our examples for
simplicity, usually use chaos as the archetypal undefined expression.

Convergence

RSL includes concurrency, and so includes the notion of internal (nonde-
terministic) choice. This also arises if relations or mappings that are “non-
functional” are allowed. For example, what happens if the map [ 1 �→ 2, 1 �→

3 ] is applied to the value 1? In RSL, the result is equivalent to the expression
2 � 3. This expression is defined, but will not always evaluate to the same
result. We use the term convergent to mean “defined and having a unique
value”.

We shall see that definedness and convergence often arise in the proof
theory because we need them as conditions for rules to be sound. For example,
we will see that

A ∧ B ≡ B ∧ A when A and B are defined
A ∨ ∼A ≡ true when A is convergent

(In the non-applicative case these also need the effects of A and B to be at
most “read-only”.)

However, the case of “defined but nondeterministic” is (a) rare and (b)
dealt with by other rules, so in practice we always use convergence even though
definedness is occasionally sufficient.

Connectives

How do we define the logical connectives ∧ (and), ∨ (or), ∼ (not) and ⇒

(implies)? The approach in VDM is to use a logic called LPF [29], the “Logic
of Partial Functions”. The intuition in LPF’s definition of ∧, for example, is
that for an expression A ∧ B, if either A or B evaluates to false the whole
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expression should be false, even if the other is undefined. If either evaluates
to true then the expression evaluates, if at all, to the value of the other. So
it is undefined if one of A and B is true and the other undefined, or both are
undefined. Note that this explanation is symmetric in A and B, and indeed
in LPF, as in classical logic, ∧ is symmetric (commutative).

The main problem with LPF is that ∧ is hard to implement in a program-
ming language, because it requires parallel evaluation of the two component
expressions, such that if one of them evaluates to false then the whole eval-
uation immediately terminates and returns false. For mainly this reason, the
designers of RSL chose instead to define the logical connectives in terms of
if-expressions, in a “conditional logic”.

A ∧ B ≡ if A then B else false end

A ∨ B ≡ if A then true else B end

A ⇒ B ≡ if A then B else true end

∼A ≡ if A then false else true end

These are not new inventions. This version of ∧, for example, appears as
cand in some languages, and as andalso in some others.

So if-expressions are fundamental, and we need to explain what they mean.
We do this formally in terms of proof rules, but here is the intuitive explana-
tion of the meaning of if A then B else C end (in the applicative case):

1. If A is undefined, then the expression is equivalent to A.
2. Otherwise, if A is nondeterministic (so it must be true � false) the ex-

pression is equivalent to B � C.
3. Otherwise, if A is true then the expression is equivalent to B, and if A is

false then the expression is equivalent to C.

This coincides with the meaning of if-expressions in programming lan-
guages, and has the immediate consequence that if-expressions, and hence
the logical connectives, are easy to implement. This is the main advantage of
RSL’s conditional logic. The main disadvantage is that we lose the uncondi-
tional commutativity of ∧ and ∨. For example,

chaos ∧ false ≡ chaos

but
false ∧ chaos ≡ false

∧ and ∨ are in general commutative only when both the components are
defined.

This is by no means the only case where we need to be concerned with
definedness, and it was decided that the implementability of the logic was the
overriding concern.

Incidentally, many other rules of classical logic hold for conditional logic.
For example, ∧ and ∨ are associative, and what is sometimes used as the
definition of ⇒ holds:
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A ⇒ B ≡ ∼A ∨ B

All the laws of classical logic hold when expressions are convergent. The
laws needing convergence are commutativity and “excluded middle”. LPF also
needs definedness for “excluded middle”.

Quantifiers

RSL includes the quantifiers ∀, ∃ and ∃!. They all quantify over values in the
appropriate type. Hence they say nothing about undefined expressions. For
example, we can say, correctly, that

∀ x : Bool • x = true ∨ x = false

without being able to conclude anything about an undefined expression such
as chaos being either true or false.

Functions

λ-expressions admit beta reduction (application) only when applied to values
in their domain. For example

λ (x : Int, y: Int) • x

cannot be applied to (0, chaos) to give 0. In fact the semantics of function
application is standard call by value: if any argument expression is undefined
then so is the application.

Axioms

In RSL axioms may be declared. In addition, all value declarations are short
for value signatures plus axioms. For example, suppose we have the value
declaration

value

factorial : Nat
∼
→ Nat

factorial(n) ≡

if n = 1 then 1 else n ∗ factorial(n−1) end

pre n ≥ 1

This is short for

value

factorial : Nat
∼
→ Nat

axiom

∀ n : Nat •

factorial(n) ≡

if n = 1 then 1 else n ∗ factorial(n−1) end

pre n ≥ 1
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and, in turn “e pre p” is short for “(p ≡ true) ⇒ e”. The inclusion of “≡
true” is just a technique to ensure that if p is undefined, the precondition
reduces to false.

So, when can we use this axiom to “unfold” an application of factorial to
replace it with its defining expression? We want to use the equivalence within
the axiom, remembering that ≡ is a congruence, i.e. allows substitution. We
can see that:

1. The actual parameter must be a value in the type Nat, i.e. it must be a
non-negative integer, because of the meaning of ∀. We cannot unfold, say,
factorial(chaos) or factorial(−1).

2. The precondition must then be equivalent to true. We cannot unfold, say,
factorial(0).

So, the rules of the logic ensure that the apparent aim of the specifier, that
factorial should be applied only to strictly positive integers, is respected.

Equality

We need to define the symbol =. In RSL its definition is just like that of any
other infix operator, such as +. RSL adopts a general “left-to-right” evaluation
rule, so the meaning of

A = B

is the following:

1. Evaluate A. If it is undefined so is the whole expression.
2. Otherwise, evaluate B. If it is undefined, so is the whole expression.
3. Otherwise, compare the results of evaluating A and B and return “true”

if they are the same value, “false” otherwise.

= is therefore given a definition in terms of the underlying = for the carrier set
of every type in RSL. If either of A or B is undefined then so is the equality.
If either of them is nondeterministic, then so is the equality. Otherwise, in the
applicative case, the equality is the same as ≡.

The other important feature of = is that it is implementable. Such an
equality is sometimes called “programming language equality”, as its evalua-
tion is the same as in programming languages (except that many languages
decline to fix the evaluation order, preferring the convenience of compiler
writers to the confidence of users).

Is it confusing to have both = and ≡? The advice to users is simple: always
use = in your expressions, and take care to avoid undefinedness. Users should
only write ≡ in function definitions, where it is part of the syntax, and as the
main equality in axioms.

We have seen that (for applicative expressions), when expressions are de-
fined and deterministic, equality and equivalence coincide, and so there should
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be no problem. What happens if a user accidentally forgets to check for de-
finedness? Take the RSL version of an example quoted by Stoddart et al. [30],
for example:

value

s : Int-infset

axiom

card s = 5

Are there any models (implementations) of this specification in which the
set s is infinite? (In languages in which all values denote, there may be such
models, which is why the example is quoted.)

If s is infinite, then, in RSL, card s is undefined. So the axiom expression
is apparently undefined, following our rules for equality. What does it mean
to have an undefined axiom? In fact we avoid this question: every axiom
implicitly has an “≡ true” added (like the precondition we discussed earlier).
So if s is infinite the axiom would reduce to false, and we conclude that there
can be no such model: s must be finite as we presumably expected.

There are a few other places where “≡ true” is included to make sure that
undefined predicates reduce to false. These places occur in postconditions
and in restrictions, as well as in axioms and preconditions. Restrictions are
the predicates following the “bullet” in quantified expressions, implicit let-
expressions, comprehensions, comprehended expressions and for-expressions.

2.3 Imperative and Concurrent RSL

When we consider expressions that can have effects i.e. that can read or write
variables, or input from or output to channels, we need to extend the logic a
little. In this subsection we the necessary extensions.

First, it is perhaps worth noting another problem with the LPF approach
if expressions may be imperative. We noted earlier that LPF has to assume
some kind of parallel evaluation rule to allow, for example, for one expression
in a conjunction to be undefined when the other is false. But if the expressions
may write to variables it is unclear how to deal with such effects with LPF’s
parallel evaluation. What should be the effect on the variable v, for example,
of evaluating the following expression?

(v := v + 1 ; true) ∧ (v := v − 1 ; false)

Imperative specifications, like imperative programs, depend very heavily
on evaluation order.

Equivalence

The general semantics of expressions is that they may have effects as well as
returning results. For two expressions to be equivalent we require, that they
have equivalent effects as well as equivalent results.
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The equivalence expression “e1 ≡ e2” expresses a purely logical equiva-
lence. It evaluates to true if the expressions would have the same effects, and
would return the same results: there is no actual evaluation. Hence, unlike
equality, evaluating an equivalence does not generate any effects.

If v is an integer variable, then, in some context, after assigning a value
to v, we may know that “v ≡ 1”. But, clearly, we cannot assert this in an
arbitrary context, because v may have been assigned some other value there.
To obtain a congruence relation, we introduce an extra connective “always”,
�. The expression “� p” means “p is true in any state”, i.e. regardless of the
contents of variables. Thus “� e1 ≡ e2” is a congruence: it allows e1 to be
replaced by e2 in any context.

� is implicitly included in all axioms. Since constant and function defini-
tions are just shorthands for signatures and axioms, it is therefore implicit in
any value definition. In practice, users do not need to write it.

Equality

For expressions with effects the difference between equality and equivalence
becomes more marked. As we remarked earlier, an equality is evaluated left-
to-right. At the end only the result values are compared. Therefore if the
expression on the left has effects, these can affect the result of the expression
on the right.

Suppose we have an integer variable v and we declare a function to incre-
ment it and return its new value:

variable

v : Int

value

increment : Unit → write v Int

increment() ≡ v := v + 1 ; v

Now consider the two expressions

increment() ≡ increment() and increment() = increment()

The first is equivalent to true, and its evaluation does not change v. We say
that ≡ has only a “hypothetical” evaluation. Even when expressions have
effects, ≡ remains reflexive.

The second has an effect of increasing v twice, as both the increment
applications are evaluated. And we see that the result of the equality must
be false: whatever the initial value of v, the result on the right will be one
greater than the result on the left. We can summarise by concluding

(increment() ≡ increment()) ≡ true

and
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(increment() = increment()) ≡ (v := v + 2; false)

The second result may seem surprising, but it is consistent with most pro-
gramming languages. This does not mean, of course, that one would encourage
anyone to write expressions in such a style!

Evaluation Order

The possibility of effects means that we need to be clear about the evalu-
ation order of all expressions. For example, there is an evaluation rule for
if-expressions,

if A then B else C end ≡ let x = A in if x then B else C end end

where the identifier x is chosen so as not to be free in B or C (or such free
occurrences would become bound in the let-expression). Such rules, using let-
expressions, are very common in the proof rules of RSL, and we need to be
clear what the semantics of let-expressions is. Using the let-expression above
as an example, its evaluation is as follows:

1. A is evaluated. If it is undefined, then so is the whole expression. Oth-
erwise, it may have effects, and will return a value. Since A must be a
Boolean expression, this value must be either true or false. (If A is non-
deterministic, we shall still get one of these, but we do not know which.)

2. The value returned by A is bound to the identifier x, and then we evaluate
the second expression in the let-expression, i.e. the if-expression in this
example. So we then evaluate either B or C according to the value returned
by A.

For example, using our previous discussion about the increment function,
we could conclude that

if increment() = increment() then B else C end ≡ v := v + 2 ; C

Reasoning Style

It is common in specification methods to use an axiomatic, “equational” style
of reasoning for applicative constructs, as one does in mathematics. In RSL we
typically use the same style of reasoning, based on equivalences, for imperative
sequential descriptions and concurrent descriptions as well as for applicative
descriptions. Other methods typically use reasoning based on Hoare logic or
weakest preconditions (wp) for sequential imperative descriptions, and per-
haps temporal logic for concurrent descriptions. This is mostly a question of
style rather than substance: RSL includes preconditions and postconditions,
and reasoning in terms of these is possible, and appropriate in particular for
discussing iterative expressions (loops). But we generally find that equational
reasoning can be used for all styles of specification.
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2.4 Refinement in RSL

Since RSL is a modular language, refinement is aimed in particular at allowing
substitution. If a module A, say, depends on another module B, say, then if we
have a module B′ that refines B, substituting B′ for B should produce a module
A′ that refines A by construction. Refinement is required to be monotonic with
respect to module composition. It is then possible to use separate development
[2] to develop specifications expressed in several modules: modules can be
developed independently, and provided each development can be shown to
be a refinement, then putting the refined modules together will refine the
specification as a whole.

A definition of refinement in RSL is that class expression B′ refines class
expression B provided:

1. The signature of B′ includes that of B.
2. All the properties of B hold in B′.

The signature of a class consists of the type identifiers declared in it,
together with the types (if any) for which they are abbreviations, the value,
variable and channel identifiers, together with their types, and the object
identifiers, together with the signatures of their classes. The properties of a
class are defined in the book on the RAISE method [2].

The first condition for refinement ensures that substituting B′ for B in
some context will not generate type errors. It leads to a somewhat more re-
stricted notion of refinement than in some languages that do not meet RSL’s
requirement to support separate development. Identifiers have to remain the
same (though this can easily be fixed by RSL’s renaming construct). Types
that are abbreviations have to maintain the same abbreviation: if we declare
in B, say,

type T = Int-set

then we cannot refine type T in B′ to be, say, the type of lists of integers
(Int∗), because in general we would get type errors when substituting B′

for B to make A′. There is a standard technique in the RAISE method [2]
for overcoming this problem, by first abstracting the original definition. We
change the definition of T in B to

type T
value setof : T → Int-set

Both the type T and the function setof are left abstract. The abstraction
expresses that a set can be extracted from a T value, rather than saying a T
value is a set. Other definitions in B will also need changing, of course, using
setof. Then we can define, in B′,
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type T = Int∗

value

setof : T → Int-set

setof(t) ≡ elems t

These definitions in B′ refine those in B.
A feature of RSL is that the language can itself express the properties

of any class expression. This in turn means that the logical conditions for
refinement can be expressed in RSL, and indeed the RAISE Tool [31] can
generate these as an RSL theory.

The second condition for refinement effectively says that anything that
can be proved about a class can be proved about a class that refines it. So the
stronger the properties of a module the less “room” there is to refine it. This
is why, in particular, we adopt a particular kind of theory for functions. The
definition of factorial given earlier in Sect. 2.2 says nothing about what the
factorial function is when the arguments are not in the domain type Nat or
do not satisfy the precondition: the definition given applies only for strictly
positive arguments. It is then possible to refine factorial, if desired, by defin-
ing factorial(0) and even factorial for negative arguments. In fact, unless the
function is declared with a domain type that is maximal (one that has no
subtypes, such as Int rather than Nat), and without any precondition, it is
impossible in RSL to say what its domain is. This is intentional: if we could
calculate the domain it would be a property of the definition and allow for no
refinement that enlarged the domain.

Another feature of the logic of RSL is that it can distinguish between
determinism and nondeterminism. To be more precise, consider

value

f() : Unit
∼
→ Int

axiom

f() = 1 ∨ f() = 2 (1)

We term this a loose specification: it has more than one model, and so more
than one refinement. In fact, there are three: one where f() always returns 1,
another where f() always returns 2, and a third,

f() : Unit
∼
→ Int

f() ≡ 1 � 2 (2)

Here f is nondeterministic, and its theory is different from that of either of the
others. So the “more deterministic” refinement ordering supported by some
specification languages is not supported by RSL (though it is often not clear
when people speak of nondeterminism, whether they mean looseness (1) or
nondeterminism (2): often they actually mean looseness). Nondeterminism is
important in analysing concurrency, so we need to be clear about the distinc-
tion between it and looseness.
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2.5 Confidence Conditions

We return to the “problematic expressions” that we started discussing at
the start of Sect. 2. We have discussed how the logic of RSL can deal with
undefined expressions. We can also see how to write expressions that are safe
from undefinedness. For example, suppose we have an RSL finite map (many–
one relation) m with an Int domain type and a Text range type. Suppose we
want to specify that all the texts in the map are non-empty. If we write

∀ x : Int • m(x) �= ′′′′

then m(x) may be undefined for values of x not in the domain of the map.
As it happens, in this case, the implicit “≡ true” in the quantified expression
takes care of the undefinedness, but (a) we do not encourage users to write
specifications based on such details of the logic, and (b) the “≡ true” will not
be there when we transform this into an implementation with a loop, say, and
we should perhaps help the implementor a little. So, there is a general rule that
you never write a map application without making sure that it is guarded by
a check that the argument is in the domain. Therefore, there should be an “x
∈ dom m” condition, which may be the left of an implication or conjunction,
the condition of an if-expression (with the application in the “then” part),
or part of a precondition of the function definition in which the application
occurs. Here (remembering the other rule of thumb, that ∀ expressions almost
always use ⇒) we should obviously have written

∀ x : Int • x ∈ dom m ⇒ m(x) �= ′′′′

and we see that the conditional logic means that the application is only eval-
uated only when the map argument is in the map’s domain.

Guard conditions, like “x ∈ dom m” for the application “m(x)”, are called
“confidence conditions” in RSL. We use this term because it is not always
necessary to include them if our aim is just to avoid undefinedness: the quan-
tified expression above is an example. But if we always include them then
we have more confidence that the specification does not include undefined
expressions, which means in turn that it is less likely to be inconsistent. The
RAISE tools [31] include a “confidence condition generator” that generates
the confidence conditions for a range of potentially undefined expressions. Map
arguments being in domains, list arguments being in index sets, and partial
operator and function arguments being in domain types and satisfying pre-
conditions are in practice the most important of these conditions. Checking
that they hold in the contexts that generate them is not in general decidable,
and it needs proof tools to discharge them formally.

Confidence conditions are usually best checked by inspection: they act as
reminders. Unfortunately, as the specifier’s skill increases the “hit rate” of
conditions requiring attention becomes low, and so the possibility of missing
them during inspection rises. We now have proof tool support for discharging
many of them automatically.
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3 The Axiomatic Semantics: A Logic for Definition

In this section, we explain how RSL is given a proof theory [8] that provides
the axiomatic semantics of RSL.

3.1 Purpose and Role

The purpose of the proof theory is to provide formation rules for determining
whether a specification is well-formed (type correct etc.) and proof rules for
reasoning about specifications, for example deciding whether two RSL terms
are equivalent (they have the same meaning) or deciding whether an RSL
specification is a refinement of another RSL specification.

The role of the proof theory is to provide an axiomatic semantics that
defines the meaning of RSL whereas the role of the denotational semantics [7]
is just to ensure consistency of the proof theory by providing a model. The
reason for taking this view of roles is the fact that the proof theory is needed
anyway (since we should be able to reason about specifications) and it is much
more comprehensible than the denotational semantics (since its metalanguage
is much simpler). The RSL type checker implements the formation rules, while
the RAISE justification editor implements a proof system (see Sect. 4) that
is derived from the axiomatic semantics.

3.2 The Form of the Definition of the Axiomatic Semantics

The axiomatic semantics consists of a collection of inference rules of the form

premise1 ... premisen

conclusion

where the upper part consists of a possibly empty list of formulae, called the
premises,and the lower part consists of a formula, called the conclusion. The
most important kinds of formulae are those for expressing the static semantics
of RSL terms, refinement of RSL terms and equivalences between RSL terms.
The formulae may contain term variables.

As usual, the inference rules can be instantiated by consistently replacing
term variables with actual, variable-free terms of the same syntactic category.
A rule represents all its legal instantiations. An instantiated rule expresses
that if the (instantiated) premises hold then also the (instantiated) conclusion
holds.

3.3 The Collection of Inference Rules

In this section, we give examples of some important classes of inference rules.
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Formation Rules

For each RSL term that is not defined to be a context independent short-
hand (see below), there is an inference rule defining its static semantics. For
instance, the rule

context � true :" Bool

states that the RSL term true is well-formed and has type Bool as its static
semantics. This rule is simple, having no premises and not referring to the
context,2 but many rules have static premises expressing that sub-terms are
well-formed, have appropriate types, refer only to names declared in the con-
text, etc.

The formation rules provide a decidable test for whether terms are well-
formed.

Context-independent Equivalence Rules

There is a class of inference rules that define a context-independent equiv-
alence relation ∼= . Intuitively, � term1

∼= term2 asserts that the two terms
term1 and term2 are equivalent in all respects, i.e. have the same properties
(attributes, static semantics and dynamic meaning) and can be substituted
for each other anywhere.

The context-independent equivalence rules typically express algebraic laws
like commutativity of the concurrency operator:

� value expr1 ‖ value expr2 ∼=
value expr2 ‖ value expr1

A subclass of these rules, the context-independent expansion rules, have the
role of expressing that certain RSL terms are shorthands for others. For in-
stance, the rule

� value expr1 ∧ value expr2 ∼=
if value expr1 then value expr2 else false end

states that a conjunction of the form value expr1 ∧ value expr2 is a shorthand
for if value expr1 then value expr2 else false end (compare the discussion
of the meaning of the RSL connectives in Sect. 2.2).

When a term is defined to be a shorthand, there do not need to be any
other rules having a conclusion concerning that term – all properties are to

2 A context provides assumptions about identifiers and operators. In its most basic
form, a context is an RSL class expression.
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be derived from the term that it is a shorthand for. For a term that is not a
shorthand, there will typically be several rules having a conclusion concerning
that term.

Context-dependent Equivalence Rules

There is another class of inference rules that define a context-dependent equiv-
alence relation, # for stating that in a given context two terms are equivalent
in the weaker sense that they have the same meaning (which may depend
on the context), but not necessarily the same static properties. For example,
their free variables might differ. An example of such a rule is

context � value expr :" opt access desc string Bool

context � read-only-convergent value expr

context �

if value expr then value expr else true end #

true

This states that, in a given context, the value expression if value expr then

value expr else true end is equivalent to true, if the constituent value expr
is (1) well-formed with type Bool, and (2) read-only and convergent. The first
condition in the rule ensures that the equivalence between the two terms can
be proved only when these are both well-formed. Otherwise, the rule would not
be sound (one could, for example, prove if 1 then 1 else true end # true).
The second condition in the rule ensures that the if-expression does not have
any side effects and is convergent. Otherwise, one could e.g. prove

if x := 1; true then x := 1; true else true end # true.

As in the context-independent case, there is a subclass of these rules, the role
of which is to define shorthands.

Refinement Rules

A collection of inference rules define the refinement relation.

Auxiliary Rules

There are several collections of rules that define auxiliary functions and rela-
tions, which are used in the premises of the other rules.

For instance, there is a collection of rules that define attribute functions
new and free, which take an RSL term as an argument and return the set of
identifiers and operators that are declared and occur free in the term, respec-
tively. These are used in the premises of other rules to express restrictions on
identifiers or operators appearing in the conclusion.
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3.4 Relation to Denotational Semantics

RSL has been given a denotational semantics in [7]. This denotational se-
mantics can be extended in an obvious way to cover also the formulae of the
metalanguage of the axiomatic semantics. For instance, the meaning of a for-
mula of the form value expr can be defined to be the same as the meaning of
the value expression �(value expr ≡ true).

There are some questions about how we can achieve completeness and
soundness for a language as large as RSL. This is not to claim that RSL is
particularly large, merely that any rich language will have similar problems.
Soundness and completeness with respect to the denotational semantics are
discussed in the following subsections.

3.5 Soundness

The defining proof rules can either be asserted as the true definition, and so
declared as sound a priori, or else be proved against the denotational seman-
tics [32]. In the first case, it would still be desirable to check the denotational
semantics against the proof rules. But it is difficult to see how this could be
done other than in an informal manner. The denotational semantics is some
350 pages of formulae, and there are a number of known errors in it (and an
unknown number of others!). It is, however, thought that there are no sub-
stantial problems with this document, and that the errors could be “fixed”
without radical change. One can therefore take the view that the defining
proof rules form an axiomatic semantics, and that the denotational seman-
tics provides evidence of the existence of a model satisfying these properties.
This is largely the view taken in the book on the RAISE method [2], where
specifications are described in terms of their signatures and logical properties,
and refinement between specifications is correspondingly defined in terms of
signature inclusion and property entailment. It is a useful feature of RSL that
its logic is powerful enough to itself express the properties needed to show
refinement.

3.6 Completeness

The completeness of a set of proof rules is rather easier to deal with. First,
there are language constructs that are defined in terms of others. So, for
example, the five kinds of value definition in the language can all be expressed
as one, a signature plus an axiom.

For the constructs that are left, one defines a collection of “normal forms”
and adds rules to show how other forms may be made normal. Then the
operators are defined in terms of the normal forms. This is the way the defining
rules for RSL were written.

Completeness is relative, of course, to the rules for the built-in types,
including Bool, Int and Real. The definitional rules ignore the rules for these
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types completely. In a proof, one would expect to use standard definitions of
such types.

4 The RSL Proof System: A Logic for Proof

When we consider a suitable logic for conducting proofs, our concerns become
more practical. We have to take care of soundness, of course: we must not
enable the proof of invalid theorems. But what the user will, in practice, be
most concerned with is the ability to prove valid theorems, and preferably
being able to do so automatically.

This raises the question of completeness. It seems obvious at first that
the proof system should be complete (all valid theorems should be provable).
But in practice it seems worth sacrificing completeness in a few places to
obtain more ease of proof in the vast majority of cases. In fact we sacrificed
completeness in favour of a simplified language for proof rules. In particular,
the language does not include contexts, which are, in general, much more easily
handled implicitly by a tool, and as a consequence RSL’s ‘local-expressions’,
which allow local definitions, are not catered for with full generality.

So, the proof system is sound but incomplete compared with the axiomatic
semantics, though most of the incompleteness is handled by a tool.

4.1 The Justification Editor

The proof rules are intended for application by a tool, the RAISE justification
editor. We can therefore immediately assume a mechanism for type-checking,
and make a general assertion that a proof rule may be applied only to well-
formed expressions, and application succeeds only when it gives a result that
is also well-formed. The tool also handles the context, the bindings of names
to their definitions, which further simplifies the rule language.

The general form of a rule is the inference rule introduced in Sect. 3. But
most of the proof rules take the form

term1 # term2 when term3

where term3 (termed the side condition) is the conjunction of the premises.
The context is the same for all the terms. Such a rule allows an expression
matching term1 to be replaced by the corresponding instantiation of term2

(or vice versa), provided the instantiated term3 can be proved. The important
point about the justification editor is that it allows proof rules to be applied
to sub-expressions of a goal. The basic style of proof is to

• select a sub-expression (a mouse drag)
• show the applicable proof rules (a menu)
• select and apply a rule (mouse clicks)
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The applicable rules are selected by syntax, and are generally few in num-
ber, so supporting easy selection. This allows a very user-controlled, natural,
flexible style of proof.

Side conditions generate separate proof obligations, so that a proof be-
comes a tree. The branches can be proved in any order, and so one may
choose whether to check a side condition first, in order to check that a strat-
egy is applicable, or proceed with the main proof first, in order to check that
a strategy is appropriate.

The term justification was coined for a proof in which not all steps have to
be proved formally. The tool accepts the informal assertion that a goal is true,
or that an expression may be replaced by another asserted as equivalent. The
tool keeps track of such informal steps. A justification may be stored and then
loaded again, for the proof to be reviewed, or pretty-printed or for informal
steps to perhaps be made formal.

4.2 Proof Rule Language

The language for expressing proof rules is, in fact, a small extension of RSL.
A correspondingly small extension to the type checker allows proof rules to be
type-checked. The justification editor supports the input of proof rules: they
are mostly not built-in. This allows for greater transparency, and the main
document listing the rules [33] was in fact generated from the input given to
the justification editor.

The proof rule language has a number of rules for instantiation of term
variables that are implicit in their names. For example, names differing only
in the number of primes must have the same maximal type, but names may
otherwise have different types. Names starting with “p ” may be matched
only by pure expressions, those starting with “ro ” may be matched only by
read-only expressions, those involving “eb” must be Boolean expressions, etc.

For example, the rule for if-expressions mentioned in Sect. 3 is written

[ if annihilation1 ]
if eb then eb else true end # true

when convergent(eb) ∧ readonly(eb)

The first line is the rule name (which appears in selection menus). There
are various naming conventions, which together indicate that this rule may
be used to “annihilate” or remove an if-expression. (Or, applied right-to-left,
to introduce one.) The side condition uses two of the “special functions” that
are used in many proof rules. Their (partial) evaluation is built into the jus-
tification editor, so that readonly, for example, will generally be discharged
automatically when it holds. convergent can be more difficult to prove, of
course.

“convergent(eb)” is just an abbreviation for “eb post true”. Special
functions typically express simple concepts but may have more complicated
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definitions. There are special functions, for example, to express the condi-
tions necessary for a new binding not to capture free names (no capture),
for a replacement binding to capture only names that the previous one did
(no new capture), and for an expression to match a pattern (matches).

Of particular importance in a language with effects (assignments to vari-
ables, input and output) are rules showing the order of evaluation. Without
these many constructs would be ambiguous. There is a general “rule of thumb”
that evaluation is left-to-right. More formally, it is defined by “ evaluation”
rules. The evaluation of an if-expression, for example, is given by

[ if evaluation ]
if eb then e else e′ end #

let id = eb in if id then e else e′ end end

when no capture(id, e) ∧ no capture(id, e′)

This rule is always applicable left-to-right – the side condition requires
only the choice of an identifier not free in e or e′ – and shows that the guard
condition is evaluated before anything else. If eb does not terminate, then
neither will the let-expression. Otherwise eb will evaluate to either true or
false and the corresponding if annihilation rule can be applied. To deal with
the case where eb is nondeterministic, we have

[ let int choice ]
let b = e � e′ in e1 end #

let b = e in e1 end � let b = e′ in e1 end

To show that the rules are sound, we have divided them into “basic” rules,
which are just rewritings of the definitional rules of Sect. 3, and “derived”
rules, which should be derivable from the basic ones. There are just over
200 basic rules, and currently well over 2000 derived ones, which shows the
importance of convenience in proof.

4.3 Context Rules

No distinction between basic and derived rules is made in the justification
editor, as this distinction is generally uninteresting for the user. A distinction
that is made is between the rules of RSL and the rules that users may apply
because they are axioms of their specifications, termed context rules. For
example, when one is proving something in the context of the axiom

axiom

[ is in empty ] ∀ x : Elem • ∼is in(x, empty)

(where the type Elem, the constant empty and the function is in are also
declared in the context), the context rule
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[ is in empty ]
is in(e, empty) # false

when convergent(e) ∧ pure(e) ∧ isin subtype(e, Elem)

is available. Note the way in which the universal quantifier gives rise to a
term variable “e”. Value definitions, since they are equivalent to signatures
and axioms, also generate context rules.

Some type definitions also give rise to context rules. Variant types generate
induction rules, and disjointness rules asserting that different constructors
generate different values. Record types are treated as singleton variants, and
so also generate induction rules.

4.4 Definition Versus Proof

We can now summarise the main differences between rules used for definition
and those used for proof:

• The defining rules need to be concerned with well-formedness (scope and
type) rules, while the rules for proof can assume terms are well-formed.

• If the defining rules were the only definition they would necessarily be
considered sound and complete, because they would be the only reference.
But we also have a denotational semantics and can conclude, convention-
ally, that with respect to that semantics they need to be sound, and it is
desirable that they also be complete.
Rules for proof are more concerned with utility. The smaller a set of defin-
ing rules we have, the more easily can we show it to be sound. In general,
as long as the search problem is manageable, the larger the set of rules for
proof we have the easier proofs will be.

• A simple meta language for proof rules helps users understand, choose and
apply rules. Context information is best handled by tools rather than by
direct manipulation. This leads, in the case of RSL, to incompleteness for
local-expressions, which contain definitions.

There are some questions about how we achieve completeness and sound-
ness for a language as large as RSL. This is not to claim RSL to be particularly
large, merely that any rich language will have similar problems.

5 Case Study

This section is intended to illustrate how a system can be specified in RSL
and verified using various RAISE tools. The example considered is a harbour
information system, with functions for interrogating and changing the data,
and invariant properties that the data must satisfy. First, in Sect. 5.1, a sim-
ple version of the system is specified and is proved to preserve the invariant
properties, and in Sect. 5.2 alternative methods of verification are discussed.
Next, in Sect. 5.3, we consider a more complex version of the system.
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5.1 A Simple Version

In this section, we give an applicative, explicit (model-oriented) specification
of a simple version of the system. In the RAISE method book [2] it has been
shown how such an applicative, explicit specification can be developed from a
more abstract (algebraic) specification, and how it can be transformed further
into an imperative specification.

Requirements

The harbour is illustrated in Fig. 1.
Ships arriving at a harbour have to be allocated berths in the harbour

which are vacant and which they will fit, or to wait in a “pool” until a suitable
berth is available. We assume that all ships will have to arrive and to wait
(perhaps only notionally) in the pool before they can dock.

pool
berths

leave

arrive

dock

Fig. 1. Harbour

The requirements are to develop a system that provides the following functions
to allow the harbour master to control the movement of ships in and out of
the harbour:

• arrive: to register the arrival of a ship;
• dock: to register a ship docking in a berth;
• leave: to register a ship leaving a berth.
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Specification

We first ask what the objects of a harbour are, and what their static and
dynamic relationships are. The objects of a harbour are ships, a fixed collection
of berths and a pool. The pool consists of a collection of ships, and a berth
is either empty or occupied by a ship. A ship may or may not fit a berth.
The entity relationships are shown in Fig. 2. The ships in the pool and the

fits

pool

berths

berth

ship harbour

waiting pool

occupying

Fig. 2. Entity relationships for harbour system

ship occupancy of berths will change dynamically when ships arrive, dock and
leave. All other relations are static.

Our plan is to develop the following modules:

• A scheme TYPES, defining types and static properties for the basic ob-
jects.

• A global object T that is an instantiation of TYPES.
• A scheme HARBOUR, defining a type Harbour for data about the state

of the harbour and the required top-level functions.

So, the structure of the specification should be

scheme TYPES = class ... end

object T : TYPES
scheme HARBOUR = class ... end

The HARBOUR module can access types and functions defined in TYPES
by qualifying their names with a T.

In the following we will first present the contents of the TYPES module
and then the contents of the HARBOUR module.



The Logic of RSL 375

The TYPES Module

In the following, we show the declarations that should constitute the TYPES
module.

First, we identify the basic objects of the system: ships and berths. For
these, we declare two types, Ship and Berth:

type Ship, Berth

Then, we look for static properties of the objects. According to the require-
ments, a ship may or may not fit a berth. So, we declare a function that can
test this static relationship:

value fits : Ship × Berth → Bool.

However, we leave it underspecified.
No other static properties are mentioned in the requirements. However, we

decide that it would be convenient to let each berth have a unique index as a
static attribute. Therefore, we specify a function that can observe the index
of a berth:

value

indx : Berth → Index
axiom

[ berths indexable ] ∀ b1, b2 : Berth • indx(b1) = indx(b2) ⇒ b1 = b2

We define the type Index to be the subtype of all integers in an interval
determined by two underspecified integer constants min and max:

type

Index = {| i : Int • i ≥ min ∧ max ≥ i |}
value

min, max : Int

axiom

[ index not empty ] max ≥ min

At this point, we leave it open whether ships and berths should have additional
attributes. Later we may e.g. decide to let them have an attribute size in terms
of which the fits relation could then be calculated.

The HARBOUR Module

The HARBOUR module should contain:

• an explicit definition of the type of interest (the type Harbour of harbour
states);

• an explicit definition of some useful observer (query) functions;
• an explicit definition of three required generator functions, namely arrive,

dock and leave
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• an explicit definition of guards for the generators;
• an explicit definition of a function (consistent) to express the state invari-

ant.

The state of a harbour is given by the pool of waiting ships and how ships
are occupying the berths. Hence, a natural concrete type to use for Harbour
is a short record having a component pool, which is a set of waiting ships and
a component berths, which is a map from the indices of occupied berths to
the ships that are docked in those berths:

type /∗ type of interest ∗/

Harbour ::
pool : T.Ship-set
berths : T.Index →m T.Ship

It turns out that the following observer (query) functions will be useful:

value /∗ observer (query) functions ∗/

waiting : T.Ship × Harbour → Bool

waiting(s, h) ≡ s ∈ pool(h)

is docked : T.Ship × Harbour → Bool

is docked(s, h) ≡ s ∈ rng berths(h)

is vacant : T.Berth × Harbour → Bool

is vacant(b, h) ≡ T.indx(b) �∈ dom berths(h)

is occupied by : T.Berth × T.Ship × Harbour → Bool

is occupied by(b, s, h) ≡

(T.indx(b) ∈ dom berths(h)) ∧ (berths(h)(T.indx(b)) = s)

These are all given explicit definitions utilising the chosen concrete Harbour

type. Actually, waiting and is occupied by are basic observers, from which we
could have derived (i.e. in terms of which we could have given definitions of)
is docked and is vacant. However, we gave a shorter, equivalent definition of
is docked and is vacant. One could also imagine other useful query functions,
e.g. one for giving the location of a ship. These can be added later, if needed.

A constant empty representing the state of an empty harbour and the
three required generator functions, arrive, dock and leave, can be given explicit
definitions utilising the chosen concrete Harbour type:

value /∗ generator functions ∗/

empty : Harbour = mk Harbour({}, [ ])

arrive : T.Ship × Harbour
∼
→ Harbour

arrive(s, h) ≡ mk Harbour(pool(h) ∪ {s}, berths(h))
pre can arrive(s, h)
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dock : T.Ship × T.Berth × Harbour
∼
→ Harbour

dock(s, b, h) ≡ mk Harbour(pool(h) \ {s}, berths(h) † [ T.indx(b) �→ s ])
pre can dock(s, b, h)

leave : T.Ship × T.Berth × Harbour
∼
→ Harbour

leave(s, b, h) ≡ mk Harbour(pool(h), berths(h) \ {T.indx(b)})
pre can leave(s, b, h)

The generator functions are all partial as there are situations where they
cannot sensibly be applied. Preconditions define when they may be applied.
The preconditions are formulated using auxiliary functions (called “guards”)
can arrive, etc. All these guards are derived from (i.e. given explicit definitions
in terms of) the observers:

value /∗ guards ∗/

can arrive : T.Ship × Harbour → Bool

can arrive(s, h) ≡ ∼ waiting(s, h) ∧ ∼ is docked(s, h)

can dock : T.Ship × T.Berth × Harbour → Bool

can dock(s, b, h) ≡

waiting(s, h) ∧ ∼ is docked(s, h) ∧ is vacant(b, h) ∧ T.fits(s, b)

can leave : T.Ship × T.Berth × Harbour → Bool

can leave(s, b, h) ≡ is occupied by(b, s, h)

Finally, we consider what the desired invariants (properties that should always
be true) of the data are. Some possibilities are

• at most one ship can be in any one berth;
• a ship cannot be in two places at once, i.e.

– it cannot be waiting and docked at once, and
– it cannot be docked in two distinct berths at once;

• a ship can only be in a berth that it fits.

Sometimes we can express (part of) the invariant in the data structure,
and this applies to the first of our invariant items. We have modelled the
berths by a finite map from berth index to ship, and since finite maps are
deterministic, at most one ship can be associated with any berth index, and
hence with any berth (since indx is a total function and hence deterministic).
If we wish to formalise this argument we would want to prove

∀ ... • is occupied by(b,s1,h)∧is occupied by(b,s2,h) ⇒ s1=s2

which unfolds to

∀ ...•...∧berths(h)(T.indx(b))=s1∧berths(h)(T.indx(b))=s2 ⇒ s1=s2
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which is immediate.
We then introduce a predicate consistent that tests whether a harbour

state satisfies the remaining invariants. We specify it explicitly in terms of the
observer functions:

consistent : Harbour → Bool

consistent(h) ≡

(∀ s : T.Ship •

∼ (waiting(s, h) ∧ is docked(s, h)) ∧

(∀ b1, b2 : T.Berth •

is occupied by(b1, s, h) ∧ is occupied by(b2, s, h) ⇒ b1 = b2) ∧

(∀ b : T.Berth •

is occupied by(b, s, h) ⇒ T.fits(s, b))
)

Proof Obligations

Our goal is to prove that the initial state empty satisfies the state invariant

consistent(empty)

and that the state-changing functions preserve the state invariant, e.g.

∀ h : Harbour, s : T.Ship •

consistent(h) ∧ can arrive(s, h) ⇒ consistent(arrive(s, h))

Proof Using eden

Below, we show how the second of the proof obligations can be discharged
using the RAISE justification editor ‘eden’.

The proof is carried out by a series of steps in which proof rules are ap-
plied to transform the goal (proof obligation) into a new goal(s), the truth
of which ensures the truth of the original goal. In the proof goals are written
within “half-brackets” and , and the names of the proof rules applied are
written between the goals. We have hidden some of the intermediate goals
using comma-separated lists of the names of the proof rules applied.

The proof is performed in the context of the HARBOUR specification,
which means that we may use the definitions of that specification in the proof.
More precisely, each of the definitions gives rise to context rules. As an exam-
ple, the record type definition of the Harbour type gives rise to the following
two rules, among others:

[ pool mk Harbour ] pool(mk Harbour(p, b)) # p
[ berths mk Harbour ] berths(mk Harbour(p, b)) # b

First we show the proof, and then we shall explain some of the steps.
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∀ h : Harbour, s : T.Ship •

consistent(h) ∧ can arrive(s, h) ⇒ consistent(arrive(s, h))
all assumption inf, imply deduction inf1 :
[ gen 131 ] consistent(h) ∧ can arrive(s, h) �

consistent(arrives(s, h))
/∗ unfold all function applications ∗/

application expr unfold2, application expr unfold1, all name change,
all assumption inf, application expr unfold1, application expr unfold1,
application expr unfold1, application expr unfold1,
application expr unfold1,

∼ (s′ ∈ pool(mk Harbour(pool(h) ∪ {s}, berths(h))) ∧

s′ ∈ rng berths(mk Harbour(pool(h) ∪ {s}, berths(h))))
∧

(∀ b1, b2 : T.Berth •

((T.indx(b1) ∈

dom berths(mk Harbour(pool(h) ∪ {s}, berths(h)))) ∧

(berths(mk Harbour(pool(h) ∪ {s}, berths(h)))(T.indx(b1)) = s′)
) ∧

(T.indx(b2) ∈

dom berths(mk Harbour(pool(h) ∪ {s}, berths(h)))) ∧

(berths(mk Harbour(pool(h) ∪ {s}, berths(h)))(T.indx(b2)) = s′) ⇒

b1 = b2)
∧

(∀ b : T.Berth •

(T.indx(b) ∈

dom berths(mk Harbour(pool(h) ∪ {s}, berths(h)))) ∧

(berths(mk Harbour(pool(h) ∪ {s}, berths(h)))(T.indx(b)) = s′) ⇒

T.fits(s′, b))
/∗ simplify ∗/

simplify, application expansion3,
application expansion3, application expansion3, simplify,
and associativity :

∼ ((s′ = s ∨ s′ ∈ pool(h)) ∧ s′ ∈ rng berths(h)) ∧

(∀ b1, b2 : T.Berth •

(T.indx(b1) ∈ dom berths(h) ∧ (berths(h))(T.indx(b1)) = s′) ∧

T.indx(b2) ∈ dom berths(h) ∧ (berths(h))(T.indx(b2)) = s′ ⇒
b1 = b2) ∧

(∀ b : T.Berth •

T.indx(b) ∈ dom berths(h) ∧ (berths(h))(T.indx(b)) = s′ ⇒

T.fits(s′, b))
/∗ fold in applications of is occupied by ∗/

substitution1, substitution1, substitution1 :

∼ ((s′ = s ∨ s′ ∈ pool(h)) ∧ s′ ∈ rng berths(h)) ∧

(∀ b1, b2 : T.Berth •



380 Chris George and Anne E. Haxthausen

(is occupied by(b1, s′, h)) ∧ is occupied by(b2, s′, h) ⇒

b1 = b2) ∧

(∀ b : T.Berth • is occupied by(b, s′, h) ⇒ T.fits(s′, b))
/∗ remove the two last conjuncts

using the consistent(h) assumption of gen 131 ∗/

consistent, consistent, simplify,
/∗ prove this by case analysis ∗/

two cases inf :
• [ gen 695 ] s = s′ �

∼ ((s′ = s ∨ s′ ∈ pool(h)) ∧ s′ ∈ rng berths(h))
simplify, gen 695,
imply modus ponens inf :
• can arrive(s, h)

gen 131, qed
• can arrive(s, h) ⇒ ∼ (s ∈ rng berths(h))

application expr unfold1, application expr unfold1, simplify, qed
• [ gen 694 ] ∼ (s = s′) �

∼ ((s′ = s ∨ s′ ∈ pool(h)) ∧ s′ ∈ rng berths(h))
simplify,
imply modus ponens inf :
• consistent(h)

gen 131, qed
• consistent(h) ⇒ ∼ (s′ ∈ pool(h) ∧ s′ ∈ rng berths(h))

application expr unfold1, application expr unfold1,
application expr unfold1, simplify, qed

In the first step of the proof, we assume that we have a fixed but arbitrary
ship s and harbour h.

In the second step, we use the rule

[ imply deduction inf1 ]
[ id ] ro eb � ro eb′

ro eb ⇒ ro eb′

when convergent(ro eb) ∧ pure(ro eb)

obtaining a new goal, which must be proved in the context of an assumption
named [ gen 131 ].

Then, we perform a number of steps in which we repeatedly use the ap-

plication expr unfold rules to unfold function applications according to their
definitions in HARBOUR.

Next, we simplify the goal obtained, using, among others the simplify

rule which automatically applies a number of rules according to some built-in
strategy. In this case [ pool mk Harbour ] and [berths mk Harbour ] are two
of the rules that it applies.
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After that, we substitute three of the subterms with applications of the
function is occupied by, using its definition in HARBOUR. By this technique,
we reach a goal that we prove by a case analysis with two cases.

Proof via Translation

The original RAISE tools, which are the tools mostly discussed in this chap-
ter, are being superseded by a new tool which is much more portable [31].
This new tool provides support for proof via translation [34] to PVS [27],
thus making available the power of the PVS proof engine. This approach,
based on a “shallow” embedding of RSL into PVS, can provide only a limited
proof system because PVS is applicative – imperative and concurrent RSL is
excluded. PVS also has a different logic from RSL that excludes undefined-
ness and nondeterminism (the “every expression denotes a value” approach
described in Sect. 2), and so special care in that the translation, including
the generation of extra lemmas based on confidence conditions, is needed to
ensure the translation is sound. A “deep” embedding into PVS would entail
the modelling of RSL’s semantics in the PVS logic. This may be possible,
and might be useful for exercises in checking RSL proof rules, but would be
unlikely to produce a tool useful in practice for performing proofs about RSL
specifications.

The PVS translator does not need many proof rules for RAISE, because the
target constructs of the translation are either built into PVS (like arithmetic),
defined by built-in expansions (like abstract data types) or defined in the PVS
prelude (like sets and lists). A few additional constructs (including maps) are
defined in an “RSL prelude”. This contains only a few theorems, most of the
definitions being constructive.

We have used the new tool to translate the proof obligations of Sect. 5.1
into PVS and proved them using the PVS proof engine. The consistency of the
empty state was proved automatically. The other three proofs were completed
with about half the number of proof steps required with eden. Detailed figures
are given later, in Sect. 5.3.

In the remaining of this section we shall compare the styles of proof in
PVS and eden.

Consider the point commented “/∗ prove this by case analysis ∗/” in the
eden proof. Here the proof goal is

∼ ((s′ = s ∨ s′ ∈ pool(h)) ∧ s′ ∈ rng berths(h))

Note that eden keeps assumptions hidden unless the user asks to see them.
The hidden assumptions at this point are can arrive(s, h) and consistent(h).

The state of the PVS proof at about the same point is

[-1] pool(h!1)(s!2) OR s!1 = s!2

[-2] EXISTS (d: Index):

nonnil?(berths(h!1)(d)) AND
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s!2 = rng_part(berths(h!1)(d))

[-3] FORALL (s: T.Ship):

NOT (pool(h!1)(s) AND

(EXISTS (d: Index):

nonnil?(berths(h!1)(d)) AND

s = rng_part(berths(h!1)(d))))

AND

((FORALL (b1: T.Berth, b2: T.Berth):

(nonnil?(berths(h!1)(T.indx(b1))) AND

(rng_part(berths(h!1)(T.indx(b1))) = s))

AND

nonnil?(berths(h!1)(T.indx(b2))) AND

(rng_part(berths(h!1)(T.indx(b2))) = s)

IMPLIES b1 = b2)

AND

(FORALL (b: T.Berth):

nonnil?(berths(h!1)(T.indx(b))) AND

(rng_part(berths(h!1)(T.indx(b))) = s)

IMPLIES T.fits(s, b)))

|-------

[1] pool(h!1)(s!1)

[2] EXISTS (d: Index):

nonnil?(berths(h!1)(d)) AND

s!1 = rng_part(berths(h!1)(d))

Essentially, this means that we have to prove (using the sequent numbers for
the sequents)

[-1] ∧ [-2] ∧ [-3] ⇒ [1] ∨ [2]

which is logically equivalent to

∼ [1] ∧ ∼ [2] ∧ [-3] ⇒ ∼ ([-1] ∧ [-2])

We will see below that this second formulation has the same structure as
the eden goal.

In PVS, s!1, s!2 and h!1 correspond to s, s′ and h, respectively in
RSL. Sets are modelled by predicates in PVS, and so s′ ∈ pool(h) becomes
pool(h!1)(s!2).

RSL maps are like partial functions: they can be applied only to values in
their domain. In PVS, where we have only total functions, we model a map as
a total function that returns nil when applied to values not in the domain.
We use a PVS “datatype” Maprange:

Maprange[rng: TYPE]: DATATYPE

BEGIN
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nil: nil?

mk_rng(rng_part: rng): nonnil?

END Maprange

This is like a variant type in RSL, with values that are either nil, or
constructed from a rng value by a constructor mk_rng and ‘destructed’
by the accessor rng_part. nil? and nonnil? are recognizers, predicates
over the Maprange type. So in the assumption [-2] above, for example,
nonnil?(berths(h!1)(d)) corresponds to d ∈ dom berths(h), and rng_part-
(berths(h!1)(d)) corresponds to berths(h)(d)

Using these correspondences, we see that the goal in the eden proof cor-
responds to ∼ ([-1] ∧ [-2]) in PVS. In PVS, such a negated goal be-
comes a positive assumption. Conjoined assumptions are typically, as here,
“flattened” during proof into separate assumptions. The assumption [-3] is
consistent(h!1) (unfolded) and hence corresponds to one of the two eden
assumptions. The other eden assumption corresponds to ∼ [1] ∧ ∼ [2] which
is the result of unfolding the assumption can_arrive(s!1,h!1), which pro-
duces the conditions that the ship is not waiting and not in a berth. Negated
assumptions become positive, disjoined goals in PVS, and disjoined goals are
typically, as here, flattened into separate goals. The transposition of negative
assumptions into goals, and vice versa, can make proof in PVS quite confusing,
especially when there are many more sequents than in this simple example.

The fact that eden keeps assumptions hidden is the main reason that
the eden goal is so much shorter. Added to this is the tendency in PVS to
unfold early. One typically sets unfolding of (non-recursive) functions to be
automatic so that simplification can take advantage of it. In eden, unfolding
is not automated, and so one tends to do it only when necessary.

In this proof, the structure of the assumption [-1] suggests, as in the
eden proof, splitting on the case where s!1 = s!2. The first case, when they
are equal, makes the assumption [-2] identical to the goal [2], which should
be enough to complete the proof of this case, and in fact PVS does this
automatically and the case never appears. In eden we still have to identify the
relevant assumption (can arrive(s,h)) and unfold it.

The use of PVS and its proof engine improves the capability for automatic
proof, which was a weakness of eden. It may be possible to improve this fur-
ther with special tactics designed for RSL (especially for proving confidence
conditions). PVS also provides the possibility of replaying proofs after changes
to the specification, a feature of the justification editor that was never imple-
mented. Inventing proofs initially is often hard, but redoing them by hand
after changes is extremely tedious.

An alternative for translating proof obligations into PVS is to translate
them into Isabelle/HOL [35]. Such a translation has been defined in another
project [36, 37]. That translation is based on an institution representation
from an institution of RSL to an institution of higher-order-logic and has
been proved sound with respect to the denotational semantics of RSL.
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5.2 Other Ways to Verify Specifications

Proof is the ideal method to use to verify properties such as the maintenance
of consistency. But, in general, proof is expensive because it is very time-
consuming and requires a considerable amount of expertise: we are still, it
seems, some way from being able to perform automatically the kinds of proof
we need to do. It is also expensive because if we change the specification we
will need to redo the proof, and while good proof tools will redo what they
can, and allow us to edit the proof script, redoing proofs can still be very
time-consuming. So proof is currently used, if at all, only for very critical
software or in hardware design, where the costs of making changes are much
higher than they are for software.

In doing proof it is often very difficult to distinguish between something
for which we have not yet found the right tactic, and something that is not
provable: “The hardest proofs are those which aren’t true”. It is therefore a
good idea to use model checking or testing to obtain more assurance that the
property to be proved is indeed true before we try to prove it.

There are several alternatives to proof, which we shall introduce in this
section. We will see that they are progressively cheaper to use, but also give
us progressively less assurance that there are no errors.

Model Checking

Model checking has become an increasingly popular approach in recent years.
The basic idea is to exhaustively test a system. That is, a property such
as maintenance of consistency is asserted and then checked as being true in
every possible state of the system. One can immediately see that the possible
states must be (a) finite and (b) not too numerous for such an approach to
be feasible, and typically much of the work in model checking is involved
in reducing the size of the state space. For a general introduction to model
checking, see [38, 39].

Reducing the state space typically involves reducing types to finite ranges,
but usually also involves making an abstraction of the system. There is there-
fore an advantage in performing model checking on specifications as opposed
to programs in that specifications are often already abstract. For example,
our specification of the harbour contains very limited information about ships
and berths.

At the time of writing, we are developing a translator from RSL to the
language of the symbolic model checker SAL [40,41]. We translated the har-
bour specification by hand. In order to make the system finite, and to define
what was currently underspecified, we:

• defined the abstract type Ship as the natural numbers from 1 to 4, and
also indexed the berths from 1 to 4; and

• defined fits as the condition that the ship number is at most the berth
index.
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We then checked the condition that consistency is maintained in all states,
and this returned “true”. The model checker created a transition relation with
1015 nodes based on 24 Boolean variables and computed the result in 2 seconds
(on a Pentium 4 PC with 512MB of memory).

To obtain some assurance that our model was correct, we then asserted
the condition that there is no state with all of the berths full. The model
checker generated a (unique) counterexample when ship 1 is in berth 1, ship
2 in berth 2, etc., and a sequence of arrive and dock invocations to achieve it.

For a reasonably small finite model, model checking is as good as proof
because the checking is exhaustive. The problem is that we usually have to
reduce the problem to a finite model before we can use model checking, while
there is no need to reduce before using proof, and we may make mistakes in
the reduction process. There is also the danger that there is an inconsistency
possible with five ships, or fewer berths than ships, that our reduced model
cannot discover. Model checking is, however, much cheaper than proof, and
the generation of traces to show how failure states can be reached is of great
assistance in understanding and correcting problems.

Testing

A specification that is completely concrete can often be translated automat-
ically into a programming language and executed. The RAISE tools have
translators to SML [42] and to C++. There is also a recent extension to RSL,
the test case declaration. A test case declaration consists of a sequence of
test cases with a syntax rather like that for axioms, with an optional identifier
plus an expression. The expression can be of any type. Test cases do not affect
the semantics of specifications, but translators will generate code to evaluate
them and print the identifier and result values. Commonly a test case takes
the form

[ id ] expression = expected result

which means that outputs can easily be checked (being just true for each test
case) and that the expected results of tests are documented in the specifica-
tion.

In the case of an imperative specification, a typical test case has the form

[ id ] method call ; condition

where condition is a predicate over the state variable(s) designed to check that
the method has worked correctly (when the condition will return true). But
the condition can be any type of expression; when debugging, for example,
we might use a test case to output the state after a method call: see the test
case [t5] below for an example.

To prepare the harbour specification for translation, we did the following:
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• We defined the types Ship and Berth concretely as follows

type

Ship == s1 | s2 | s3 | s4 | s5 | s6 | s7 | s8,
Berth == b1 | b2 | b3 | b4

• We defined the type Index for berths as the subtype of Int ranging from
1 to 4, size for ships in the range 1 to 8 in the obvious manner, size for
berths in the range 1 to 8 as twice the index, and fits by

value

fits : Ship × Berth → Bool

fits(s, b) ≡ size(s) ≤ size(b)

• We changed the definition of consistent slightly to make it translatable:

value

all ships : Ship-set = {s1, s2, s3, s4, s5, s6, s7, s8},

consistent : Harbour → Bool

consistent(h) ≡

(∀ s : T.Ship •

s ∈ all ships ⇒

∼ (waiting(s, h) ∧ is docked(s, h)) ∧ ... )

Quantifiers can be translated if they can be seen syntactically to be quan-
tifying over finite sets.

• We extended the applicative specification into an imperative one by adding
the definitions for state variables:

object

H : HARBOUR

variable

pool : T.Ship-set := {},
berths : T.Index →m T.Ship := [ ]

• We added two functions for creating a state value from the variables, and
for checking consistency using the applicative consistent – these are merely
convenient shorthands:

value

state : Unit → read pool, berths H.Harbour
state() ≡ H.mk Harbour(pool, berths),

consistent : Unit → read pool, berths Bool

consistent() ≡ H.consistent(state())
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• We defined imperative generators based on the applicative ones, for exam-
ple

value

arrive : T.Ship
∼
→ write pool Unit

arrive(s) ≡ pool := pool ∪ {s}
post consistent()
pre consistent() ∧ H.can arrive(s, state()),

Note that this definition has a postcondition as well as a precondition. The
precondition has been strengthened by the conjunct consistent, as we want
to check that such generators preserve consistency. It is a recent addition
to RSL that postconditions may be added to explicit functions like this
one. The translation for this function will optionally include checks that
at the start of invocation the precondition is satisfied, and at exit the
postcondition is satisfied.

• We added some test cases:

test case

[ t1 ] empty() ; arrive(s3) ; pool = {s3} ∧ berths = [ ],
[ t2 ] arrive(s2) ; pool = {s3, s2} ∧ berths = [ ],
[ t3 ] dock(s2, b1) ; pool = {s3} ∧ berths = [ indx(b1) �→ s2 ],
[ t4 ] leave(s2, b1) ; pool = {s3} ∧ berths = [ ],
[ t5 ] dock(s3, b1) ; (pool, berths)

Note that, for an imperative specification each test case after the first
inherits the state from the previous one. This makes it easier to write a
series of test cases to create a complex state, and was the reason for making
an imperative extension of the original specification.

The last test case contains an intentional error: ship s3 does not fit
berth b1. The output of compiling and running the translated C++ code
is

[t1] true

[t2] true

[t3] true

[t4] true

I_HARBOUR.rsl:22:7: Precondition of dock(s3, b1) not

satisfied

I_HARBOUR.rsl:22:7: Function call dock(s3, b1) does not

satisfy postcondition

[t5] ({},[1+>s3])

The first part of the warning messages is the file:line:column reference to
where in the specification the problem occurred.

The failure in the precondition of dock is the failure of the fit check.
The failure in the postcondition is because consistent includes checking
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that ships can only be in berths that they fit: the default action of the
translated program is to continue after an error, and we can see that the
final dock operation has been completed, with ship s3 recorded as being
in berth with index 1, which it does not fit.

Testing is a comparatively cheap way to gain assurance of correctness. It has
limitations, of course, in particular its incompleteness. But it has one ad-
vantage that no amount of theorem proving or model checking can compete
with: it can be applied to the final implementation. The problem with only
verifying a specification is that we cannot discover errors such as incorrect
implementation or wrong assumptions about the environment (hardware, op-
erating system, other software, user behaviour, etc.). Test cases developed for
the specification, and which include the expected results, can be applied later
to the final implementation.

Inspection

Inspection is commonly used as a quality assurance measure for program code
and other documents, and is just as applicable to specifications. Specifications
are commonly easier to read than code, because of their use of abstraction
and their relative shortness. Inspection techniques range from “peer inspec-
tion”, where colleagues inspect each others’ work, to more formal approaches
involving meetings and recorded results.

Inspections are most effective when there are particular things that people
are looking for, and the use of checklists like that in the book on the RAISE
method [2] is common.

An aid to inspection is the generation of confidence conditions (see
Sect. 2.5). The harbour specification only generates two such conditions:

TYPES.rsl:13:32: CC:
−− subtype not empty
∃ i : Int • i ≥ min ∧ max ≥ i

HARBOUR.rsl:59:16: CC:
−− application arguments and/or precondition
T.indx(b) ∈ dom berths(h)

The first is clearly satisfied because of the index not empty axiom. The second
is the second conjunct of the definition of is occupied by and is identical to
the first conjunct, and so is immediately satisfied.

It is unusual to obtain so few confidence conditions from a specification.
Inspecting confidence conditions is useful but not always effective. In practice
only a few, perhaps 5%, will not be satisfied and it is hard to spot them
unless one is very disciplined. Confidence conditions can be proved: any proof
of a property of a specification will also involve proving them. They are also
included (optionally) in translated code, and so can be checked in tests. The
translator to SAL will also enable them to be checked during model checking.
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5.3 A More Complex Version

The harbour example presented so far is rather simple. In this section we
show a rather more realistic example and the consequences that arise when
we verify it. We start with a class diagram (Fig. 3) showing classes for ships,
berths and anchorages. An anchorage is a place where ships can anchor; the
collection of these is what we have previously called the pool.

Ship

-draught : Nat

-name : Text

-beam : Nat

+dock(  : Berth,  : Anchorage )

+arrive(  : Anchorage )

+leave(  : Berth )

Anchorage

-max_draught : Nat

+arrive(  : Ship )

+dock(  : Ship )

Berth

-max_draught : Nat

-max_beam : Nat

+leave(  : Ship )

+dock(  : Ship )

anchor

0..1

0..1

occupant
0..1

0..1

Fig. 3. Harbour class diagram

We have included a few attributes for each class, and intend to model fits

by the conditions that the berth has sufficient draught (depth of water) and
sufficient width for the beam (width) of a ship. We add a condition that
different anchorages may have different depths, and so ships will also need to
fit their anchorages.

The relations anchor and occupant are defined to be navigable in both
directions. This means that the state of a ship will include a berth (if it is
docked) and the state of a berth state will include a ship (if it is occupied). A
similar statement can be made about ships and anchorages. We have therefore
chosen to maximise the dynamic information (unlike in our earlier harbour
design) and will have more complicated consistency requirements.
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We have also added the signatures of the methods for each class. The idea
is that when a ship arrives it will change the state of the ship (to record the
anchorage) and the state of the anchorage (to record the ship). The methods
arrive in the two classes will each make the changes to their object’s state.
We will later define a user method arrive that will invoke both of these.

This class diagram can be automatically translated into RSL. The resulting
module structure is shown in Fig. 4.

Fig. 4. Modules of harbour specification

The module TYPES defines some globally used non-class types. The modules
ANCHORAGE , BERTH and SHIP model one instance of each of these.
For example, the type definition in SHIP is

type

Ship ::
name : Text

draught : Nat

beam : Nat

berth : Optional Berth
anchorage : Optional Anchorage

where Optional Berth and Optional Anchorage are defined in TYPES as

type

Optional Berth == no Berth | a Berth(id:Berth Id),
Optional Anchorage == no Anchorage | an Anchorage(id:Anchorage Id)

We see that (navigable) relations are modelled as attributes. The identifiers
like Anchorage Id used to model the relations are used in the next layer of
modules, namely ANCHORAGES , etc. Each of these represents the collection
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of corresponding objects in the system. The collection is modelled as a map.
For example, in SHIPS we have

type

Ships = Ship Id →m SHIP .Ship

At the top level, the whole harbour is modelled as a record containing the
three components:

type

Harbour ::
ships : SHIPS .Ships
berths : BERTHS .Berths
anchorages : ANCHORAGES .Anchorages

A feature of the architecture of the RSL modules is that it is hierarchical:
modules may invoke only methods of those below them in the hierarchy. So,
for example, we can construct a method arrive in the top level HARBOUR
module that invokes the methods arrive in ANCHORAGE and SHIP : these
last two methods may not invoke each other. Such a hierarchical approach has
many advantages over the much looser configurations often adopted in object-
oriented designs. For example, a bottom-up verification or testing strategy is
possible, and changes in the design of one branch do not affect others.

Consistency

We can split the consistency conditions into two groups:

Structural consistency is generic, and depends only on the relations and
their navigability. It has two components:

• Object identifiers used as attributes must exist, i.e. they must be in the
domain of the corresponding map. For example, if a ship has a berth
attribute a Berth(bid), the berth identifier bid must be in the domain of
the berths component of the harbour. This condition has to be defined in
HARBOUR, the lowest point in the hierarchy where SHIP and the type
Harbour are visible.

• For bi-navigable relations, the reverse navigation must give the correct
result. For example, if a ship identified by sid has a berth attribute
a Berth(bid), the berth identified by bid must have its occupant attribute
set to a Ship(sid). This also has to be defined in HARBOUR.

Structural consistency conditions are defined by the translator, according to
the navigability and multiplicities of the relations in the model, in a predicate
consistent in the top-level module. This function also calls functions consistent

in its child modules (here ANCHORAGES , etc). These, in turn, call functions
consistent in their child modules, for every identifier in their collection. The
functions consistent in ANCHORAGE , etc., are left unelaborated.
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Application consistency depends on the particular system being modelled.
It is specified by adding to the consistency functions created for structural
consistency. For example, for a SHIP , we see that it must not be in a berth
and in an anchorage at the same time. We therefore elaborate the definition
of consistent in SHIP :

value

consistent : Ship → Bool

consistent(s) ≡

berth(s) = no Berth ∨ anchorage(s) = no Anchorage

Considering the collection of ships, we see that we must not record the same
berth or the same anchorage for different ships. We add to consistent in
SHIPS the necessary conjuncts. For example, for berths, where c is the col-
lection of ships,

(∀ id1, id2 : Ship Id, b : Berth Id •

id1 ∈ dom c ∧ id2 ∈ dom c ∧

SHIP .berth(c(id1)) = a Berth(b) ∧

SHIP .berth(c(id2)) = a Berth(b) ⇒ id1 = id2)

There are similar conditions to be added to consistent in BERTHS and
ANCHORAGES .

Finally, considering the conditions that ships in berths and in anchorages
must fit them, we see that this involves comparing attributes of ships with
attributes of anchorages or berths, and so must be added to consistent in
HARBOUR. For example, for anchorages, where s is the harbour state,

(∀ id1 : Ship Id •

id1 ∈ dom ships(s) ⇒

case SHIP .anchorage(ships(s)(id1)) of

no Anchorage → true,
an Anchorage(id2) →

SHIP .draught(ships(s)(id1)) ≤

ANCHORAGE .max draught(anchorages(s)(id2))
end)

Verification

As with the simpler version of the harbour system we can use proof, model
checking, testing or inspection. For this version, we conducted some proofs
using PVS for comparison with the simpler version. We proved the confi-
dence conditions, the consistency of an empty harbour, and the preservation
of consistency by the three generators.

The confidence conditions for this example turned out to be extremely easy
to check. Generating them into RSL produced 85 of them. After translating
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into PVS, it was found that they produced 53 type check conditions, and
one extra one as a lemma to be proved. There are fewer in PVS than in
RSL, because PVS has mechanisms for recognising and subsuming the same
condition arising in the same context. 52 of these 53 conditions were proved
automatically, the last was proved immediately from the index not empty

lemma, and the extra lemma was proved in one step by the PVS tactic grind.
The four consistency conditions (for the empty harbour and the three

generators) were proved rather more tediously. We counted the number of
proof steps needed for each for the two versions of the harbour system, calling
the simpler one version 1 and this version 2: see Table 1. We also include
figures in this table for proofs performed with the original RAISE tool eden.

Table 1. Proof steps required to prove consistency

Version 1 2

Tool eden PVS PVS

empty 17 1 1
arrive 51 21 266
dock 204 108 325
leave 114 51 177

The numbers of proof steps are of course subject to the skill of the user, and
could certainly be reduced somewhat. But we doubt whether much improve-
ment on these figures could be achieved without the design of special tactics
and/or lemmas.

eden seems to need about twice as many steps as PVS. This is mainly
because its simplification strategies are weaker than those of PVS; this is
most clearly demonstrated by the consistency of empty, which PVS can deal
with in one step. At the same time, as we discussed earlier in Sect. 5.1, eden
is easier to use in the sense that it is possible to preserve the structure of the
goals, which makes it much easier to understand where you are in the proof.

Comparing versions 1 and 2 of the specification and the proofs in PVS, the
large variation in arrive is probably because of the introduction of the notion
of fitting an anchorage; otherwise there seems to be a threefold increase in
the length of the proofs, and they have become rather tedious: it took some
4 hours to perform the proofs for version 2.

6 Conclusions

6.1 Summary

RSL is a wide-spectrum language, supporting axiomatic as well as model-
oriented specifications, the applicative style as well as the imperative one, and
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the concurrent style as well as the sequential one. The logic needs sufficient
power to deal with this wide range, and we have explained the logic and the
motivation for the various choices made in designing it. We have also seen
how the logic is expressive enough to express the RAISE notion of refinement.

We have also described the logical style in which RSL is defined by its
axiomatic semantics, and the related style of providing proof rules for actually
performing proofs.

Proofs may be involved in the RAISE method in various ways:

• proofs of confidence conditions: conditions such as that values are in their
subtypes, and that the preconditions of functions and operators are satis-
fied when they are invoked;

• proofs of refinement between modules;
• proofs of particular (user-defined) properties of specifications.

We have seen that an important kind of property is consistency, which
can be divided into structural and application components. Checking that
generator functions (methods) preserve consistency is a very useful activity
in software development, and often in danger of being overlooked if there
is too much concentration on what such methods must change. In a recent
project on developing a support environment for mobile devices [43] a count of
errors found and corrected showed that 50% of them were in the consistency
conditions rather than in the methods.

We have discussed proofs of consistency performed with the original
RAISE tool eden and with a more recent tool [31] which uses translation to
PVS. We also saw how the size of the proofs, and hence the time taken to com-
plete them, grew substantially as we moved from a simple to a slightly more
realistic version of the harbour example. While proof is a powerful technique
it is also expensive, and we have looked at other validation and verification
techniques that may be used with RAISE, and the tool support available for
them: model checking, testing and inspection.

6.2 Future Work

Most of the future work planned is related to the RAISE tools [31]. At present,
a model-checking capability is being added, as mentioned in Sect. 5.2, and
there are also ideas on adding an aspect-oriented transformation and refac-
toring mechanism that would support the extension of specifications while
maintaining properties already checked. Recently we also made two proto-
type tools that support development steps from applicative RSL specification
towards imperative programs: the first is a translator from RSL to Java (5.0)
and the other is a transformer from applicative to imperative specifications.
Both were specified in RSL. The first tool was made by a bootstrapping pro-
cess, and the second used the first tool to translate the specification into an
implementation in Java. We plan to extend both prototypes to cover larger
subsets than they can handle at present.
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RAISE Indexes

Symbol Index

∀ (universal quantification), 357

� (universal state quantification), 360

⇒ (implication), 355

= (equality), 358, 360

∃! (unique existential quantification),
357

∃ (existential quantification), 357

≡ (equivalence/strong equality), 354,
359

� (internal choice), 355

∼ (not), 355

∨ (disjunction), 355

∧ (conjunction), 355

:" (has type), 366

# (context dependent equivalence),
367

∼= (context independent equivalence),
366

card (cardinality), 359
chaos (divergence), 355
stop (deadlock), 355
swap (underspecified value), 355

Concept Index

axiomatic semantics, 352, 365
axioms, 357

C++, 385
completeness

of axiomatic semantics, 368
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of proof system, 369
conditional logic, 356
confidence condition, 364

generator, 364
inspection, 388
proof, 392

consistency of specification, 391
context, 366

rules, 371
convergence, 355

definedness, 353
denotational semantics, 368

effect, 353
equality

operators (≡, =), 354
programming language (=), 358,

360
strong (equivalence) (≡), 354,

359
equational reasoning, 361
equivalence (≡), 354, 359

rules
context dependent, 367
context independent, 366

evaluation order, 361

formation rules, 366

inference rules, 365
internal choice, 355
invariants, 377
Isabelle/HOL, 383

justification, 370
editor (eden), 365, 369, 378

logic, 349
for definition, 365
for proof, 369
rationale for design, 352
three valued, 355

loose
semantics, 354
specification, 363

LPF, 355

model checking, 384

nondeterminism versus looseness, 363
nondeterministic choice, 355

operational semantics, 352

proof
rules, 370

from context, 371
system, 369
via translation, 381

properties, 362
PVS, 381

RAISE, 350
refinement, 362
refines, 362
RSL, 350

applicative, 354
concurrent, 359
imperative, 359
specification styles, 350

SAL model checker, 384
semantics, 352

axiomatic, 352, 365
denotational, 352, 368
loose, 354
operational, 352

separate development, 362
side condition, 369
signature, 362
SML, 385
soundness, 368
specification

algebraic, 350
loose, 363
model-oriented, 350

test cases, 385
testing, 385
tools for RAISE, 352

C++ translator, 385
confidence condition generator,

364
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justification editor (eden), 365,
369, 378

PVS translator, 381
SAL translator, 384
SML translator, 385
type checker, 365

verification techniques
(theorem) proving, 369

via translation, 381
inspection, 388
model checking, 384
testing, 385
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1 Introduction

The specification language TLA+ was designed by Lamport for formally de-
scribing and reasoning about distributed algorithms. It is described in Lam-
port’s book Specifying Systems [29], which also gives good advice on how to
make the best use of TLA+ and its supporting tools. Systems are specified
in TLA+ as formulas of the Temporal Logic of Actions, TLA, a variant of
linear-time temporal logic also introduced by Lamport [27]. The underlying
data structures are specified in (a variant of) Zermelo–Fränkel set theory, the
language accepted by most mathematicians as the standard basis for formaliz-
ing mathematics. This choice is motivated by a desire for conciseness, clarity,
and formality that befits a language of formal specification where executabil-
ity or efficiency are not of major concern. TLA+ specifications are organized
in modules that can be reused independently.

In a quest for minimality and orthogonality of concepts, TLA+ does not
formally distinguish between specifications and properties: both are written
as logical formulas, and concepts such as refinement, composition of systems,
and hiding of the internal state are expressed using logical connectives of
implication, conjunction, and quantification. Despite its expressiveness, TLA+

is supported by tools such as model checkers and theorem provers to aid a
designer in carrying out formal developments.

This chapter attempts to formally define the core concepts of TLA and
TLA+ and to describe the motivation behind some choices, in particular with
respect to competing formalisms. Before doing so, an introductory overview
of system specification in TLA+ is given using the example of a resource allo-
cator. Lamport’s book remains the definitive reference for the language itself
and on the methodology for using TLA+. In particular, the module language
of TLA+ is only introduced by example, and the rich standard mathematical
library is only sketched.

The outline of this chapter is as follows. Sect. 2 introduces TLA+ by
means of a first specification of the resource allocator and illustrates the use
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of the tlc model checker. The logic of TLA is formally defined in Sect. 3,
followed by an overview of the TLA+ proof rules for system verification in
Sect. 4. Section 5 describes the version of set theory that underlies TLA+,
including some of the constructions most frequently used for specifying data.
The resource allocator example is taken up again in Sect. 6, where an improved
high-level specification is given and a step towards a distributed refinement is
taken. Finally, Sect. 7 contains some concluding remarks.

2 Example: A Simple Resource Allocator

We introduce TLA+ informally, by means of an example that will also serve as
a running example for this chapter. After stating the requirements informally,
we present a first system specification, and describe the use of the TLA+

model checker tlc to analyse its correctness.

2.1 Informal Requirements

The purpose of the resource allocator is to manage a (finite) set of resources
that are shared among a number of client processes. The allocation of resources
is subject to the following constraints.

1. A client that currently does not hold any resources and that has no pend-
ing requests may issue a request for a set of resources.

Rationale: We require that no client should be allowed to “extend” a pending
request, possibly after the allocator has granted some resources. A single client
process might concurrently issue two separate requests for resources by appear-
ing under different identities, and therefore the set of “clients” should really be
understood as identifiers for requests, but we shall not make this distinction
here.

2. The allocator may grant access to a set of available (i.e., not currently
allocated) resources to a client.

Rationale: Resources can be allocated in batches, so an allocation need not
satisfy the entire request of the client: the client may be able to begin working
with a subset of the resources that it requested.

3. A client may release some resources that it holds.

Rationale: Similarly to allocation, clients may return just a subset of the re-
sources they currently hold, freeing them for allocation to a different process.

4. Clients are required to eventually free the resources they hold once their
entire request has been satisfied.

The system should be designed such that it ensures the following two
properties.
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• Safety: no resource is simultaneously allocated to two different clients.
• Liveness: every request issued by some client is eventually satisfied.

2.2 A First TLA+ Specification

A first TLA+ specification of the resource allocator appears in Fig. 1 on the
following page. Shortcomings of this model will be discussed in Sect. 6, where
a revised specification will appear.

TLA+ specifications are organised in modules that contain declarations
(of parameters), definitions (of operators), and assertions (of assumptions
and theorems). Horizontal lines separate different sections of the module
SimpleAllocator ; these aid readability, but have no semantic content. TLA+

requires that an identifier must be declared or defined before it is used, and
that it cannot be reused, even as a bound variable, in its scope of validity.

The first section declares that thr module SimpleAllocator is based on
the module FiniteSet , which is part of the TLA+ standard library (discussed
in Sect. 5). Next, the constant and variable parameters are declared. The
constants Clients and Resources represent the sets of client processes and of
resources managed by the resource allocator. Constant parameters represent
entities whose values are fixed during system execution, although they are not
defined in the module, because they may change from one system instance to
the next. Observe that there are no type declarations: TLA+ is based on
Zermelo–Fränkel (ZF) set theory — so all values are sets. The set Resources
is assumed to be finite – the operator IsFiniteSet is defined in the module
FiniteSet . The variable parameters unsat and alloc represent the current state
of the allocator by recording the outstanding requests of the client processes,
and the set of resources allocated to the clients. In general, variable parameters
represent entities whose values change during system execution; in this sense,
they correspond to program variables.

The second section contains the definition of the operators TypeInvariant
and available. In general, definitions in TLA+ take the form

Op(arg1, . . . , argn )
∆

= exp.

In TLA+, multiline conjunctions and disjunctions are written as lists “bul-
leted” with the connective, and indentation indicates the hierarchy of nested
conjunctions and disjunctions [26]. The formula TypeInvariant states the in-
tended “types” of the state variables unsat and alloc, which are functions that
associate a set of (requested or received) resources with each client.1 Observe,
again, that the variables are not constrained to these types: TypeInvariant
just declares a formula, and a theorem towards the end of the module asserts
that the allocator specification respects the typing invariant. This theorem
will have to be proven by considering the possible transitions of the system.

1 In TLA+, the power set of a set S is written as subset S .
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module SimpleAllocator

extendsFiniteSet

constantsClients, Resources

assumeIsFiniteSet(Resources)

variables

unsat, unsat [c] denotes the outstanding requests of client c

alloc alloc[c] denotes the resources allocated to client c

TypeInvariant
∆

=
∧ unsat ∈ [Clients → subset Resources]
∧ alloc ∈ [Clients → subset Resources]

available
∆

= set of resources free for allocation
Resources \ (union{alloc[c] : c ∈ Clients})

Init
∆

= initially, no resources have been requested or allocated
∧ unsat = [c ∈ Clients �→ {}]
∧ alloc = [c ∈ Clients �→ {}]

Request(c, S)
∆

= Client c requests set S of resources
∧ S = {} ∧ unsat [c] = {} ∧ alloc[c] = {}
∧ unsat ′ = [unsatexcept ![c] = S ]
∧ unchangedalloc

Allocate(c,S)
∆

= Set S of available resources are allocated to client c

∧ S = {} ∧ S ⊆ available ∩ unsat [c]
∧ alloc′ = [allocexcept ![c] = @ ∪ S ]
∧ unsat ′ = [unsatexcept ![c] = @ \ S ]

Return(c, S)
∆

= Client c returns a set of resources that it holds.
∧ S = {} ∧ S ⊆ alloc[c]
∧ alloc′ = [allocexcept ![c] = @ \ S ]
∧ unchangedunsat

Next
∆

= The system’s next−state relation
∃c ∈ Clients,S ∈ subset Resources :

Request(c, S) ∨ Allocate(c, S) ∨ Return(c, S)

vars
∆

= 〈unsat , alloc 〉

SimpleAllocator
∆

= The complete high−level specification
∧ Init ∧ �[Next ]vars
∧ ∀c ∈ Clients : WFvars(Return(c, alloc[c]))
∧ ∀c ∈ Clients : SFvars(∃S ∈ subset Resources : Allocate(c, S))

Safety
∆

= ∀ c1, c2 ∈ Clients : c1 = c2 ⇒ alloc[c1] ∩ alloc[c2] = {}

Liveness
∆

= ∀ c ∈ Clients, r ∈ Resources : r ∈ unsat [c] � r ∈ alloc[c]

theoremSimpleAllocator ⇒ �TypeInvariant

theoremSimpleAllocator ⇒ �Safety

theoremSimpleAllocator ⇒ Liveness

Fig. 1. A simple resource allocator.
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The set available is defined to contain those resources that are currently not
allocated to any client.

The third section contains a list of definitions, which constitute the main
body of the allocator specification. The state predicate Init represents the
initial condition of the specification: no client has requested or received any
resources. The action formulas Request(c,S ), Allocate(c,S ), and Return(c,S )
model a client c requesting, receiving, or returning a set S of resources. In
these formulas, unprimed occurrences of state variables (e.g., unsat) denote
their values in the state before the transition, whereas primed occurrences
(e.g., unsat ′) denote their values in the successor state, and unchangedt is
just a shorthand for t ′ = t . Also, function application is written using square
brackets, so unsat [c] denotes the set of resources requested by client c. The
except construct models a function update; more precisely, when t denotes
a value in the domain of the function f , the expression [f except ![t ] = e]
denotes the function g that agrees with f except that g[t ] equals e. In the
right-hand side e of such an update, @ denotes the previous value f [t ] of the
function at the argument position being updated. For example, the formule
Allocate(c,S ) requires that S be a nonempty subset of the available resources
that are part of the request of client c, allocates those resources to c, and
removes them from the set of outstanding requests of c.

The action formula Next is defined as the disjunction of the request, allo-
cate, and return actions, for some client and some set of resources; it defines
the next-state relation of the resource allocator. Again, there is nothing spe-
cial about the names Init and Next , they are just conventional for denoting
the initial condition and the next-state relation.

The overall specification of the resource allocator is given by the temporal
formula SimpleAllocator . This is defined as a conjunction of the form

I ∧ �[N ]v ∧ L

where I is the initial condition (a state predicate), N is the next-state relation,
and L is a conjunction of fairness properties, each concerning a disjunct of the
next-state relation. While not mandatory, this is the standard form of system
specification in TLA+, and it corresponds to the definition of a transition
system (or state machine) with fairness constraints. More precisely, the for-
mula �[N ]v specifies that every transition either satisfies the action formula
N or leaves the expression v unchanged. In particular, this formula admits
“stuttering transitions” that do not affect the variables of interest. Stuttering
invariance is a key concept of TLA that simplifies the representation of refine-
ment, as well as compositional reasoning; we shall explore temporal formulas
and stuttering invariance in more detail in Sect. 3.4.

The initial condition and the next-state relation specify how the system
may behave. Fairness conditions complement this by asserting what actions
must occur (eventually). The weak fairness condition for the return action
states that clients should eventually return the resources they hold. The strong
fairness condition for resource allocation stipulates that for each client c, if it
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is possible to allocate some resources to c infinitely often, then the allocator
should eventually give some resources to c.

The following section of the specification defines the two main correctness
properties Safety and Liveness . The formula Safety asserts a safety prop-
erty [10] of the model by stating that no resource is ever allocated to two
distinct clients. Formula Liveness represents a liveness property that asserts
that whenever some client c requests some resource r , that resource will even-
tually be allocated to c.2 Observe that there is no formal distinction in TLA+

between a system specification and a property: both are expressed as formulas
of temporal logic. Asserting that a specification S has a property F amounts
to claiming validity of the implication S ⇒ F . Similarly, refinement between
specifications is expressed by (validity of) implication, and a single set of proof
rules is used to verify properties and refinement; we shall explore deductive
verification in Sect. 4.

Finally, the module SimpleAllocator asserts three theorems stating that
the specification satisfies the typing invariant as well as the safety and liveness
properties defined above. A formal proof language for TLA+, based on a
hierarchical proof format [28], is currently being designed.

2.3 Model-Checking the Specification

Whereas programs can be compiled and executed, TLA+ models can be val-
idated and verified. In this way, confidence is gained that a model faithfully
reflects the intended system, and that it can serve as a basis for more detailed
designs and, ultimately, for implementations. Tools can assist the designer in
carrying out these analyses. In particular, simulation lets a user explore some
traces, possibly leading to the detection of deadlocks or other unanticipated
behavior. Deductive tools such as model checkers and theorem provers as-
sist in the formal verification of properties. The TLA+ model checker tlc is
a powerful and eminently useful tool for verification and validation, and we
shall now illustrate its use for the resource allocator model of Fig. 1.

tlc can compute and explore the state space of finite-state instances of
TLA+ models. Besides the model itself, tlc requires a second input file, called
the configuration file, which defines the finite-state instance of the model to
be analysed, and that declares which of the formulas defined in the model
represents the system specification and which are the properties to be ver-
ified over that finite-state instance.3 Figure 2 shows a configuration file for
analysing the module SimpleAllocator . Definitions of the sets Clients and
Resources fix specific instance of the model that tlc should consider. In our
case, these sets consist of symbolic constants. The keyword SPECIFICATION

indicates which formula represents the main system specification, and the

2 The formula P � Q asserts that any state that satisfies P will eventually be
followed by a state satisfying Q .

3
tlc ignores any theorems asserted in the module.
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CONSTANTS

Clients = {c1,c2,c3}
Resources = {r1,r2}

SPECIFICATION

SimpleAllocator

INVARIANTS

TypeInvariant Safety

PROPERTIES

Liveness

Fig. 2. Sample configuration file for tlc

keywords INVARIANTS and PROPERTIES define the properties to be verified by
tlc. (For a more detailed description of the format and the possible directives
that can be used in configuration files, see Lamport’s book [29] and the tool
documentation [23].)

TLC Version 2.0 of January 16, 2006

Model-checking

Parsing file SimpleAllocator.tla

Parsing file /sw/tla/tlasany/StandardModules/FiniteSets.tla

Parsing file /sw/tla/tlasany/StandardModules/Naturals.tla

Parsing file /sw/tla/tlasany/StandardModules/Sequences.tla

Semantic processing of module Naturals

Semantic processing of module Sequences

Semantic processing of module FiniteSets

Semantic processing of module SimpleAllocator

Implied-temporal checking--satisfiability problem has 6 branches.

Finished computing initial states: 1 distinct state generated.

--Checking temporal properties for the complete state space...

Model checking completed. No error has been found.

Estimates of the probability that TLC did not check

all reachable states because two distinct states had

the same fingerprint:

calculated (optimistic): 2.673642557349254E-14

based on the actual fingerprints: 6.871173129000332E-15

1633 states generated, 400 distinct states found,

0 states left on queue.

The depth of the complete state graph search is 6.

Fig. 3. tlc output

Running tlc on this model produces an output similar to that shown in
Fig. 3; some details may vary according to the version and the installation of
tlc. First, tlc parses the TLA+ input file and checks it for well-formedness.
It then computes the graph of reachable states for the instance of the model
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defined by the configuration file, verifying the invariants “on the fly” as it
computes the state space. Finally, the temporal properties are verified over
the state graph. In our case, tlc reports that it has not found any error.
In order to improve efficiency, tlc compares states on the basis of a hash
code (“fingerprint”) during the computation of the state space, rather than
comparing them precisely. In the case of a hash collision, tlc will mistakenly
identify two distinct states and may therefore miss part of the state space. tlc

attempts to estimate the probability that such a collision occurred during the
run, on the basis of the distribution of the fingerprints. tlc also reports the
number of states that it generated during its analysis, the number of distinct
states, and the depth of the state graph, i.e. the length of the longest cycle.
These statistics can be valuable information; for example, if the number of
generated states is lower than expected, some actions may have preconditions
that never evaluate to true. It is a good idea to use tlc to verify many,
properties, even trivial ones, as well as some non-properties. For example, one
can attempt to assert the negation of each action guard as an invariant in
order to let tlc compute a finite execution that ends in a state where the
action can actually be activated. For our example, the tlc run is completed
in a few seconds; most of the running time is spent on the verification of the
property Liveness , which is expanded into six properties, for each combination
of clients and resources.

After this initial success, we can try to analyse somewhat larger instances,
but this quickly leads to the well-known problem of state space explosion. For
example, increasing the number of resources from two to three in our model
results in a state graph that contains 8000 distinct states (among 45 697 states
generated in all), and the analysis will take a few minutes instead of seconds.

One may observe that the specification and the properties to be verified
are invariant with respect to permutations of the sets of clients and resources.
Such symmetries are frequent, and tlc implements a technique known as
symmetry reduction, which can counteract the effect of state-space explosion.
In order to enable symmetry reduction, we simply extend the TLA+ module
by the definition of the predicate

Symmetry
∆

= Permutations(Clients) ∪ Permutations(Resources)

(the operator Permutations is defined in the standard TLC module, which
must therefore be added to the extends clause) and to indicate

SYMMETRY Symmetry

in the configuration file. Unfortunately, the implementation of symmetry re-
duction in tlc is not compatible with checking liveness properties, and in
fact, tlc reports a meaningless “counter-example” when symmetry reduc-
tion is enabled during the verification of the liveness property for our exam-
ple. However, when restricted to checking the invariants, symmetry reduction
with respect to both parameter sets reduces the number of states explored to
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50 (and to 309 for three clients and three resources), and the run times are
similarly reduced to fractions of a second for either configuration.

We can use tlc to explore variants of our specification. For example,
verification succeeds when the strong fairness condition

∀ c ∈ Clients : SFvars(∃S ∈ subset Resources : Allocate(c,S ))

is replaced by the following condition about individual resources:

∀ c ∈ Clients , r ∈ Resources : SFvars(Allocate(c, {r})).

However, the liveness condition is violated when the strong fairness condition
is replaced by either of the two following fairness conditions:

∀ c ∈ Clients : WFvars(∃S ∈ subset Resources : Allocate(c,S ))
SFvars(∃ c ∈ Clients ,S ∈ subset Resources : Allocate(c,S )).

It is a good exercise to attempt to understand these alternative fairness hy-
potheses in detail and to explain the verification results. Fairness conditions
and their representation in TLA are formally defined in Sect. 3.3.

3 TLA: The Temporal Logic of Actions

TLA+ combines TLA, the Temporal Logic of Actions [27], and mathematical
set theory. This section introduces the logic TLA by defining its syntax and se-
mantics. In these definitions, we aim at formality and rigor; we do not attempt
to explain how TLA may be used to specify algorithms or systems. Sections 4
and 5 explore the verification of temporal formulas and the specification of
data structures in set theory, respectively.

3.1 Rationale

The logic of time has its origins in philosophy and linguistics, where it was in-
tended to formalize temporal references in natural language [22, 38]. Around
1975, Pnueli [37] and others recognized that such logics could be useful as
a basis for the semantics of computer programs. In particular, traditional
formalisms based on pre-conditions and post-conditions were found to be ill-
suited for the description of reactive systems that continuously interact with
their environment and are not necessarily intended to terminate. Temporal
logic, as it came to be called in computer science, offered an elegant frame-
work for describing safety and liveness properties [10,25] of reactive systems.
Different dialects of temporal logic can be distinguished according to the prop-
erties assumed of the underlying model of time (e.g., discrete or dense) and
the connectives available to refer to different moments in time (e.g., future
vs. past references). For computer science applications, the most controversial
distinction has been between linear-time and branching-time logics. In the
linear-time view, a system is identified with the set of its executions, modeled
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as infinite sequences of states, whereas the branching-time view also considers
the branching structure of a system. Linear-time temporal logics, including
TLA, are appropriate for formulating correctness properties that must hold
for all the runs of a system. In contrast, branching-time temporal logics can
also express possibility properties, such as the existence of a path from every
reachable state, to a “reset” state. The discussion of the relative merits and
deficiencies of these two kinds of temporal logic is beyond the scope of this
chapter, but see, for example, [42] for a good summary, with many references
to earlier papers.

Despite initial enthusiasm about temporal logic as a language to describe
system properties, attempts to actually write complete system specifications
as lists of properties expressed in temporal logic revealed that not even a
component as simple as a FIFO queue could be unambiguously specified [39].
This observation has led many researchers to propose that reactive systems
should be modeled as state machines, while temporal logic should be retained
as a high-level language to describe the correctness properties. A major break-
through came with the insight that temporal logic properties are decidable
over finite-state models, and this has led to the development of model-checking
techniques [14], which today are routinely applied to the analysis of hardware
circuits, communication protocols, and software.

A further weakness of standard temporal logic becomes apparent when
one attempts to compare two specifications of the same system written at
different levels of abstraction. Specifically, atomic system actions are usually
described via a “next-state” operator, but the “grain of atomicity” typically
changes during refinement, making comparisons between specifications more
difficult. For example, in Sect. 6 we shall develop a specification of the resource
allocator of Fig. 1 as a distributed system where the allocator and the clients
communicate by asynchronous message passing. Each of the actions will be
split into a subaction performed by the allocator, the corresponding subaction
performed by the client, and the transmission of a message over the network,
and these subactions will be interleaved with other system events. On the face
of it, the two specifications are hard to compare because they use different
notions of “next state”.

TLA has been designed as a formalism where system specifications and
their properties are expressed in the same language, and where the refinement
relation is reduced to logical implication. The problems mentioned above are
addressed in the following ways. TLA is particularly suited to writing state
machine specifications, augmented with fairness conditions, as we have seen in
the case of the resource allocator. It is often desirable to expose only that part
of the state used to specify a state machine which makes up its externally vis-
ible interface, and TLA introduces quantification over state variables to hide
the internal state, which a refinement is free to implement in a different man-
ner. The problem with incompatible notions of “next state” at different levels
of abstraction is solved by systematically allowing for stuttering steps that
do not change the values of the (high-level) state variables. Low-level steps
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of an implementation that change only new variables are therefore allowed
by the high-level specification. Similar ideas can be found in Back’s refine-
ment calculus [11] and in Abrial’s Event-B method [9] (see also the chapter
by Cansell and Méry in this book). Whereas finite stuttering is desirable for a
simple representation of refinement, infinite stuttering is usually undesirable,
because it corresponds to livelock, and the above formalisms rule it out via
proof obligations that are expressed in terms of well-founded orderings. TLA
adopts a more abstract and flexible approach because it associates fairness
conditions, stated in temporal logic, with specifications, and these must be
shown to be preserved by the refinement, typically using a mix of low-level
fairness hypotheses and well-founded ordering arguments.

On the basis of these concepts, TLA provides a unified logical language to
express system specifications and their properties. A single set of logical rules
is used for system verification and for proving refinement.

3.2 Transition Formulas

The language of TLA distinguishes between transition formulas, which de-
scribe states and state transitions, and temporal formulas, which characterize
behaviors (infinite sequences of states). Basically, transition formulas are or-
dinary formulas of untyped first-order logic, but TLA introduces a number of
specific conventions and notations.

Assume a signature of first-order predicate logic,4 consisting of:

• LF and LP , which are at most denumerable, of function and predicate
symbols, each symbol being of given arity; and

• a denumerable set V of variables, partitioned into denumerable sets VF

and VR of flexible and rigid variables.

These sets should be disjoint from one another; moreover, no variable in V

should be of the form v ′. By VF ′ , we denote the set {v ′
| v ∈ VF} of primed

flexible variables, and by VE , the union V ∪ VF ′ of all variables (rigid and
flexible, primed or unprimed).

Transition functions and transition predicates (also called actions) are
first-order terms and formulas built from the symbols in LF and LP , and
from the variables in VE . For example, if f is a ternary function symbol, p is
a unary predicate symbol, x ∈ VR, and v ∈ VF , then f (v , x , v ′) is a transition
function, and the formula

C
∆

= ∃ v ′ : p(f (v , x , v ′)) ∧ ¬(v ′ = x )

is an action. Collectively, transition functions and predicates are called tran-
sition formulas in the literature on TLA.

4 Recall that TLA can be defined over an arbitrary first-order language. The logic of
TLA+ is just TLA over a specific set-theoretical language that will be introduced
in Sect. 5.



412 Stephan Merz

Transition formulas are interpreted according to ordinary first-order logic
semantics: an interpretation I defines a universe |I| of values and interprets
each symbol in LF by a function and each symbol in LP by a relation of
appropriate arities. In preparation for the semantics of temporal formulas, we
distinguish between the valuations of flexible and rigid variables. A state is
a mapping s : VF → |I| of the flexible variables to values. Given two states
s and t and a valuation ξ : VR → |I| of the rigid variables, we define the
combined valuation αs,t,ξ of the variables in VE as the mapping such that
αs,t,ξ(x ) = ξ(x ) for x ∈ VR, αs,t,ξ(v) = s(v) for v ∈ VF , and αs,t,ξ(v

′) = t(v)
for v ′

∈ VF ′ . The semantics of a transition function or transition formula E ,
written �E�I,ξ

s,t , is then simply the standard predicate logic semantics of E with
respect to the extended valuation αs,t,ξ. We may omit any of the superscripts
and subscripts if there is no danger of confusion.

We say that a transition predicate A is valid for the interpretation I iff
�A�I,ξ

s,t is true for all states s , t and all valuations ξ. It is satisfiable iff �A�I,ξ

s,t

is true for some s , t , and ξ.
The notions of free and bound variables in a transition formula are defined

as usual, with respect to the variables in VE , as is the notion of substitution of
a transition function a for a variable v ∈ VE in a transition formula E , written
E [a/v ]. We assume that capture of free variables in a substitution is avoided
by an implicit renaming of bound variables. For example, the variables v and
x are free in the action C defined above, whereas v ′ is bound. Observe in
particular that at the level of transition formulas, we consider v and v ′ to be
distinct, unrelated variables.

State formulas are transition formulas that do not contain free, primed,
flexible variables. For example, the action C above is actually a state predi-
cate. Because the semantics of state formulas depends only on a single state,
we simply write �P�ξ

s
when P is a state formula. Transition formulas all of

whose free variables are rigid variables are called constant formulas; their
semantics depends only on the valuation ξ.

Beyond these standard concepts from first-order logic, TLA introduces
some specific conventions and notations. If E is a state formula, then E ′ is
the transition formula obtained from E by replacing each free occurrence of a
flexible variable v in E with its primed counterpart v ′ (where bound variables
are renamed as necessary). For example, since the action C above is a state
formula with v as its single free flexible variable, the formula C ′ is formed
by substituting v ′ for v . In doing so, the bound variable v ′ of C has to be
renamed, and we obtain the formula ∃ y : p(f (v ′, x , y)) ∧ ¬(y = x ).

For an action A, the state formula Enabled A is obtained by existential
quantification over all primed flexible variables that have free occurrences in A.
Thus, �Enabled A�ξ

s
holds if �A�ξ

s,t
holds for some state t ; this is a formal

counterpart of the intuition that the action A may occur in the state s . For
actions A and B , the composite action A·B is defined as ∃ z : A[z/v ′]∧B [z/v ],
where v is a list of all flexible variables vi such that vi occurs free in B or
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v ′
i

occurs free in A, and z is a corresponding list of fresh variables. It follows

that �A · B�ξ

s,t
holds iff both �A�ξ

s,u
and �B�ξ

u,t
hold for some state u.

Because many action-level abbreviations introduced by TLA are defined
in terms of implicit quantification and substitution, their interplay can be
quite delicate. For example, if P is a state predicate, then Enabled P is
obviously just P , and therefore (Enabled P)′ equals P ′. On the other hand,
Enabled (P ′) is a constant formula – if P does not contain any rigid variables
then Enabled (P ′) is valid iff P is satisfiable. Similarly, consider the action

A
∆

= v ∈ Z ∧ v ′
∈ Z ∧ v ′ < 0

in the standard interpretation where Z denotes the set of integers, 0 denotes
the number zero, and ∗ and < denote multiplication and the “less than”
relation, respectively. It is easy to see that Enabled A is equivalent to the
state predicate v ∈ Z, and hence (Enabled A)[(n∗n)/v , (n ′

∗n ′)/v ′] simplifies
to (n ∗ n) ∈ Z. However, substituting in the definition of the action yields

A[(n ∗ n)/v , (n ′
∗ n ′)/v ′] ≡ (n ∗ n) ∈ Z ∧ (n ′

∗ n ′) ∈ Z ∧ (n ′
∗ n ′) < 0,

which is equivalent to false, and so Enabled (A[(n ∗ n)/v , (n ′
∗ n ′)/v ′]) is

again equivalent to false: substitution does not commute with the enabled

operator. Similar pitfalls exist for action composition A · B .
For an action A and a state function t , one writes [A]t (pronounced “square

A sub t”) for A∨ t ′ = t , and, dually, 〈A〉t (“angle A sub t”) for A∧¬(t ′ = t).
Therefore, [A]t is true of any state transition that satisfies A, but in addition
it permits stuttering steps that leave (at least) the value of t unchanged.
Similarly, 〈A〉t demands not only that A be true but also that the value of t
changes during the transition. As we shall see below, these constructs are used
to encapsulate action formulas in temporal formulas.

3.3 Temporal Formulas

Syntax

We now define the temporal layer of TLA, again with the aim of giving pre-
cise definitions of syntax and semantics. The inductive definition of temporal
formulas (or just “formulas”) is given as follows:

• Every state formula is a formula.
• Boolean combinations (the connectives ¬, ∧, ∨, ⇒, and ≡) of formulas are

formulas.
• If F is a formula, then so is �F (“always F”).
• If A is an action and t is a state function, then �[A]t is a formula (pro-

nounced “always square A sub t”).
• If F is a formula and x ∈ VR is a rigid variable, then ∃ x : F is a formula.
• If F is a formula and v ∈ VF is a flexible variable, then ∃∃∃∃∃∃ v : F is a formula.
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In particular, an action A by itself is not a temporal formula, not even
in the form [A]t . Action formulas occur within temporal formulas only in
subformulas �[A]t . We assume quantifiers to have lower syntactic precedence
than the other connectives, and so their scope extends as far to the right as
possible.

At the level of temporal formulas, if v ∈ VF is a flexible variable, then
we consider unprimed occurrences v as well as primed occurrences v ′ to be
occurrences of v , and the quantifier ∃∃∃∃∃∃ binds both kinds of occurrence. More
formally, the set of free variables of a temporal formula is a subset of VF ∪

VR. The free occurrencesof (rigid or flexible) variables in a state formula P ,
considered as a temporal formula, are precisely the free occurrences in P ,
considered as a transition formula. However, a variable v ∈ VF has a free
occurrence in �[A]t iff either v or v ′ has a free occurence in A, or if v occurs
in t . Similarly, the substitution F [e/v ] of a state function e for a flexible
variable v substitutes both e for v and e ′ for v ′ in the action subformulas
of F , after bound variables have been renamed as necessary. For example,
substitution of the state function h(v), where h ∈ LF and v ∈ VF , for w in
the temporal formula

∃∃∃∃∃∃ v : p(v ,w) ∧ �[q(v , f (w , v ′),w ′)]g(v ,w)

results in the formula, up to renaming of the bound variable,

∃∃∃∃∃∃ u : p(u, h(v)) ∧ �[q(u, f (h(v), u ′), h(v ′))]g(u,h(v)).

Because state formulas do not contain free occurrences of primed flexible
variables, the definitions of free and bound occurrences and of substitutions
introduced for transition formulas and for temporal formulas agree on state
formulas, and this observation justifies the use of the same notation at both
levels of formula. Substitutions of terms for primed variables or of proper
transition functions for variables are not defined at the temporal level of TLA.

Semantics

Given an interpretation I, temporal formulas are evaluated with respect to
an ω-sequence σ = s0s1 . . . of states si : VF → |I| (in the TLA literature, σ
is usually called a behavior), and with respect to a valuation ξ : VR → |I|

of the rigid variables. For a behavior σ = s0s1 . . . , we write σi to refer to
state si , and we write σ|i to denote the suffix sisi+1 . . . of σ. The following
inductive definition assigns a truth value �F �I,ξ

σ
∈ {t, f} to temporal formulas;

the semantics of the quantifier ∃∃∃∃∃∃ over flexible variables is deferred to Sect. 3.4.

• �P�I,ξ

σ
= �P�I,ξ

σ0
: state formulas are evaluated at the initial state of the

behavior.
• The semantics of Boolean operators is the usual one.
• ��F �I,ξ

σ
= t iff �F �I,ξ

σ|i
= t for all i ∈ N: this is the standard “always”

connective of linear-time temporal logic.
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• ��[A]t�
I,ξ

σ
= t iff for all i ∈ N, either �t�I,ξ

σi
= �t�I,ξ

σi+1
or �A�I,ξ

σi ,σi+1
= t

holds: the formula �[A]t holds iff every state transition in σ that modifies
the value of t satisfies A.

• �∃ x : F �I,ξ

σ
= t iff �F �I,η

σ
= t for some valuation η : VR → |I| such that

η(y) = ξ(y) for all y ∈ VR \ {x}: this is standard first-order quantification
over (rigid) variables.

Validity and satisfiability of temporal formulas are defined as expected.
We write |=I F (or simply |= F when I is understood) to denote that F is
valid for (all behaviors based on) the interpretation I.

Derived Temporal Formulas

The abbreviations for temporal formulas include the universal quantifiers ∀

and ∀∀∀∀∀∀ over rigid and flexible variables. The formula �F (“eventually F”), de-
fined as ¬�¬F , asserts that F holds for some suffix of the behavior; similarly,
�〈A〉t (“eventually angle A sub t”) is defined as ¬�[¬A]t and asserts that
some future transition satisfies A and changes the value of t . We write F � G
(“F leads to G”) for the formula �(F ⇒ �G), which asserts that whenever
F is true, G will become true eventually. Combinations of the “always” and
“eventually” operators express “infinitely often” (��) and “always from some
time onward” (��). Observe that a formula F can be both infinitely often true
and infinitely often false, and thus ��F is strictly stronger than ��F . These
combinations are the basis for expressing fairness conditions. In particular,
weak and strong fairness for an action 〈A〉t are defined as

WFt(A)
∆

= (��¬Enabled 〈A〉t ) ∨ ��〈A〉t

≡ ��Enabled 〈A〉t ⇒ ��〈A〉t

≡ �(�Enabled 〈A〉t ⇒ �〈A〉t )

SFt(A)
∆

= (��¬Enabled 〈A〉t ) ∨ ��〈A〉t

≡ ��Enabled 〈A〉t ⇒ ��〈A〉t

≡ �(��Enabled 〈A〉t ⇒ �〈A〉t)

Informally, fairness conditions assert that an action should eventually oc-
cur if it is “often” enabled; they differ in the precise interpretation of “often”.
Weak fairness WFt (A) asserts that the action 〈A〉t must eventually occur if it
remains enabled from some point onwards. In other words, the weak fairness
condition is violated if, eventually, Enabled 〈A〉t remains true without 〈A〉t

ever occurring.
The strong fairness condition, expressed by the formula SFt(A), requires

〈A〉t to occur infinitely often provided that the action is enabled infinitely
often, although it need not remain enabled forever. Therefore, strong fairness
is violated if, from some point onward, the action is repeatedly enabled but
never occurs. It is a simple exercise in expanding the definitions of temporal
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formulas to prove that the various formulations of weak and strong fairness
given above are actually equivalent, and that SFt(A) implies WFt(A).

When one is specifying systems, the choice of appropriate fairness condi-
tions for system actions often requires some experience. Considering again the
allocator example of Fig. 1, it would not be enough to require weak fairness
for the Allocate actions, because several clients may compete for the same re-
source: allocation of the resource to one client disables allocating the resource
to any other client until the first client returns the resource.

3.4 Stuttering Invariance and Quantification

The formulas �[A]t are characteristic of TLA. As we have seen, they allow for
“stuttering” transitions that do not change the value of the state function t .
In particular, repetitions of states cannot be observed by formulas of this
form. Stuttering invariance is important in connection with refinement and
composition [25]; see also Sect. 3.5.

To formalize this notion, for a set V of flexible variables we define two
states s and t to be V-equivalent, written s =V t , iff s(v) = t(v) for all v ∈ V .
For any behavior σ, we define its V -unstuttered variant �V σ as the behavior
obtained by replacing every maximal finite subsequence of V-equivalent states
in σ by the first state of that sequence. (If σ ends in an infinite sequence of
states all of which are V-equivalent, that sequence is simply copied at the end
of �V σ.)

Two behaviors σ and τ are V-stuttering equivalent, written σ ≈V τ , if
�V σ = �V τ . Intuitively, two behaviors σ and τ are V-stuttering equivalent
if one can be obtained from the other by inserting and/or deleting finite
repetitions of V-equivalent states. In particular, the relation ≈VF

, which we
also write as ≈, identifies two behaviors that agree up to finite repetitions of
identical states.

TLA is insensitive to stuttering equivalence: the following theorem states
that TLA is not expressive enough to distinguish between stuttering-equivalent
behaviors.

Theorem 1 (stuttering invariance). Assume that F is a TLA formula
whose free flexible variables are among V, that σ ≈V τ are V-stuttering equiv-
alent behaviors, and that ξ is a valuation. Then �F �I,ξ

σ
= �F �I,ξ

τ
.

For the fragment of TLA formulas without quantification over flexible
variables, whose semantics was defined in Sect. 3.3, it is not hard to prove
Theorem 1 by induction on the structure of formulas [6, 27]. However, its
extension to full TLA requires some care in the definition of quantification
over flexible variables: it would be natural to define that �∃∃∃∃∃∃ v : F �I,ξ

σ
= t iff

�F �I,ξ

τ
= t for some behavior τ whose states τi agree with the corresponding

states σi for all variables except for v . This definition, however, would not
preserve stuttering invariance. As an example, consider the formula F defined
below:
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F
∆

= ∧ v = c ∧ w = c
∧ �(w �= c) ∧ �[v �= c]w

�σ

v

w

c

c
d
c

d

d

· · ·

· · ·

The formula F asserts that both of the variables v and w initially equal
the constant c, that eventually w should be different from c, and that v must
be different from c whenever w changes value. In particular, F implies that
the value of v must change strictly before any change in the value of w , as
illustrated in the picture. Therefore, σ1(w) must equal c.

Now consider the formula ∃∃∃∃∃∃ v : F , and assume that τ is a behavior that
satisfies ∃∃∃∃∃∃ v : F , according to the above definition. It follows that τ0(w) and
τ1(w) must both equal c, but that τi(w) is different from c for some (smallest)
i > 1. The behavior τ |i−1 cannot satisfy ∃∃∃∃∃∃ v : F because, intuitively, “there
is no room” for the internal variable v to change before w changes. However,
this is in contradiction to Theorem 1 because τ and τ |i−1 are {w}-stuttering
equivalent, and w is the only free flexible variable of ∃∃∃∃∃∃ v : F .

This problem is solved by defining the semantics of ∃∃∃∃∃∃ v : F in such a way
that stuttering invariance is ensured. Specifically, the behavior τ may contain
extra transitions that modify only the bound variable v . Formally, we say that
two behaviors σ and τ are equal up to v iff σi and τi agree on all variables
in VF \ {v}, for all i ∈ N. We say that σ and τ are similar up to v , written
σ #v τ iff there exist behaviors σ′ and τ ′ such that

• σ and σ′ are stuttering equivalent (σ ≈ σ′),
• σ′ and τ ′ are equal up to v , and
• τ ′ and τ are again stuttering equivalent (τ ′ ≈ τ).

Being defined as the composition of equivalence relations, #v is itself an equiv-
alence relation.

Now, we define �∃∃∃∃∃∃ v : F �I,ξ

σ
= t iff �F �I,ξ

τ
= t holds for some behavior

τ #v σ. This definition can be understood as “building stuttering invariance
into” the semantics of ∃∃∃∃∃∃ v : F . It therefore ensures that Theorem 1 holds for
all TLA formulas.

3.5 Properties, Refinement, and Composition

We have already seen in the example of the resource allocator that TLA
makes no formal distinction between system specifications and their proper-
ties: both are represented as temporal formulas. It is conventional to write
system specifications in the form

∃∃∃∃∃∃ x : Init ∧ �[Next ]v ∧ L

where v is a tuple of all of the state variables used to express the specifica-
tion, the variables x are internal (hidden), Init is a state predicate representing
the initial condition, Next is an action that describes the next-state relation,
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usually written as a disjunction of individual system actions, and L is a con-
junction of formulas WFv (A) or SFv (A) asserting fairness assumptions about
disjuncts of Next . However, other forms of system specifications are possible
and can occasionally be useful. Asserting that a system (specified by) S sat-
isfies a property F amounts to requiring that every behavior that satisfies
S must also satisfy F ; in other words, it asserts the validity of the implica-
tion S ⇒ F . For example, the theorems asserted in module SimpleAllocator
(Fig. 1) state three properties of the resource allocator.

System Refinement

TLA was designed to support stepwise system development based on a notion
of refinement. In such an approach, a first, high-level specification formally
states the problem at a high level of abstraction. A series of intermediate
models then introduce detail, adding algorithmic ideas. The development is
finished when a model is obtained that is detailed enough so that an imple-
mentation can be read off immediately or even mechanically generated (for
example, based on models of shared-variable or message-passing systems).
The fundamental requirement for useful notions of refinement is that they
must preserve system properties, such that properties established at a higher
level of abstraction are guaranteed to hold for later models, including the final
implementation. In this way, crucial correctness properties can be proven (or
errors can be detected) early on, simplifying their proofs or the correction of
the model, and these properties need never be reproven for later refinements.

A lower-level model, expressed by a TLA formula C , preserves all TLA
properties of an abstract specification A if and only if for every formula F ,
if A ⇒ F is valid, then so is C ⇒ F . This condition is in turn equivalent to
requiring the validity of C ⇒ A. Because C is expressed at a lower level of
abstraction, it will typically admit transitions that are invisible at the higher
level, acting on state variables that do not appear in A. The stuttering invari-
ance of TLA formulas is therefore essential to make validity of implication a
reasonable definition of refinement.

Assume that we are given two system specifications Abs and Conc in the
standard form,

Abs
∆

= ∃∃∃∃∃∃ x : AInit ∧ �[ANext ]v ∧ AL and

Conc
∆

= ∃∃∃∃∃∃ y : CInit ∧ �[CNext ]w ∧ CL.

Proving that Conc refines Abs amounts to showing the validity of the impli-
cation Conc ⇒ Abs , and, using standard quantifier reasoning, this reduces to
proving

(CInit ∧ �[CNext ]w ∧ CL) ⇒ (∃∃∃∃∃∃ x : AInit ∧ �[ANext ]v ∧ AL).

The standard approach to proving the latter implication is to define a state
function t in terms of the free variables w (including y) of the left-hand side,
and to prove
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(CInit ∧ �[CNext ]w ∧ CL) ⇒ (AInit ∧ �[ANext ]v ∧ AL)[t/x ].

In the computer science literature, the state function t is usually called
a refinement mapping. Proof rules for refinement will be considered in some
more detail in Sect. 4.5. A typical example of system refinement in TLA+ will
be given in Sect. 6.3, where a “distributed” model of the resource allocator
will be developed that distinguishes between the actions of the allocator and
those of the clients.

Composition of systems.

Stuttering invariance is also essential for obtaining a simple representation of
the (parallel) composition of components, represented by their specifications.
Assume that A and B are specifications of two components that we wish to
compose in order to form a larger system. Each of these formulas describes
the possible behaviors of the “part of the world” relevant to the respective
component, represented by the state variables that have free occurrences in
the specification of the component. A system that contains both components
(possibly among other constituents) must therefore satisfy both A and B :
composition is conjunction. Again, state transitions that correspond to a lo-
cal action of one of the components are allowed because they are stuttering
transitions of the other component. Any synchronisation between the two
components is reflected in changes of a common state variable (the interfaces
of the components), and these changes must be allowed by both components.

As a test of these ideas, consider the specification of a FIFO queue shown
in Fig. 4 which is written in the canonical form of a TLA specification. The
queue receives inputs via the channel in and sends its outputs via the channel
out ; it stores values that have been received but not yet sent in an internal
queue q. Initially, we assume that the channels hold some “null” value and
that the internal queue is empty. An enqueue action, described by the action
Enq, is triggered by the reception of a new message (represented as a change of
the input channel in); it appends the new input value to the internal queue. A
dequeue action, specified by the action Deq, is possible whenever the internal
queue is non-empty: the value at the head of the queue is sent over the channel
out and removed from the queue.

We expect that two FIFO queues in a row implement another FIFO queue.
Formally, let us assume that the two queues are connected by a channel mid ,
the above principles then lead us to expect that the formula5

Fifo[mid/out ] ∧ Fifo[mid/in] ⇒ Fifo

will be valid. Unfortunately, this is not true, for the following reason: the
formula Fifo implies that the in and out channels never change simultaneously,

5 TLA+ introduces concrete syntax, based on module instantiation, for writing
substitutions such as Fifo[mid/out ].
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�in �out
q

(a) Pictorial representation

module InternalFIFO

extendsSequences

constantMessage

variablesin, out, q

NoMsg
∆

= choosex : x /∈ Message

Init
∆

= q = 〈〉 ∧ in = NoMsg ∧ out = NoMsg

Enq
∆

= in ′ ∈ Message \ {in} ∧ q ′ = Append(q , in ′) ∧ out ′ = out

Deq
∆

= q = 〈〉 ∧ out ′ = Head(q) ∧ q ′ = Tail(q) ∧ in ′ = in

Next
∆

= Enq ∨ Deq

vars
∆

= 〈in,out , q〉

IFifo
∆

= Init ∧ �[Next ]vars ∧ WFvars(Deq)

(b) Internal specification

module FIFO

constantMessage

variablesin, out

Internal(q)
∆

= instanceInternalFIFO

Fifo
∆

= ∃∃∃∃∃∃ q : Internal(q)!IFifo

(c) Interface specification

Fig. 4. Specification of a FIFO queue

whereas the conjunction on the left-hand side allows such changes (if the left-
hand queue performs an Enq action while the right-hand queue performs a
Deq). This technical problem can be attributed to a design decision taken
in the specification of the FIFO queue to disallow simultaneous changes to
its input and output interfaces, a specification style known as “interleaving
specifications”. In fact, the above argument shows that the composition of
two queues specified in interleaving style does not implement an interleaving
queue. The choice of an interleaving or a non-interleaving specification style is
made by the person who writes the specification; interleaving specifications are
usually found to be easier to write and to understand. The problem disappears
if we explicitly add an “interleaving” assumption to the composition: the
implication

Fifo[mid/out ] ∧ Fifo[mid/in] ∧ �[in ′ = in ∨ out ′ = out ]in,out

⇒ Fifo
(1)
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is valid, and its proof will be considered in Sect. 4.5. Alternatively, one can
write a non-interleaving specificationof a queue that allows input and output
actions to occur simultaneously.

3.6 Variations and Extensions

We now discuss some of the choices that we have made in the presentation of
TLA, as well as possible extensions.

Transition Formulas and Priming

Our presentation of TLA is based on standard first-order logic, to the extent
that this is possible. In particular, we have defined transition formulas as
formulas of ordinary predicate logic over a large set VE of variables where
v and v ′ are unrelated. An alternative presentation might consider ′ as an
operator, resembling the next-time modality of temporal logic. The two styles
of presentation result in the same semantics of temporal formulas. The style
adopted in this chapter corresponds well to the verification rules of TLA,
explored in Sect. 4, where action-level hypotheses are considered as ordinary
first-order formulas over an extended set of variables.

Compositional Verification

We have argued in Sect. 3.5 that composition is represented in TLA as con-
junction. Because components can rarely be expected to operate correctly in
arbitrary environments, their specifications usually include some assumptions
about the environment. An open system specification is one that does not
constrain its environment; it asserts that the component will function cor-
rectly provided that the environment behaves as expected. One way to write
such a specification is in the form of implications E ⇒ M where E describes
the assumptions about the environment and M the specification of the com-
ponent. However, it turns out that often a stronger form of specification is
desirable that requires the component to adhere to its description M for at
least as long as the environment has not broken its obligation E . In particu-
lar, when systems are built from “open” component specifications, this form,
written E +

−� M , admits a strong composition rule that can discharge mutual
assumptions between components [4, 15]. It can be shown that the formula
E +

−� M is actually definable in TLA, and that the resulting composition rule
can be justified in terms of an abstract logic of specifications, supplemented
by principles specific to TLA [5,7].

TLA*

The language of TLA distinguishes between bthe tiers of transition formulas
and of temporal formulas; transition formulas must be guarded by “brackets”
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to ensure stuttering invariance. Although a separation between the two tiers
is natural when one is writing system specifications, it is not a prerequisite
for obtaining stuttering invariance. The logic TLA* [36] generalizes TLA in
that it distinguishes between pure and impure temporal formulas. Whereas
pure formulas of TLA* contain impure formulas in the same way that tempo-
ral formulas of TLA contain transition formulas, impure formulas generalize
transition formulas in that they admit Boolean combinations of F and �G,
where F and G are pure formulas and � is the next-time modality of temporal
logic. For example, the TLA* formula

�
[
A ⇒ ��〈B〉u

]
t

requires that every 〈A〉t action must eventually be followed by 〈B〉u . Assuming
appropriate syntactic conventions, TLA* is a generalization of TLA because
every TLA formula is also a TLA* formula, with the same semantics. On
the other hand, it can be shown that every TLA* formula can be expressed
in TLA using some additional quantifiers. For example, the TLA* formula
above is equivalent to the TLA formula6

∃∃∃∃∃∃ v : ∧ �((v = c) ≡ �〈B〉u)
∧ �[A ⇒ v ′ = c]t

where c is a constant and v is a fresh flexible variable. TLA* thus offers a richer
syntax without increasing the expressiveness, allowing high-level requirement
specifications to be expressed more directly. (Kaminski [21] has shown that
TLA* without quantification over flexible variables is strictly more expressive
than the corresponding fragment of TLA.) Besides offering a more natural
way to write temporal properties beyond standard system specifications, the
propositional fragment of TLA* admits a straightforward complete axiom-
atization. (No complete axiomatization is known for propositional TLA, al-
though Abadi [1] axiomatized an early version of TLA that was not invariant
under stuttering.) For example,

�[F ⇒ �F ]v ⇒ (F ⇒ �F )

where F is a temporal formula and v is a tuple containing all flexible variables
with free occurrences in F , is a TLA* formulation of the usual induction axiom
of temporal logic; this is a TLA formula only if F is in fact a state formula.

Binary Temporal Operators

TLA can be considered as a fragment of the standard linear-time temporal
logic (LTL) [34]. In particular, TLA does not include binary operators such as
until. The main reason for that omission is the orientation of TLA towards

6 Strictly, this equivalence is true only for universes that contain at least two distinct
values; one-element universes are not very interesting.
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writing specifications of state machines, where such operators are not neces-
sary. Moreover, nested occurrences of binary temporal operators can be hard
to interpret. Nevertheless, binary temporal operators are definable in TLA
using quantification over flexible variables. For example, suppose that P and
Q are state predicates whose free variables are in the tuple w of variables, that
v is a flexible variable that does not appear in w , and that c is a constant.
Then P until Q can be defined as the formula

∃∃∃∃∃∃ v : ∧ (v = c) ≡ Q
∧ �[(v �= c ⇒ P) ∧ (v ′ = c ≡ (v = c ∨ Q ′))]〈v ,w〉

∧ �Q

The idea is to use the auxiliary variable v to remember whether Q has already
been true. As long as Q has been false, P is required to hold. For arbitrary
TLA formulas F and G, the formula F until G can be defined along the
same lines, using a technique similar to that shown abive for the translation
of TLA* formulas.

4 Deductive System Verification in TLA

Because TLA formulas are used to describe systems as well as their proper-
ties, the proof rules for system verification are just logical axioms and rules
of TLA. More precisely, a system described by a formula Spec has a property
Prop if and only if every behavior that satisfies Spec also satisfies Prop, that
is, iff the implication Spec ⇒ Prop is valid. (To be really precise, the implica-
tion should be valid over the class of interpretations where the function and
predicate symbols have the intended meaning.) System verification, in prin-
ciple, therefore requires reasoning about sets of behaviors. The TLA proof
rules are designed to reduce this temporal reasoning, whenever possible, to a
proof of verification conditions expressed in the underlying predicate logic, a
strategy that is commonly referred to as assertional reasoning. In this section,
we present some typical rules and illustrate their use. We are not trying to
be exhaustive, more information can be found in Lamport’s original paper on
TLA [27].

4.1 Invariants

Invariants characterize the set of states that can be reached during system
execution; they are the basic form of safety properties and the starting point
for any form of system verification. In TLA, an invariant is expressed by a
formula of the form �I , where I is a state formula.

A basic rule for proving invariants is given by

I ∧ [N ]t ⇒ I ′

(INV1)
I ∧ �[N ]t ⇒ �I

.
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This rule asserts that whenever the hypothesis I ∧ [N ]t ⇒ I ′ is valid as
a transition formula, the conclusion I ∧ �[N ]t ⇒ �I is a valid temporal
formula. The hypothesis states that every possible transition (stuttering or
not) preserves I ; thus, if I holds initially, it is guaranteed to hold forever.
Formally, the correctness of the rule (INV1) is easily established by induction
on behaviors. Because the hypothesis is a transition formula, it can be proven
using ordinary first-order reasoning, including “data” axioms that characterize
the intended interpretations.

For example, we can use the invariant rule (INV1) to prove the invari-
ant �(q ∈ Seq(Message)) of the FIFO queue that was specified in module
InternalFIFO in Fig. 4(b) on page 420. We have to prove

IFifo ⇒ �(q ∈ Seq(Message)) (2)

which, by the rule (INV1), the definition of the formula IFifo, and proposi-
tional logic, can be reduced to proving

Init ⇒ q ∈ Seq(Message), (3)

q ∈ Seq(Message) ∧ [Next ]vars ⇒ q ′
∈ Seq(Message). (4)

Because the empty sequence is certainly a finite sequence of messages, the
proof obligation (3) follows from the definition of Init and appropriate data
axioms. Similarly, the proof of (4) reduces to proving preservation of the in-
variant by the Deq and Enq actions, as well as under stuttering, and these
proofs are again straightforward.

The proof rule (INV1) requires that the invariant I is inductive: it must
be preserved by every possible system action. As with ordinary mathematical
induction, it is usually necessary to strengthen the assertion and find an “in-
duction hypothesis” that makes the proof go through. This idea is embodied
in the following derived invariant rule

Init ⇒ I I ∧ [Next ]t ⇒ I ′ I ⇒ J
(INV)

Init ∧ �[Next ]t ⇒ �J
.

In this rule, I is an inductive invariant that implies J . The creative step
consists in finding this inductive invariant. Typically, inductive invariants con-
tain interesting “design” information about the model and represent the over-
all correctness idea. Some formal design methods, such as the B method [8]
(see also the chapter by Cansell and Méry in this book) therefore demand
that an inductive invariant be documented with the system model.

For example, suppose we wish to prove that any two consecutive elements
of the queue are different. This property can be expressed in TLA+ by the
state predicate

J
∆

= ∀ i ∈ 1..Len(q) − 1 : q[i ] �= q[i + 1]

We have used some TLA+ syntax for sequences in writing the formula J ; in
particular, a sequence s in TLA+ is represented as a function whose values
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can be accessed as s [1], . . . , s [Len(s)]. The sequence formed of the values
e1, . . . , en is written as 〈e1, . . . , en〉, and the concatenation of two sequences s
and t is written s ◦ t .

The invariant rule (INV1) is not strong enough to prove that J is an
invariant, because J is not necessarily preserved by the Enq step: there is no
information about how the old value in of the input channel relates to the
values in the queue. (Try this proof yourself to see why it fails.) The proof
succeeds using the rule (INV) and the inductive invariant

Inv
∆

= let oq
∆

= 〈out〉 ◦ q
in ∧ in = oq[Len(oq)]

∧ ∀ i ∈ 1..Len(oq) − 1 : oq[i ] �= oq[i + 1],

which asserts that the current value of the input channel can be found either
as the last element of the queue or (if the queue is empty) as the current value
of the output channel.

4.2 Step Simulation

When one is proving refinement between two TLA specifications, a crucial
step is to show that the next-state relation of the lower-level specification,
expressed as �[M ]t , say, simulates the next-state relation �[N ]u of the higher-
level specification, up to stuttering. The following proof rule is used for this
purpose; it relies on a previously proven state invariant I :

I ∧ I ′
∧ [M ]t ⇒ [N ]u

(TLA2)
�I ∧ �[M ]t ⇒ �[N ]u

.

In particular, it follows from (TLA2) that the next-state relation can be
strengthened by an invariant:

�I ∧ �[M ]t ⇒ �[M ∧ I ∧ I ′]t .

Note that the converse of this implication is not valid: the right-hand side
holds for any behavior where t never changes, independently of the formula
I .

We may use (TLA2) to prove that the FIFO queue never dequeues the
same value twice in a row:

IFifo ⇒ �[Deq ⇒ out ′ �= out ]vars . (5)

For this proof, we make use of the inductive invariant Inv introduced in
Sect. 4.1 above. By rule (TLA2), we have to prove

Inv ∧ Inv ′
∧ [Next ]vars ⇒ [Deq ⇒ out ′ �= out ]vars . (6)

The proof of (6) reduces to the three cases of a stuttering transition, an Enq
action, and a Deq action. Only the last case is nontrivial. Its proof relies on the
definition of Deq, which implies that q is non-empty and that out ′ = Head(q).



426 Stephan Merz

In particular, the sequence oq contains at least two elements, and therefore Inv
implies that oq[1], which is just out , is different from oq[2], which is Head(q).
This suffices to prove out ′ �= out .

4.3 Liveness Properties

Liveness properties, intuitively, assert that something good must eventually
happen [10, 24]. Because formulas �[N ]t are satisfied by a system that al-
ways stutters, the proof of liveness properties must ultimately rely on fairness
properties of the specification that are assumed. TLA provides rules to de-
duce elementary liveness properties from the fairness properties assumed for
a specification. More complex properties can then be inferred with the help
of well-founded orderings.

The following rule can be used to prove a leads-to formula from a weak
fairness assumption, a similar rule exists for strong fairness:

I ∧ I ′
∧ P ∧ [N ]t ⇒ P ′

∨ Q ′

I ∧ I ′
∧ P ∧ 〈N ∧ A〉t ⇒ Q ′

I ∧ P ⇒ Enabled 〈A〉t (WF1)
�I ∧ �[N ]t ∧ WFt (A) ⇒ (P � Q)

.

In this rule, I , P , and Q are state predicates, I is again an invariant, [N ]t
represents the next-state relation, and 〈A〉t is a “helpful action” [33] for which
weak fairness is assumed. Again, all three premises of (WF1) are transition
formulas. To see why the rule is correct, assume that σ is a behavior satisfying
�I ∧ �[N ]t ∧ WFt(A), and that P holds for state σi . We have to show that
Q holds for some σj with j ≥ i . By the first premise, any successor of a state
satisfying P has to satisfy P or Q , so P must hold for as long as Q has not
been true. The third premise ensures that in all of these states, action 〈A〉t is
enabled, and so the assumption of weak fairness ensures that eventually 〈A〉t

occurs (unless Q has already become true before that happens). Finally, by
the second premise, any 〈A〉t -successor (which, by assumption, is in fact an
〈N ∧ A〉t -successor) of a state satisfying P must satisfy Q , which proves the
claim.

For our running example, we can use the rule (WF1) to prove that every
message stored in the queue will eventually move closer to the head of the
queue or even to the output channel. Formally, let the state predicate at(k , x )
be defined by

at(k , x )
∆

= k ∈ 1..Len(q) ∧ q[k ] = x

We shall use (WF1) to prove

FifoI ⇒
(
at(k , x ) � (out = x ∨ at(k − 1, x ))

)
(7)

where k and x are rigid variables. The following outline of the proof illustrates
the application of the rule (WF1); the lower-level steps are all inferred by non-
temporal reasoning and are omitted.
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1. at(k , x ) ∧ [Next ]vars ⇒ at(k , x )′ ∨ out ′ = x ∨ at(k − 1, x )′

1.1. at(k , x ) ∧ m ∈ Message ∧ Enq ⇒ at(k , x )′

1.2. at(k , x ) ∧ Deq ∧ k = 1 ⇒ out ′ = x
1.3. at(k , x ) ∧ Deq ∧ k > 1 ⇒ at(k − 1, x )′

1.4. at(k , x ) ∧ vars ′ = vars ⇒ at(k , x )′

1.5. Q.E.D.
follows from steps 1.1–1.4 by the definitions of Next and at(k , x ).

2. at(k , x ) ∧ 〈Deq ∧ Next〉vars ⇒ out ′ = x ∨ at(k − 1, x )′

follows from steps 1.2 and 1.3 above.
3. at(k , x ) ⇒ Enabled 〈Deq〉vars

for any k , at(k , x ) implies that q �= 〈〉 and thus the enabledness condition.

However, the rule (WF1) cannot be used to prove the stronger property
that every input to the queue will eventually be dequeued, expressed by the
TLA formula

FifoI ⇒ ∀m ∈ Message : in = m � out = m, (8)

because there is no single “helpful action”: the number of Deq actions nec-
essary to produce the input element in the output channel depends on the
length of the queue. Intuitively, the argument used to establish property (7)
must be iterated. The following rule formalizes this idea as an induction over
a well-founded relation (D ,&), i.e. a binary relation such that there does not
exist an infinite descending chain d1 & d2 & . . . of elements di ∈ D :

(D ,&) is well−founded
F ⇒ ∀ d ∈ D :

(
G � (H ∨ ∃ e ∈ D : d & e ∧ G[e/d ])

)

(LATTICE)
F ⇒ ∀ d ∈ D : (G � H )

.

In this rule, d and e are rigid variables such that d does not occur in H and
e does not occur in G. For convenience, we have stated the rule (LATTICE)
in a language of set theory. Also, we have taken the liberty of stating the
assumption that (D ,&) is well-founded as if it were a logical hypothesis. As
an illustration of the expressiveness of TLA, we observe in passing that, in
principle, this hypothesis could be stated by the temporal formula

∧ ∀ d ∈ D : ¬(d & d)
∧ ∀∀∀∀∀∀ v : �(v ∈ D) ∧ �[v & v ′]v ⇒ ��[false]v ,

whose first conjunct expresses the irreflexivity of & and whose second conjunct
asserts that any sequence of values in D that can change only by decreasing
with respect to & must eventually become stationary. In system verification,
however, well-foundedness is usually considered as a “data axiom” and is
outside the scope of temporal reasoning.

Unlike the premises of the rules considered so far, the second hypothesis
of the rule (LATTICE) is itself a temporal formula which requires that every
occurrence of G, for any value d ∈ D , must be followed either by an occurrence
of H or again by some G, for some smaller value e. Because there cannot be
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an infinite descending chain of values in D , H must eventually become true.
In applications of the rule (LATTICE), this hypothesis must be discharged
by another rule for proving liveness, either a fairness rule such as (WF1) or
another application of (LATTICE).

If we choose (N, >), the set of natural numbers with the standard “greater-
than” relation, as the well-founded domain, the proof of the liveness property
(8) that asserts that the FIFO queue eventually outputs every message it
receives can be derived from property (7) and the invariant Inv of Sect. 4.1
using the rule (LATTICE).

Lamport [27] lists further (derived) rules for liveness properties, including
introduction rules for proving formulas WFt (A) and SFt (A) that are necessary
when proving refinement.

4.4 Simple Temporal Logic

The proof rules considered so far support the derivation of typical correctness
properties of systems. In addition, TLA satisfies some standard axioms and
rules of linear-time temporal logic that are useful when one is preparing for
the application of verification rules. Figure 5 contains the axioms and rules of
“simple temporal logic”, adapted from [27].

(STL1)
F

�F
(STL4) �(F ⇒ G) ⇒ (�F ⇒ �G)

(STL2) �F ⇒ F (STL5) �(F ∧ G) ≡ (�F ∧ �G)

(STL3) ��F ≡ �F (STL6) ��(F ∧ G) ≡ (��F ∧ ��G)

Fig. 5. Rules of simple temporal logic.

It can be shown that this is just a non-standard presentation of the modal
logic S4.2 [19], implying that these laws by themselves, characterize a modal
accessibility relation for � that is reflexive, transitive, and locally convex
(confluent). The latter condition asserts that for any state s and states t , u
that are both accessible from s , there is a state v that is accessible from t and
u.

Many derived laws of temporal logic are useful for system verification.
Particularly useful are rules about the “leadsto” operator such as

F ⇒ G
F � G

,
F � G G � H

F � H
,

F � H G � H
(F ∨ G) � H

,
F ⇒ �G F � H

.F � (G ∧ H )
.

In principle, such temporal logic rules can be derived from the rules of
Fig. 5. In practice, it can be easier to justify them from the semantics of tem-
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poral logic. Because the validity of propositional temporal logic is decidable,
they can be checked automatically by freely available tools.

4.5 Quantifier Rules

Although we have seen in Sect. 3.4 that the semantics of quantification over
flexible variables is non-standard, the familiar proof rules of first-order logic
are sound for both types of quantifier:

F [c/x ] ⇒ ∃ x : F (∃ I),
F ⇒ G

(∃E)
(∃ x : F ) ⇒ G

,

F [t/v ] ⇒ ∃∃∃∃∃∃ v : F (∃∃∃∃∃∃ I),
F ⇒ G

(∃∃∃∃∃∃E)
(∃∃∃∃∃∃ v : F ) ⇒ G

.

In these rules, x is a rigid and v is a flexible variable. The elimination rules
(∃E) and (∃∃∃∃∃∃E) require the usual proviso that the bound variable should not
be free in the formula G. In the introduction rules, t is a state function, while
c is a constant function. Observe that if we allowed an arbitrary state function
in the rule (∃ I), we could prove

∃ x : �(v = x ) (9)

for any state variable v from the premise �(v = v), provable by (STL1). How-
ever, the formula (9) asserts that v remains constant throughout a behavior,
which can obviously not be valid.

Since existential quantification over flexible variables corresponds to hiding
of state components, the rules (∃∃∃∃∃∃ I) and (∃∃∃∃∃∃E) play a fundamental role in
proofs of refinement for reactive systems. In this context, the “witness” t is
often called a refinement mapping [2]. For example, the concatenation of the
two low-level queues provides a suitable refinement mapping for proving the
validity of the formula ( 1 on page 420), which claimed that two FIFO queues
in a row implement a FIFO queue, assuming interleaving of changes to the
input and output channels.

Although the quantifier rules are standard, one should recall from Sect. 3.2
that care has to be taken when substitutions are applied to formulas that
contain implicit quantifiers. In particular, the formulas WFt(A) and SFt(A)
contain the subformula Enabled 〈A〉t , and therefore WFt (A)[e/v ] is not gen-
erally equivalent to the formula WFt[e/v ](A[e/v , e ′/v ′]). The consequences of
this inequivalence for system verification are discussed in more detail in Lam-
port’s original paper on TLA [27].

In general, refinement mappings need not always exist. For example, (∃∃∃∃∃∃ I)
cannot be used to prove the TLA formula

∃∃∃∃∃∃ v : ��〈true〉v , (10)

which is valid, except over universes that contain a single element. Formula
(10) asserts the existence of a flexible variable whose value changes infinitely
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often. (Such a variable can be seen as an “oscillator”, which would trigger
system transitions.) In fact, an attempt to prove (10) by the rule (∃∃∃∃∃∃ I) would
require one to exhibit a state function t whose value is certain to change
infinitely often in any behavior. Such a state function cannot exist: consider a
behavior σ that ends in infinite stuttering, then the value of t never changes
over the stuttering part of σ.

One approach to solving this problem, introduced in [2], consists of adding
auxiliary variables such as history and prophecy variables. Formally, this ap-
proach consists in adding special introduction rules for auxiliary variables.
The proof of G ⇒ ∃∃∃∃∃∃ v : F is then reduced to first proving a formula of the
form G ⇒ ∃∃∃∃∃∃ a : Gaux using a rule for auxiliary variables, and then using the
rules (∃∃∃∃∃∃E) and (∃∃∃∃∃∃ I) above to prove G ∧ Gaux ⇒ ∃∃∃∃∃∃ v : F . The details are
beyond the scope of this introductory overview.

5 Formalized Mathematics: The Added Value of TLA+

The definitions of the syntax and semantics of TLA in Sect. 3 were given
with respect to an arbitrary language of predicate logic and its interpretation.
TLA+ instantiates this generic definition of TLA with a specific first-order
language, namely Zermelo–Fränkel set theory with choice. By adopting a stan-
dard interpretation, TLA+ specifications are precise and unambiguous about
the “data structures” on which specifications are based. We have seen in the
example proofs in Sect. 4, that reasoning about data accounts for most of the
steps that need to be proven during system verification. Besides fixing the vo-
cabulary of the logical language and the intended interpretation, TLA+ also
introduces facilities for structuring a specification as a hierarchy of modules
for declaring parameters and, most importantly, for defining operators. These
facilities are essential for writing actual specifications and must therefore be
mastered by any user of TLA+. However, from the foundational point of view
adopted in this chapter, they are just syntactic sugar. We shall therefore con-
centrate on the set-theoretic foundations, referring the reader to Lamport’s
book [29] for a detailed presentation of the language of TLA+.

5.1 Elementary Data Structures: Basic Set Theory

Elementary set theory is based on a signature that consists of a single binary
predicate symbol ∈ and no function symbols. TLA+ heavily relies on Hilbert’s
choice operator. The syntax of transition-level terms and formulas defined
in Sect. 3.2 is therefore extended by an additional term formation rule that
defines choosex : A to be a transition function whenever x ∈ VE is a variable
and A is an action.7 The occurrences of x in the term choosex : A are bound.

7 Temporal formulas are defined as indicated in Sect. 3.3 on page 413; in particular,
choose is never applied to a temporal formula.
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To this first-order language there corresponds a set-theoretic interpretation:
every TLA+ value is a set. Moreover, ∈ is interpreted as set membership
and the interpretation is equipped with an (unspecified) choice function ε

mapping every non-empty collection C of values to some element ε(C ) of C ,
and mapping the empty collection to an arbitrary value. The interpretation
of a term choosex : P is defined as

�choosex : P�ξ

s,t = ε({d | �P�
αs,t,ξ[d/x ] = t})

This definition employs the choice function to return some value satisfying
P provided there is some such value in the universe of set theory. Observe
that in this semantic clause, the choice function is applied to a collection that
need not be a set (i.e., an element of the universe of the interpretation); in
set-theoretic terminology, ε applies to classes and not just to sets. Because ε

is a function, it produces the same value when applied to equal arguments. It
follows that the choice ‘function’ satisfies the laws

(∃ x : P) ≡ P [(choosex : P)/x ] (11)

(∀ x : (P ≡ Q)) ⇒ (choosex : P) = (choosex : Q) (12)

TLA+ avoids undefinedness by underspecification [18], and so choosex :
P denotes a value even if no value satisfies P . To ensure that a term involv-
ing choice actually denotes the expected value, the existence of some suitable
value should be proven. If there is more than one such value, the expression
is underspecified, and the user should be prepared to accept any of them. In
particular, any properties should hold for all possible values. However, ob-
serve that for a given interpretation, choice is deterministic, and that it is
not “monotone”: no relationship can be established between choosex : P
and choosex : Q even when P ⇒ Q is valid (unless P and Q are actually
equivalent). Therefore, whenever a specification Spec contains an underspeci-
fied application of choice, any refinement Ref is constrained to make the same
choices in order to prove Ref ⇒ Spec; this situation is fundamentally different
from non-determinism, where implementations may narrow the set of allowed
values.

In the following, we shall freely use many notational abbreviations of
TLA+. For example, ∃ x , y ∈ S : P abbreviates ∃ x : ∃ y : x ∈ S ∧ y ∈ S ∧ P .
Local declarations are written as let in , and if then else is used
for conditional expressions.

From membership and choice, one can build up the conventional language
of mathematics [32], and this is the foundation for the expressiveness of TLA+.

Figure 6 on the following page lists some of the basic set-theoretic con-
structs of TLA+; we write

{e1, . . . , en}
∆

= chooseS : ∀ x : (x ∈ S ≡ x = e1 ∨ . . . ∨ x = en)

to denote set enumeration and assume the additional bound variables in the
defining expressions of Fig. 6 to be chosen such that no variable clashes occur.
The two comprehension schemes act as binders for the variable x , which must
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union unionS
∆

= chooseM : ∀ x : (x ∈ M ≡ ∃T ∈ S : x ∈ T )

binary union S ∪ T
∆

= union{S , T}

subset S ⊆ T
∆

= ∀ x : (x ∈ S ⇒ x ∈ T )

powerset subset S
∆

= chooseM : ∀ x : (x ∈ M ≡ x ⊆ S)

comprehension 1 {x ∈ S : P}
∆

= chooseM : ∀ x : (x ∈ M ≡ x ∈ S ∧ P)}

comprehension 2 {t : x ∈ S}
∆

= chooseM : ∀ y : (y ∈ M ≡ ∃ x ∈ S : y = t)

Fig. 6. Basic set-theoretic operators

not have free occurrences in S . The existence of sets defined in terms of
choice can be justified from the axioms of Zermelo–Fränkel set theory [41],
which provide the deductive counterpart of the semantics underlying TLA+.
However, it is well-known that without proper care, set theory is prone to
paradoxes. For example, the expression

chooseS : ∀ x : (x ∈ S ≡ x /∈ x )

is a well-formed constant formula of TLA+, but the existence of a set S
containing precisely those sets which do not contain themselves would lead to
the contradiction that S ∈ S iff S /∈ S ; this is of course Russell’s paradox.
Intuitively, S is “too big” to be a set. More precisely, the universe of set
theory does not contain values that are in bijection with the collection of
all sets. Therefore, when one is evaluating the above TLA+ expression, the
choice function is applied to the empty collection, and the result depends on
the underlying interpretation. Perhaps unexpectedly, however, we can infer
from (12) that

(chooseS : ∀ x : (x ∈ S ≡ x /∈ x )) = (choosex : x ∈ {}).

Similarly, a generalized intersection operator dual to the union operator
of Fig. 6 does not exist, because generalized intersection over the empty set
of sets cannot be sensibly defined.

On the positive side, we have exploited the fact that no set can contain all
values in the definition

NoMsg
∆

= choosex : x /∈ Message

that appears in Fig. 4(b) on page 420. Whatever set is denoted by Message,
NoMsg will denote some value that is not contained in Message. If a subse-
quent refinement wanted to fix a specific “null” message value null /∈ Message,
it could do so by restricting the class of admissible interpretations via an as-
sumption of the form

assume(choosex : x /∈ Message) = null

Because all properties established for the original specification hold for all
possible choices of NoMsg, they will continue to hold for this restricted choice.
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5.2 More Data Structures

Besides their use in elementary set operations, functions are a convenient way
to represent different kinds of data structures. A traditional construction of
functions within set theory, followed in Z and B [8,40], is to construct functions
as special kinds of relations, which are represented as ordered pairs. TLA+

takes a different approach: it assumes functions to be primitive and assumes
tuples to be a particular kind of function. The set of functions whose domain
equals S and whose codomain is a subset of T is written as [S → T ], the
domain of a function f is denoted by domain f , and the application of a
function f to an expression e is written as f [e]. The expression [x ∈ S �→ e]
denotes a function with domain S that maps any x ∈ S to e; again, the
variable x must not occur in S and is bound by the function constructor. (This
expression can be understood as the TLA+ syntax for a lambda expression
λx ∈ S : e.) Thus, any function f obeys the law

f = [x ∈ domain f �→ f [x ]], (13)

and this equation can in fact serve as a characteristic predicate for functional
values. TLA+ introduces a notation for overriding a function at a certain
argument position (a similar “function update” is central in Gurevich’s ASM
notation [12]; see also the chapter by Reisig in this book). Formally,

[f except ! [t ] = u]
∆

= [x ∈ domain f �→ if x = t then u else f [x ]]

where x is a fresh variable. Again, this notation generalises to updates of
a function at several argument positions; also, the notation @ can be used
within the subexpression u to denote the original value of f [t ].

By combining choice, sets, and function notation, one obtains an expres-
sive language for defining mathematical structures. For example, the standard
TLA+ module introducing natural numbers defines them as an arbitrary set
with a constant zero and a successor function satisfying the usual Peano ax-
ioms [29, p. 345], and Lamport goes on to define similarly the integers and
the real numbers, ensuring that the integers are a subset of the reals. In par-
ticular, the arithmetic operators over these sets are identical rather than just
overloaded uses of the same symbols.

Recursive functions can be defined in terms of choice, for example

factorial
∆

=
choosef : f = [n ∈ Nat �→ if n = 0 then 1 else n ∗ f [n − 1]],

which TLA+, using some syntactic sugar, offers us to write more concisely as

factorial [n ∈ Nat ]
∆

= if n = 0 then 1 else n ∗ factorial [n − 1].

Of course, as with any construction based on choice, such a definition should
be justified by proving the existence of a function that satisfies the recursive
equation. Unlike the standard semantics of programming languages, TLA+



434 Stephan Merz

does not commit to the least fixed point of a recursively defined function in
cases where there are several solutions.

Tuples are represented in TLA+ as functions,

〈t1, . . . , tn〉
∆

= [i ∈ 1..n �→ if i = 1 then t1 . . . else tn ],

where 1..n denotes the set {j ∈ Nat : 1 ≤ j ∧ j ≤ n} (and i is a “fresh”
variable). Selection of the ith element of a tuple is therefore just a function
application. Strings are defined as tuples of characters, and records are rep-
resented as functions whose domains are finite sets of strings. The update
operation on functions can thus be applied to tuples and records as well. The
concrete syntax of TLA+ offers us special support for record operations. For
example, one writes acct .balance instead of acct [“balance”].

Seq(S)
∆

= union{[1..n] → S : n ∈ Nat}

Len(s)
∆

= choosen ∈ Nat : domain s = 1..n

Head(s)
∆

= s[1]

Tail(s)
∆

= [i ∈ 1..Len(s) − 1 �→ s[i + 1]]

s ◦ t
∆

= [i ∈ 1..Len(s) + Len(t) �→

if i ≤ Len(s) then s[i ] else t [i − Len(s)]]

Append(s, e)
∆

= s ◦ 〈e〉

SubSeq(s, m,n)
∆

=
ˆ

i ∈ 1..(1 + n − m) �→ s[i + m − 1]
˜

Fig. 7. Finite sequences.

The standard TLA+ module Sequences that has already appeared as a
library module used for the specification of the FIFO queue in Fig. 4(b) on
page 420, represents finite sequences as tuples. The definitions of the standard
operations, some of which are shown in Fig. 7, are therefore quite simple.
However, this simplicity can sometimes be deceptive. For example, these def-
initions do not reveal that the Head and Tail operations are “partial”. They
should be validated by proving the expected properties, such as

∀ s ∈ Seq(S ) : Len(s) ≥ 1 ⇒ s = 〈Head(s)〉 ◦ Tail(s).

6 The Resource Allocator Revisited

Armed with a better understanding of the language TLA+, let us reconsider
the resource allocator specification of Sect. 2. We have already verified several
properties of the simple allocator specification of Fig. 1 by model checking,
and we could use the deduction rules of Sect. 4 to prove these properties in
full generality. Does this mean that the specification is satisfactory?
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Consider the following scenario: two clients c1 and c2 both request re-
sources r1 and r2. The allocator grants r1 to c1 and r2 to c2. From our infor-
mal description in Sect. 2.1, it appears that we have reached a deadlock state:
neither client can acquire the missing resource as long as the other one does
not give up the resource it holds, which it is not required to do. Why then
did tlc not report any deadlock, and how could we prove liveness?

Formally, the model contains no deadlock because, according to require-
ment (3), each client is allowed to give up resource it is holding. The problem
with the model is that it actually requires clients to eventually give up the re-
sources, even if they have not yet received the full share of resources that they
asked for. This requirement is expressed by the seemingly innocous fairness
condition

∀ c ∈ Clients : WFvars(Return(c, alloc[c])),

whereas the informal requirement (4) demands only that clients return their
resources once their entire request has been satisfied. We should therefore
have written

∀c ∈ Clients : WFvars

(
unsat [c] = {} ∧ Return(c, alloc[c])

)
.

Rerunning tlc on the modified specification produces the expected counter-
example.

The bigger lesson of this example is that errors can creep into formal speci-
fications just as easily as into programs, and that a model can be inappropriate
even if it satisfies all correctness properties. Validation, for example by simu-
lation runs or a review of the model, is extremely important for avoiding this
kind of error. We will now revisit the allocator specification and present a cor-
rected model. We will then present a refinement of that model that prepares
an implementation as a distributed system.

6.1 A Scheduling Allocator

The specification SimpleAllocator (Fig. 1 on page 404) is too simple because
the allocator is free to allocate resources in any order. Therefore, it may “paint
itself into a corner”, requiring cooperation from the clients to recover. We can
prevent this from happening by having the allocator fix a schedule according
to which access to resources will be granted. Figures 8 on the next page and 9
on page 437 contain a formal TLA+ model based on this idea.

Compared with the specification of the simple allocator in Fig. 1 on
page 404, the new specification contains two more state variables, pool and
sched . The variable sched contains a sequence of clients, representing the allo-
cation schedule. The variable pool contains a set of clients that have requested
resources but have not yet been scheduled for allocation. Consequently, the
request action merely inserts the client into the pool. The allocation action
is restricted to giving out resources to a client only if no client that appears
earlier in the schedule is demanding any of them.
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module SchedulingAllocator

extendsFiniteSet, Sequences, Naturals

constantsClients, Resources

assumeIsFiniteSet(Resources)

variablesunsat, alloc, pool, sched

TypeInvariant
∆

=
∧ unsat ∈ [Clients → subset Resources]
∧ alloc ∈ [Clients → subset Resources]
∧ pool ∈ subset Clients ∧ sched ∈ Seq(Clients)

available
∆

= Resources \ (union{alloc[c] : c ∈ Clients})

PermSeqs(S)
∆

= set of permutations of finite set S , represented as sequences

let perms[ss ∈ subset S ]
∆

=
if ss = {} then 〈 〉

else let ps
∆

=
ˆ

x ∈ ss �→
˘

Append(sq , x) : sq ∈ perms[ss \ {x}]
¯˜

in union{ps[x ] : x ∈ ss}
in perms[S ]

Drop(seq , i)
∆

= SubSeq(seq , 1, i − 1) ◦ SubSeq(seq , i + 1,Len(seq))

Init
∆

=
∧ unsat = [c ∈ Clients �→ {}] ∧ alloc = [c ∈ Clients �→ {}]
∧ pool = {} ∧ sched = 〈 〉

Request(c, S)
∆

=
∧ unsat [c] = {} ∧ alloc[c] = {} ∧ S = {}
∧ unsat ′ = [unsatexcept ![c] = S ] ∧ pool ′ = pool ∪ {c}
∧ unchanged〈alloc, sched 〉

Allocate(c, S)
∆

=
∧ S = {} ∧ S ⊆ available ∩ unsat [c]
∧ ∃ i ∈ domain sched :

∧ sched [i ] = c ∧ ∀ j ∈ 1..i − 1 : unsat [sched [j ]] ∩ S = {}
∧ sched ′ = if S = unsat [c] then Drop(sched , i) else sched

∧ alloc′ = [allocexcept![c] = @ ∪ S ] ∧ unsat ′ = [unsatexcept ![c] = @ \ S ]
∧ unchangedpool

Return(c, S)
∆

=
∧ S = {} ∧ S ⊆ alloc[c]
∧ alloc′ = [allocexcept![c] = @ \ S ]
∧ unchanged〈unsat , pool , sched 〉

Schedule
∆

=
∧ pool = {} ∧ pool ′ = {}
∧ ∃ sq ∈ PermSeqs(pool) : sched ′ = sched ◦ sq

∧ unchanged〈unsat , alloc 〉

Next
∆

=
∨ ∃c ∈ Clients, S ∈ subset Resources :

Request(c, S) ∨ Allocate(c, S) ∨ Return(c, S)
∨ Schedule

vars
∆

= 〈unsat , alloc, pool , sched 〉

Fig. 8. Specification of an allocator with scheduling (part 1 of 2)
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Allocator
∆

= ∧ Init ∧ �[Next ]vars
∧ ∀c ∈ Clients : WFvars(unsat [c] = {} ∧ Return(c, alloc[c]))
∧ ∀c ∈ Clients : WFvars(∃S ∈ subset Resources : Allocate(c, S))
∧ WFvars(Schedule)

Fig. 9. Specification of an allocator with scheduling (part 2 of 2)

The specification contains a new action Schedule, which establishes the al-
location schedule. Because this is a high-level specification, we do not commit
to any specific scheduling policy: instead we show the protocol to be correct
if the processes in the pool are scheduled in an arbitrary order. The auxiliary
operator PermSeqs(S ) recursively computes the set of permutation sequences
of a finite set S . The idea is that 〈x1, . . . , xn〉 is a permutation of a non-
empty finite set S if and only if 〈x1, . . . , xn−1〉 is a permutation of S \ {xn}.
The formal expression in TLA+ makes use of an auxiliary, recursively defined
function perms that computes the set of permutations perms [T ] of any subset
T ⊆ S , in a style that is similar to the recursive definition of functions over
inductive data types in a functional programming language. We could have
used a simpler, more declarative definition of the action Schedule, such as

Schedule
∆

=
∧ pool �= {} ∧ pool ′ = {}

∧ ∃ sq ∈ Seq(Clients) : ∧ {sq[i ] : i ∈ domain sq} = pool
∧ ∀ i , j ∈ 1..Len(sq) : sq[i ] = sq[j ] ⇒ i = j

∧ unchanged〈unsat , alloc 〉.

In this formulation, the schedule is simply required to be any injective se-
quence (containing no duplicates) formed from the elements of pool . The two
definitions are logically equivalent. However, this definition would not be ac-
ceptable for tlc, because the set Seq(Clients) is infinite, even if Clients is
finite.

Looking at the fairness conditions, observe that the fairness requirement on
the return action has been amended as indicated above, so that it agrees with
the informal specification. The fairness condition for the allocation action is
similar to the one adopted for the simple allocator specification, but with weak
fairness substituted for strong fairness. The idea behind this change is that
the non-determinism present in the original specification has been resolved by
the introduction of the allocation schedule, so that the simpler condition now
suffices. (Of course, this intuition will have to be formally verified!) There is
an additional weak fairness requirement for the scheduling action, asserting
that the allocator should periodically update its schedule when new clients
have issued requests.
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6.2 Analysis Using Model Checking

We can again ask tlc to verify the safety and liveness properties described
in Sect. 2.3. For an instance consisting of three clients and two resources, tlc

computes 1690 distinct states and requires about 30 seconds for verification.
What sets tlc apart from more conventional model checkers is its ability to
evaluate an input language in which models can be expressed at the high level
of abstraction that was used in Figs. 8 on page 436 and 9 on the previous page:
neither the definition of the operator PermSeqs nor the relatively complicated
fairness constraints pose a problem. (For better efficiency, we could override
the definition of PermSeqs by a method written in Java, but this is not a big
concern for a list that contains at most three elements.)

Given our experience with the verification of the simple allocator model,
one should be suspicious of the quick success obtained with the new model. As
Lamport [29, Sect. 14.5.3] writes, it is a good idea to verify as many properties
as possible.

Figure 10 contains a lower-level invariant of the scheduling allocator that
can be verified using tlc.

UnscheduledClients
∆

= set of clients that are not in the schedule
Clients \ {sched [i ] : i ∈ domain sched}

PrioResources(i)
∆

= bound on resources requested by i-th client in schedule
available

∪ union{unsat [sched [j ]] ∪ alloc[sched [j ]] : j ∈ 1..i − 1}
∪ union{alloc[c] : c ∈ UnscheduledClients}

AllocatorInvariant
∆

=
∧ ∀ c ∈ pool : unsat [c] = {} ∧ alloc[c] = {}
∧ ∀ i ∈ domain sched : ∧ unsat [sched [i ]] = {}

∧ ∀ j ∈ 1..i − 1 : alloc[sched [i ]] ∩ unsat [sched [j ]] = {}
∧ unsat [sched [i ]] ⊆ PrioResources(i)

Fig. 10. Lower-level invariant of the scheduling allocator

The first conjunct of the formula AllocatorInvariant says that all clients in the
set pool have requested resources, but do not hold any. The second conjunct
concerns the clients in the schedule, It is split into three subconjuncts: first,
each client in the schedule has some outstanding requests, second, no client
may hold a resource that is requested by a prioritized client (appearing earlier
in the schedule); and, finally, the set of outstanding requests of a client in the
schedule is bounded by the union of the set of currently available resources,
the resources requested or held by prioritized clients, and the resources held by
clients that do not appear in the schedule. The idea behind this last conjunct
is to assert that a client’s requests can be satisfied using resources that either
are already free or are held by prioritized clients. It follows that prioritized
clients can obtain their full set of resources, after which they are required to
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eventually release them again. Therefore, the scheduling allocator works cor-
rectly even under the worst-case assumption that clients will give up resources
only after their complete request has been satisfied.

Verification by Refinement

Beyond these correctness properties, tlc can also establish a formal refine-
ment relationship between the two allocator specifications. The scheduling
allocator operates under some additional constraints. Moreover, it introduces
the variable sched , which did not appear in the specification of the simple
allocator, and which is therefore not constrained by that specification. More
interestingly, the scheduling policy and the (weaker) liveness assumptions im-
ply that the (original) fairness constraints are effectively met. The scheduling
allocator therefore turns out to be a refinement of the simple allocator, im-
plying the correctness properties by transitivity!

We can use tlc to verify this refinement, for small finite instances, using
the module AllocatorRefinement that appears in Fig. 11.

module AllocatorRefinement

extendsSchedulingAllocator

Simple
∆

= instanceSimpleAllocator

SimpleAllocator
∆

= Simple!SimpleAllocator

theoremAllocator ⇒ SimpleAllocator

Fig. 11. Asserting a Refinement Relationship.

This module extends the module SchedulingAllocator , thus importing all dec-
larations and definitions of that module, and defines an instance Simple of the
module SimpleAllocator , whose parameters are (implicitly) instantiated by the
entities of the same name inherited from module SchedulingAllocator . All op-
erators Op defined in the instance are available as Simple!Op. (It would have
been illegal to extend both modules SchedulingAllocator and SimpleAllocator
because they declare constants and variables, as well as define operators, with
the same names.) The module then asserts that specification Allocator implies
the specification SimpleAllocator . In order to have this implication checked by
tlc, we again defined an instance consisting of three clients and two resources
and stipulate

SPECIFICATION Allocator

PROPERTIES SimpleAllocator

in the configuration file. tlc found the implication to be valid, requiring just
6 seconds.
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6.3 Towards a Distributed Implementation

The specification Allocator defined in the module SchedulingAllocator of
Figs. 8 on page 436 and 9 on page 437 describes an overall algorithm (or,
rather, a class of algorithms) for resource allocation; analysis by tlc has in-
dicated that this algorithm satisfies the desired correctness properties, even
under worst-case assumptions about the clients’ behavior. However, the model
does not indicate the architecture of the system as a set of independent, com-
municating processes. Our next goal is therefore to refine that specification
into one that is implementable as a distributed system. In particular, we shall
assume that the allocator and the clients may run on different processors.
Therefore, each process should have direct access only to its local memory,
and explicit, asynchronous message passing will be used to communicate with
other processes. Instead of a centralized representation of the system state
based on the variables unsat and alloc, we will distinguish between the al-
locator’s view and each client’s view of its pending requests and allocated
resources. Similarly, the basic actions such as the request for resources will
be split into two parts, with different processes being responsible for carrying
them out: in the first step, the client issues a request, updates its local state,
and sends a corresponding message to the allocator. Subsequently, the alloca-
tor receives the message and updates its table of pending requests accordingly.

Figures 12 on the next page and 13 on page 442 contain a TLA+ model
based on this idea. This model contains variables unsat , alloc, and sched as
before, but these are now considered to be local variables of the allocator.
New variables requests and holding represent the clients’ views of pending
resource requests and of resources currently held; we interpret requests[c] and
holding[c] as being local to the client process c. The communication network
is (very abstractly) modeled by the variable network which holds the set of
messages in transit between the different processes.

Except for the action Schedule, which is a private action of the alloca-
tor, all of the actions that appeared in the specification SchedulingAllocator
have been split into two actions as explained above. For example, client c
is considered to perform the action Request(c,S ) because only its local vari-
ables and the state of the communication network are modified by the action.
The allocator later receives the request message m and performs the action
RReq(m). The fairness conditions of our previous specification are comple-
mented by weak fairness requirements for the actions RReq(m), RAlloc(m),
and RRet(m) which are associated with message reception (for all possible
messages m); these requirements express the condition that messages will
eventually be received and handled.

The observant reader may be somewhat disappointed with the form of
the specification of this “distributed” implementation because the formula
Implementation is again written in the standard form

Init ∧ �[Next ]v ∧ L
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module AllocatorImplementation

extendsFiniteSets, Sequences, Naturals

constantsClients, Resources

assumeIsFiniteSet(Resources)

variablesunsat, alloc, sched, requests, holding, network

Sched
∆

= instanceSchedulingAllocator

Messages
∆

=
[type : {“request”, “allocate”, “return”}, clt : Clients, rsrc : subset Resources]

TypeInvariant
∆

=
∧ Sched !TypeInvariant

∧ requests ∈ [Clients → subset Resources]
∧ holding ∈ [Clients → subset Resources]
∧ network ∈ subset Messages

Init
∆

=
∧ Sched !Init

∧ requests = [c ∈ Clients �→ {}] ∧ holding = [c ∈ Clients �→ {}] ∧ network = {}

Request(c, S)
∆

= client c requests set S of resources
∧ requests[c] = {} ∧ holding [c] = {} ∧ S = {}
∧ requests ′ = [requestsexcept ![c] = S ]
∧ network ′ = network ∪ {[type �→ “request”, clt �→ c, rsrc �→ S ]}
∧ unchanged〈unsat , alloc, sched , holding 〉

RReq(m)
∆

= allocator handles request message sent by some client
∧ m ∈ network ∧ m.type = “request” ∧ network ′ = network \ {m}
∧ unsat ′ = [unsatexcept ![m.clt ] = m.rsrc]
∧ unchanged〈alloc, sched , requests, holding 〉

Allocate(c, S)
∆

= allocator decides to allocate resources S to client c

∧ Sched !Allocate(c, S)
∧ network ′ = network ∪ {[type �→ “allocate”, clt �→ c, rsrc �→ S ]}
∧ unchanged〈requests, holding 〉

RAlloc(m)
∆

= some client receives resource allocation message
∧ m ∈ network ∧ m.type = “allocate” ∧ network ′ = network \ {m}
∧ holding ′ = [holdingexcept![m.clt ] = @ ∪ m.rsrc]
∧ requests ′ = [requestsexcept ![m.clt ] = @ \ m.rsrc]
∧ unchanged〈unsat , alloc, sched 〉

Return(c, S)
∆

= client c returns resources in S

∧ S = {} ∧ S ⊆ holding [c]
∧ holding ′ = [holdingexcept![c] = @ \ S ]
∧ network ′ = network ∪ {[type �→ “return”, clt �→ c, rsrc �→ S ]}
∧ unchanged〈unsat , alloc, sched , requests 〉

RRet(m)
∆

= allocator receives returned resources
∧ m ∈ network ∧ m.type = “return” ∧ network ′ = network \ {m}
∧ alloc′ = [allocexcept![m.clt ] = @ \ m.rsrc]
∧ unchanged〈unsat , sched , requests, holding 〉

Schedule
∆

= Sched !Schedule ∧ unchanged〈requests, holding ,network 〉

Fig. 12. An implementation of the allocator (part 1 of 2)
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Next
∆

=
∨ ∃ c ∈ Clients,S ∈ subset Resources :

Request(c, S) ∨ Allocate(c,S) ∨ Return(c, S)
∨ ∃m ∈ network : RReq(m) ∨ RAlloc(m) ∨ RRet(m)
∨ Schedule

vars
∆

= 〈unsat , alloc, sched , requests, holding ,network 〉

Liveness
∆

=
∧ ∀ c ∈ Clients : WFvars(requests[c] = {} ∧ Return(c, holding [c]))
∧ ∀ c ∈ Clients : WFvars(∃S ∈ subset Resources : Allocate(c, S))
∧ WFvars(Schedule)
∧ ∀m ∈ Messages :

WFvars(RReq(m)) ∧ WFvars(RAlloc(m)) ∧ WFvars(RRet(m))

Implementation
∆

= Init ∧ �[Next ]vars ∧ Liveness

theoremImplementation ⇒ Sched !Allocator

Fig. 13. An implementation of the allocator (part 2 of 2)

that we have seen so often in this chapter. From the discussion of system com-
position as conjunction in Sect. 3.5, one might have expected to see a conjunc-
tion of specifications, one for each process. There are two technical problems
with doing so. First, the clients’ variables requests and holding are represented
as arrays such that each client accesses only the corresponding array field. The
specification of client c should really only specify requests[c] and holding[c],
but the composition should ensure type correctness and ensure that the re-
maining array fields remain unchanged. This is possible, but cumbersome to
write down. (Lamport discusses this issue in more detail in [29, Chap. 10].)
Second, the current implementation of tlc expects specifications in the stan-
dard form and does not handle conjunctions of process specifications.

The module AllocatorImplementation claims that the model obtained in
this way is a refinement of the scheduling allocator specification, and we can
again use tlc to verify this theorem for finite instances. However, tlc quickly
produces a counterexample that ends in the states shown in Fig. 14.

In state 7, client c1 has returned resource r1 to the allocator. In the
transition to state 8, it issues a new request for the same resource, which is
handled by the allocator (according to the action RReq) in the transition to
state 9. This action modifies the variable unsat at position c1 although the
value of alloc[c1], is not the empty set – a transition that is not allowed by
the scheduling allocator.

Intuitively, the problem is due to the asynchronous communication net-
work underlying our model, which makes the allocator receive and handle the
request message before it receives the earlier return message. Indeed, it is easy
to see that if one allowed the allocator to handle the new request before releas-
ing the old one, it might become confused and deregister r1 for client c1 even
though the client still held the resource (granted in response to the second
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STATE 7:

/\ holding = (c1 :> {} @@ c2 :> {} @@ c3 :> {})

/\ alloc = (c1 :> {r1} @@ c2 :> {} @@ c3 :> {})

/\ requests = (c1 :> {} @@ c2 :> {} @@ c3 :> {})

/\ sched = << >>

/\ network = {[type |-> "return", clt |-> c1, rsrc |-> {r1}]}

/\ unsat = (c1 :> {} @@ c2 :> {} @@ c3 :> {})

STATE 8:

/\ holding = (c1 :> {} @@ c2 :> {} @@ c3 :> {})

/\ alloc = (c1 :> {r1} @@ c2 :> {} @@ c3 :> {})

/\ requests = (c1 :> {r1} @@ c2 :> {} @@ c3 :> {})

/\ sched = << >>

/\ network = { [type |-> "request", clt |-> c1, rsrc |-> {r1}],

[type |-> "return", clt |-> c1, rsrc |-> {r1}] }

/\ unsat = (c1 :> {} @@ c2 :> {} @@ c3 :> {})

STATE 9:

/\ holding = (c1 :> {} @@ c2 :> {} @@ c3 :> {})

/\ alloc = (c1 :> {r1} @@ c2 :> {} @@ c3 :> {})

/\ requests = (c1 :> {r1} @@ c2 :> {} @@ c3 :> {})

/\ sched = << >>

/\ network = {[type |-> "return", clt |-> c1, rsrc |-> {r1}]}

/\ unsat = (c1 :> {r1} @@ c2 :> {} @@ c3 :> {})

Fig. 14. Model checking the correctness of the implementation.

request). It depends on the underlying communication network whether such
a race condition can occur or not. If messages between any pair of processes
are delivered in order, the TLA+ model could represent the communication
network as a set of message queues. If communication is truly asynchronous
and message order is not guaranteed, one should add the precondition

alloc[m.clt ] = {}

to the definition of the action RReq(m) so that a new request will be processed
only after the return message corresponding to the previous grant has been
received. With this correction, tlc confirms the refinement theorem for our
small instance in about 2 minutes.

Finally, we can assert the invariant shown in Fig. 15 to confirm our in-
tuition about how the variables associated with the clients and the allocator
relate to each other. The verification of this invariant for the usual small
instance of the model with three clients and two resources generates 64 414
states (17 701 of which are distinct) and takes about 12 seconds.
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RequestsInTransit(c)
∆

= requests sent by c but not yet received
˘

msg .rsrc : msg ∈ {m ∈ network : m.type = “request” ∧ m.clt = c}
¯

AllocsInTransit(c)
∆

= allocations sent to c but not yet received
˘

msg .rsrc : msg ∈ {m ∈ network : m.type = “allocate” ∧ m.clt = c}
¯

ReturnsInTransit(c)
∆

= return messages sent by c but not yet received
˘

msg .rsrc : msg ∈ {m ∈ network : m.type = “return” ∧ m.clt = c}
¯

Invariant
∆

= ∀ c ∈ Clients :
∧ Cardinality(RequestsInTransit(c)) ≤ 1
∧ requests[c] = unsat [c]

∪ unionRequestsInTransit(c)
∪ unionAllocsInTransit(c)

∧ alloc[c] = holding [c]
∪ unionAllocsInTransit(c)
∪ unionReturnsInTransit(c)

Fig. 15. Relating the allocator and client variables by an invariant

6.4 Some Lessons Learnt

Starting from the informal requirements for the allocator problem presented
in Sect. 2.1, it would have been tempting to come up directly with a model
similar to the “implementation” presented in Sect. 6.3, or even a more de-
tailed one. However, a low-level specification is at least as likely to contain
errors as a program, and the whole purpose of modeling is to clarify and
analyse a system at an adequate level of abstraction. The seemingly trivial
SimpleAllocator specification in Fig. 1 on page 404 helped us discover the
need to fix a schedule for resource allocation. It also illustrated the need to
validate models: success in model checking (or proving) correctness properties
by itself does not guarantee that the model is meaningful. A similar problem
would have been more difficult to detect at the level of detail of the final spec-
ification, where there are additional problems of synchronisation and message
passing to worry about. The specification SchedulingAllocator introduced the
idea of determining a schedule and thereby fixed the problem in the original
specification while remaining at the same high level of abstraction. Finally,
the module AllocatorImplementation introduced a step towards a possible
implementation by attributing the state variables and the actions to separate
processes, and by introducing explicit communication.

For each model, tlc was of great help in analysing various properties. Al-
though only small instances can be handled by model checking before running
into the state explosion problem, doing so greatly increases one’s confidence in
the models. Variants of the specifications can be checked without great effort,
and various properties (invariants and more general temporal properties) can
be verified in a single run. Deductive verification, based on the proof rules
of Sect. 4, can then establish system properties in a fully rigorous way. In
our own work, we have defined a format of “predicate diagrams” for TLA+

specifications [13]. We have found these diagrams to be helpful in determining
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appropriate fairness hypotheses. The format is supported by a tool [17] that
uses model checking to identify abstract counter-examples, indicating either
too weak an abstraction or missing fairness or ordering annotations.

7 Conclusions

The design of software systems requires a combination of ingenuity and care-
ful engineering. While there is no substitute for intuition, the correctness of a
proposed solution can be checked by precise reasoning over a suitable model,
and this is in the realm of logics and (formalized) mathematics. The rôle
of a formalism is to help the user in the difficult and important activity of
writing and analysing formal models. TLA+ builds on the experience of clas-
sical mathematics and adds a thin layer of temporal logic in order to describe
system executions, in particular to express fairness properties. A distinctive
feature of TLA is its attention to refinement and composition, reflected in
the concept of stuttering invariance. Unlike property-oriented specification
languages based on temporal logic, TLA favors the specification of systems
as state machines, augmented by fairness conditions and by hiding.

Whereas the expressiveness of TLA+ undoubtedly helps in writing concise,
high-level models of systems, it is not so clear a priori that it lends itself as
well to the analysis of these models. For example, we have pointed out several
times the need to prove conditions of “well-definedness” related to the use of
the choice operator. These problems can, to some extent, be mastered by ad-
hering to standard idioms, such as primitive-recursive definitions, that ensure
well-definedness. For the specification of reactive systems, TLA adds some
proper idioms that control the delicate interplay between temporal operators.
For example, restricting fairness conditions to subactions of the next-state
relation ensures that a specification is machine closed [3], i.e., that its allowed
behavior is entirely described by the initial condition and its next-state re-
lation. Having an expressive specification language is also helpful when new
classes of systems arise. For example, Abadi and Lamport [3] have described a
format for specifying real-time systems in TLA+, and Lamport [30] describes
how discrete real-time systems can be verified using tlc.

The main tool supporting TLA+ is the model checker tlc [43]. It can
analyse system specifications in standard form, written in a sublanguage of
TLA+ that ensures that the next-state relation can be effectively computed.
All the TLA+ specifications that appeared in this chapter fall into this frag-
ment, and indeed the input language of tlc is more expressive than that of
most other model checkers. Deductive verification of TLA+ specifications can
be supported by proof assistants, and in fact several encodings of TLA in the
logical frameworks of different theorem provers have been proposed [16,20,35],
although no prover is yet available that fully supports TLA+.

Lamport has recently defined the language +CAL, a high-level algorith-
mic language for describing concurrent and distributed algorithms. The ex-
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pressions of +CAL are those of TLA+, but +CAL provides standard pro-
gramming constructs such as assignment, sequencing, conditionals, loops, non-
deterministic choice, and procedures. The +CAL compiler generates a TLA+

specification from a +CAL program which can then be verified using tlc [31].
A useful complement could be the generation of executable code from a frag-
ment of +CAL for specific execution platforms.
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TLA+ Indexes

Symbol Index

∆

=, 403
@, 405
′, 412
·, 412
|I|, 411
ξ, 412
[A]t , 413
〈A〉t , 413
�, 413
�[A]t , 405
�, 415
�〈A〉t , 415
�, 415

∃∃∃∃∃∃ , 413 , 415

σ|i , 414

�A�I,ξ

s,t , 412

�E�I,ξ

s,t , 412

�F �I,ξ

σ
, 414

|=, 415

�V σ, 416

≈, 416

≈V , 416

#v , 417

[S → T ], 433

[x ∈ S �→ t ], 433

m..n, 434

〈t1, . . . , tn〉, 434
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◦, 434

Append , 434

choose, 430

domain, 433

enabled, 412
except, 405

Head , 434

Len, 434
LF , 411
LP , 411

Seq, 434
SF, 415
SubSeq, 434
subset, 432

Tail , 434

union, 432
until, 422

VE , 411
VF , 411
VR, 411

WF, 415

Concept Index

action (formula), 405, 411
action composition, 412
allocator

distributed, 440
informal requirements, 402
scheduling, 435
simple specification, 403

always operator, 413
assertion, 403
assertional reasoning, 423
auxiliary variables, 430

behavior, 414
binary temporal operators, 422
bound variable

in temporal formula, 414
in transition formula, 412

branching-time temporal logic, 409

choice operator, 430
axiomatisation of, 431

composition, 419
configuration file, 406

INVARIANTS, 407
PROPERTIES, 407
SPECIFICATION, 406
SYMMETRY, 408

constant formula, 412
constant parameter, 403

declaration
of parameters, 403

definition
of operators, 403

enabledness, 412
external specification, 410

fairness
strong, 415
weak, 415

fairness condition, 405
flexible variable, 411
free variable

in temporal formula, 414
in transition formula, 412

function, 433
construction, 433
recursive, 433
update, 405

interface specification, 410
internal specification, 410
interpretation

of first-order logic, 412
invariant, 423

inductive, 424
proving, 424
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leads to, 415
linear-time temporal logic, 409
liveness property, 406

verification of, 426

model checking, 406
module, 403

next-state operator, 410

open system, 421
operator

definition, 403
of set theory, 432

parameter
declaration, 403

Peano’s axioms, 433
priming, 412
proof rule

(INV), 424
(INV1), 424
(LATTICE), 427
(TLA2), 425
(WF1), 426
quantification, 429
temporal logic, 428

property
liveness, 406, 426
safety, 406

quantification
over flexible variables, 413, 416
proof rules, 429

race condition, 443
record, 434
recursive function, 433
refinement, 406, 418

proof rules, 429
refinement mapping, 419
rigid variable, 411
Russell’s paradox, 432

safety property, 406
satisfiability

of temporal formulas, 415
of transition formulas, 412

semantics
of transition formulas, 412

sequence, 434
operations, 434

Sequences module, 434
set comprehension, 432
set theory, 430
set-theoretic operators, 432
signature, 411
similarity up to, 417
specification

interleaving style, 420
of state machine, 405
of transition system, 405

state, 412
state formula, 412
state machine specification, 405
state predicate, 405
state space explosion, 408
step simulation, 425
strong fairness, 415
stuttering equivalence, 416
stuttering invariance, 405
stuttering transition, 405
substitution

in temporal formula, 414
in transition formula, 412

symmetry reduction, 408
system specification

standard form, 405

temporal formula, 405
temporal logic, 409

branching-time, 409
linear-time, 409
proof rules, 428

TLA*, 422
tlc

model checker, 406
tlc

configuration file, 406
transition formula, 411
transition function, 411
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transition predicate, 411
transition system specification, 405
tuple, 434
type, 403

universe, 412
unstuttered variant, 416

validation
of formal specifications, 435

validity
of temporal formulas, 415
of transition formulas, 412

valuation, 412
variable

bound
in temporal formula, 414
in transition formula, 412

flexible, 411
free

in temporal formula, 414
in transition formula, 412

rigid, 411
variable parameter, 403

weak fairness, 415
well-founded relation, 427
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Summary. Decisions about the logic underpinning a formal specification language
have important consequences for the utility of the formalism. This chapter describes
the major features of the typed Logic of Partial Functions (LPF) as it has been im-
plemented in support of the Vienna Development Method’s Specification Language,
VDM-SL. It compares attempts to realise the logic in different environments: a user-
centred proof support tool, a specification interpreter and an automated proof tool.
Future directions in integrated proof support for the language are suggested.

1 Introduction

The logic that underpins a specification language has great practical signifi-
cance, directly affecting the capabilities of the tools that are so necessary to
the successful application of the language in professional practice. Decisions
regarding logic are therefore influenced by methodological and pragmatic con-
cerns, as well as by the desire to provide an intuitive and elegant theory. The
Vienna Development Method’s Specification Language (VDM-SL) has a long
history of use, both as a vehicle for research and as a tool in the development
of computer-based systems. Machine support for the coding and analysis for
VDM specifications has been available for VDM-SL for well over a decade,
and there is considerable experience at proving properties of specifications
and refinements in the formalism. Nevertheless, the logic underpinning VDM,
and its susceptibility to machine support, remain the subject of debate and
research.

The Logic of Partial Functions (LPF) is closely associated with VDM,
although its potential for application goes well beyond that particular formal-
ism. The aims of this chapter are to give an account of LPF and attempts to
realise it in various support environments for VDM, ranging from an inter-
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preter to automated provers, and to identify the next steps in the provision
of integrated support for reasoning about VDM specifications.

In order to understand the requirements for a logic supporting VDM-SL, it
is worth reviewing the distinguishing characteristics of the specification lan-
guage and a little of its history (Sect. 2). The key features of Typed LPF,
notably the handling of undefined terms, are introduced in Sects. 3 and 4. Us-
ing LPF to reason about models expressed in VDM-SL entails the addition of
types and other relevant features, discussed in Sect. 5. Contrasting approaches
to tool support for LPF-based reasoning in VDM-SL are discussed in Sect. 6,
leading to a discussion of future directions and concluding remarks (Sect. 7).

2 The Vienna Development Method

The Vienna Development Method (VDM), is a collection of techniques for
the modelling, specification and design of computer-based systems. A com-
prehensive introduction to VDM, including notions of both specification and
refinement, is to be found in the 1990 edition of Jones’s text [31]. The com-
mon formal language on which the techniques are based is the VDM Specifi-
cation Language (VDM-SL), standardised by the ISO in 1996 [7]. Although
the specification language VDM-SL has been standardised, its community has
generally stopped short of imposing a methodology around its use. Indeed, it
has been closely associated with many of the concepts of “lightweight” for-
mal methods [28]. The IFAD VDMTools encouraged experimentation with
formal techniques in a variety of application domains [5, 27], leading to the de-
velopment of guidelines for system modelling and analysis that subsequently
formed part of the approach advocated in the most recent work on VDM [22]
and VDM++ [23]. This chapter concentrates on the logic supporting the forms
of VDM described above, and in particular the support tools. However, it is
important to note the work of the Irish School of VDM [6], which has stressed
the development of operator calculi underpinning modelling in a VDM setting.

2.1 Historical Context

Jones [33] gave an account of the development of the specification language
and the refinement methodology. In examining the logic underpinning VDM,
it is useful to identify three (very loosely defined) phases in its history.

The 1970s saw the origin of VDM in programming language description
and compiler design, and a subsequent widening of the method to encompass
the development of sequential and concurrent systems more generally. The
stress was on the fundamental features of the language, its formal semantics
and the development of a basis for reasoning about models in terms of proving
properties of programming language concepts.

In the 1980s and 1990s, the ambition of the technology widened to en-
compass computing systems in general and to go beyond specification to re-
finement as well. LPF was proposed as a response to the challenge of proving
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properties of systems incorporating partial functions. Proofs at this stage were
largely rigorous rather than formal.

As the specification language became more stable, an analytic strand of
work emerged with the development of experimental support systems for spec-
ification and analysis, including formal reasoning. Some of the support tech-
nology became strong enough to withstand industrial application and, over
this period, practical experience with the modelling technology grew signifi-
cantly. Recently the tools development effort has opened up, following changes
in the ownership of commercial VDM technology. There has been a renewal of
interest in interoperability between tools supporting different aspects of the
systems development process, and less in “self-contained” formal reasoning.

Each of these three periods is considered in more detail in Sects. 2.2- 2.4
below, stressing the role of proof and the logic underpinning the specification
language.

2.2 The Origins of VDM: Programming Language Definition

VDM’s roots lie in work on programming language definition, notably the
attempt to give a formal definition of the semantics of the PL/I language
using a notation that came to be known as the Vienna Definition Lan-
guage (VDL) [45]. It is apparent that proof was an issue in the Vienna group
from an early stage. In 1968, Peter Lucas was concerned with proving the
equivalence of programming language concepts [43] as parts of compiler cor-
rectness arguments. There was extensive exploration of alternative forms of
argument. For example, Lucas’s paper uses a “twin machine” notion later
described with Jones [35]. In 1970, Henhapl and Jones addressed implemen-
tations of the block concept with the use of a homomorphic retrieve func-
tion [26]. There were implicit concerns about the style or quality of proof
at this stage, but concern with full formalisation only came later when tool
support for formal analysis became feasible. The handling of undefined terms
had surfaced as an issue by 1969. Lucas [44] refers to McCarthy’s approach
to handling undefinedness by means of conditional interpretations of propo-
sitional connectives [46, 47], an approach subsequently rejected in LPF. The
dispersal of the group in 1975 led to different emphases in the subsequent
development of the modelling languages, the methodology and the associated
proof techniques.

2.3 Rigorous Specification and Rigorous Proof

The 1980s saw a shift in research emphasis from the definition language to-
wards a development ‘method’ [12, 29], although the term ‘method’ has al-
ways been used loosely in VDM to refer to a set of development techniques
rather than a prescriptive approach. The process of standardisation gathered
momentum, and work in a wide range of application areas was catalysed by
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the VDM Symposia.1, which subsequently developed into the FME and FM
Symposia2

Jones’s 1986 book [30] contains many of the elements of VDM-SL as it is
known now, albeit with a strong emphasis on an implicit style of operation
specification. As an example of the content of a VDM model at this stage,
consider the example in Fig. 1, an extract from a larger model used in Jones’s
1986 text.

Queueb :: s : Qel∗

i : N

where

inv -Queueb(mk-Queueb(s, i)) � i ≤ len s

ENQUEUE (e:Qel)

ext wr s : Qel∗

post s = ↼−s � [e]

DEQUEUE () e:Qel

ext rd s : Qel∗

wr i : N

pre i < len s

post i =
↼−
i + 1 ∧ e = ↼−s (i)

Fig. 1. Specification of a “biased queue”, after Jones [30]

The specification in Fig. 1 describes a biased queue, and has been selected
because it is slightly more interesting than the usual stack or queue example.
The specification describes a queue as a sequence of values s plus a separate
pointer i containing the index number of the value in the sequence currently
at the head of the queue. New arrivals are added at the end of the queue with
high index numbers, and removals from the queue just involve copying the
ith item out as a result and incrementing the pointer.

VDM-SL is a model-oriented language. A model of a system state is con-
structed from basic types, such as that of natural numbers (N) and type

1 The first symposium was held in 1987 in Brussels. Among the contributions were
papers from Blikle and Monahan on denotational semantics of VDM, and Jones
reported work on discharging proof obligations. The proceedings report little work
on tool support, except for LATEX macros. A report by the standardisation team
appeared to suggest, rather optimistically, that its work would be done by 1988
– the standard was actually approved by ISO in 1996!

2 See http://www.fmeurope.org
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constructors such as X ∗, which represents the type of all finite sequences of
elements drawn from the type X . In Fig. 1, the state contains two variables:
s representing the sequence of elements in a queue, and i representing the
pointer to the last element taken off the queue. Permitted assignments of val-
ues to these variables are constrained by a data type invariant. In VDM-SL,
invariants are arbitrary predicates; membership of a type entails satisfaction
of the invariant. Thus, in the example, a pair containing the values

s = [5, 7, 7, 4, 2]
i = 9

would not be a valid member of the type Queueb, because 9 is greater than
the length of s , violating the invariant.

Operations are units of functionality capable of modifying the content of
the state. In the example above, they are specified implicitly, by means of a
post-condition that characterises the permissible states resulting from the op-
eration. This admits loose specification: the possibility of multiple implementa-
tions satisfying the postcondition. In the ENQUEUE operation above, the re-
sulting state is defined uniquely. Note the use of read (rd) and read/write (wr)
keywords acting as framing constraints to indicate the access rights that an
operation has to the state variables.

Operation specifications are further restricted by preconditions which char-
acterise the domain of the inputs and “before” states to which they are ap-
plicable. The model does not define the effect of applying an implementation
of an operation to values that do not satisfy the precondition.

This example nicely illustrates some key features of VDM. It is not the
most abstract specification that could be written. In fact, it is termed biased
because of the unnecessary history stored at the low index end of the sequence.
When data are dequeued, they remain in situ in the sequence. For example,
the state

s = [5, 7, 7, 4, 2]
i = 3

is, in terms of the effects of future ENQUEUE and DEQUEUE operations,
indistinguishable from the following:

s = [6, 2, 7, 4, 2]
i = 3

The specification thus distinguishes states that are behaviourally indistin-
guishable, biasing subsequent refinements and implementations [31].

Proof Obligations and Rigorous Proof

VDM-SL is a highly expressive language. Note, for example, that some data
types such as N are unbounded, although individual elements are required
to be of finite size. Invariants, preconditions and post-conditions are all ar-
bitrarily complex logical expressions. As a consequence, it is not possible to
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determine statically (in general) that a model is internally consistent. The as-
pects of model consistency that cannot be checked statically give rise to proof
obligations, stated as conjectures in the proof theory. For example, there is
a satisfiability obligation on implicit operation specifications. This requires
that the operation’s postcondition defines a result of the correct type for any
(input, state) pair satisfying the precondition. For the DEQUEUE operation,
this is stated formally as follows:

∀
↼−
qb ∈ Queueb · pre-DEQUEUE (

↼−
qb ) ⇒

∃qb ∈ Queueb, e ∈ Qel · post -DEQUEUE (
↼−
qb , qb, e)

Proof obligations also arise during refinement, when it is necessary to show
the soundness of design steps in which a relatively abstract model is related
to a more concrete counterpart.

from
↼−
qb ∈ Queueb, pre-DEQUEUE (

↼−
qb )

1 let i =
↼−
i + 1

2 let qb = mk-Queueb(↼−s , i)

3
↼−
i < len

↼−s h2

4 i ≤ len
↼−s N,3,1

5 inv -Queueb(qb) 4,2,inv -Queueb

6 qb ∈ Queueb 5, Queueb

7 let e = ↼−s (i)
8 e ∈ Qel 7,4,len

9 i =
↼−
i + 1 ∧ e = ↼−s (i) ∧-I(1,7)

10 post-DEQUEUE (
↼−
qb , qb, e) post-DEQUEUE (9)

infer ∃qb ∈ Queueb, e ∈ Qel · post-DEQUEUE (
↼−
qb , qb, e) ∃-I(6,8,10)

Fig. 2. Rigorous proof of satisfiability of DEQUEUE in the style of [30]

A proof of the satisfiability of DEQUEUE is shown in Fig. 2. The proof
itself proceeds from hypotheses on the “from” line to a conclusion on the
‘infer’ line by a series of intermediate steps. Each step either introduces a local
definition or follows by the application of reasoning from preceding lines. In the
latter case, the line has a justification to the right. Justifications may appeal
to the expressions on other lines by giving the line number as a reference. Since
several expressions may appear as hypotheses on a ‘from’ line, the reference
“hn” is used to refer to the nth hypothesis. For example, line 3 appeals to the
second hypothesis (h2), and line 4 appeals to the general theory of the type
N, and the expressions on lines 3 and 1. In general ‘from . . . infer’ sub-proofs
may be nested within a larger proof.
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It should be remembered that, when Jones was writing in the late 1980s,
proof in VDM was primarily about writing arguments that helped to expose
weaknesses in a model, and were detailed but nonetheless convincing to a
human reader. Readability tended to win out over full formality at the level
of detail needed to support automatic proof generation or checking. The proof
in Fig. 2 is not formal – it could not be checked by a machine. Some of the
justifications appeal to general properties of a data type (e.g. the reference to
the properties of natural numbers on line 4). Some are references to symbols
defined elsewhere (e.g. the reference to the definition of the invariant of Queueb
on line 5). Some of the justifications, however, refer to precisely defined rules
of inference, for example the rule for introduction of ∧ (∧-Introduction) used
on line 9 is defined as follows:

∧-I
E1; . . . ;En

E1 ∧ . . . ∧ En

The rule for the introduction of an existential quantifier is defined as follows:

∃-I
s ∈ X ;E (s/x )
∃x ∈ X · E (x )

We have so far concentrated on proof as an activity conducted primarily by
a human, often with ‘pencil and paper’. Before exploring the formal proof
theory in depth, it is useful to consider the ways in which automated tool
support for VDM has evolved since the late 1980s.

2.4 Formalisation: Influence of Standardisation and Tool Support

Work on tool support brought semantic issues into clearer focus. From the
late 1980s, there had been tool support for more than just typesetting the lan-
guage. Bloomfield and Froome had experimented with Prolog-based animation
of a VDM model [13], and went on to develop one of the most prominent early
tools, SpecBox [14], which provided syntax checking, basic semantic checking
and pretty printing for a version of the language that was close to the final ISO
standard version. IFAD (Institute for Applied Datatechniques) in Denmark
began a long and productive involvement with VDM, building on Larsen’s
contributions to the standardisation process, and developing the VDM Tool-
box based on an executable subset of the modelling language (then called
Meta-IV [42]). The Toolbox later evolved into VDMTools, the most robust
set of support tools for VDM-SL, incorporating facilities for management of
modular structuring, syntax and semantic checking, proof obligation genera-
tion, animation, batch mode testing and coverage analysis.

Figure 3 shows the Queueb model in the syntax of VDM-SL as it is sup-
ported by VDMTools. Comparing this with Fig. 1, a significant difference is
the use of the interchange (ASCII-based) syntax. This was originally included
in the ISO standard in order to promote transfer of models between tools.3

3 A contemporary standard would probably have used XML.
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Fitzgerald, Larsen and others have since tended to use this interchange syn-
tax in training and industrial work, as it appears to present a lower barrier
to practitioners more familiar with programming notations [22, 23].

types

Qel = token;

state Queueb of

s : seq of Qel

i : nat

inv mk_Queueb(s,i) == i <= len s

end

operations

ENQUEUE(e:Qel)

ext wr s : seq of Qel

post s = s~ ^ [e];

DEQUEUE()e:Qel

ext rd s : seq of Qel

wr i : nat

pre i < len s

post i = i~+1 and e = s(i)

Fig. 3. The Queueb model in interchange syntax for VDMTools

VDMTools promotes the analysis of models in a lightweight way, by means of
syntax and type checking, and testing through execution. The need to be able
to execute the model tends to bias models to a more explicit style in which
behaviour is described in a functional or even imperative programming style.
An executable version of the Queueb model suitable for use with VDMTools
might take the form shown in Fig. 4, in which the operations are expressed as
functions over the data type denoting the state. An alternative presentation,
supported by ISO standard VDM-SL and VDMTools, might be as a state-
based model, with operations that are allowed to have side-effects (Fig. 5).

Tool development and increasing industrial engagement have motivated
various additions to the capabilities of the modelling language. The EC-funded
Afrodite project aimed to provide object-oriented and real-time extensions
to VDM-SL and created VDM++ [19]. Later projects extended the coverage
of the IFAD tools to VDM++, creating a bidirectional link to the object-
oriented UML modelling tool Rational Rose, allowing multiple views of a
common underlying model [23]. The development of real-time features has
gathered pace with recent work on the modelling of timed communication in



The Typed Logic of Partial Functions and VDM 461

types

Qel = token;

Queueb :: s : seq of Qel

i : nat

inv mk_Queueb(s,i) == i <= len s;

functions

EnQueue: Qel * Queueb -> Queueb

EnQueue(e,mk_Queueb(s,i)) == mk_Queueb(s^[e],i);

DeQueue: Queueb -> Queueb * Qel

DeQueue(mk_Queueb(s,i)) == mk_( mk_Queueb(s,i+1), s(i) )

pre i < len s

Fig. 4. An executable function-based version of the Queueb model.

types

Qel = token;

state Queueb of

s : seq of Qel

i : nat

inv mk_Queueb(s,i) == i <= len s

end

operations

ENQUEUE: Qel ==> ()

ENQUEUE(e) ==

(

s := s ^ [e]

);

DEQUEUE: () ==> Qel

DEQUEUE() ==

(

i := i+1;

return s(i);

)

pre i < len s

Fig. 5. An operational version of the executable Queueb model
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the object model and a separate notion of deployment of processes to abstract
processors [51].

The VDMTools technology was sold in 2004 to CSK Corporation, Japan,
which continues to develop and promote the tool set.4 At the time of writing,
the community-based Overture initiative to develop a more loosely coupled
and extensible set of tools for VDM had also begun [24].5

Although VDM-SL has been standardised, its community has generally
sought to avoid it being packaged in a limiting methodology [28, 32, 5]. As a
result of the IFAD VDMTools work, guidelines for VDM-based system mod-
elling and analysis were developed and form part of the approach advocated
in [22, 23] which stresses the construction of models as a cooperative process
between engineers and domain experts; proof has a role to play in this process,
even at the rigorous, rather than fully formal, level [21]. Experience in indus-
trial studies suggests that the use of a modelling technology has significant
effects on this dialogue [40]. As a result, much of the technological development
around VDM since the mid 1990s has concerned modelling rather than spec-
ification, and tools for the exploration of models rather than proof. However,
advances in proof and model checking technology, as well as interoperability
of tools have made it worth considering the role that automated support for
formal proof can play.

Formal Proof in VDM

The notion of proof as a means of exploring the properties of models is some-
times difficult to reconcile with the requirement for automation in reasoning
about sophisticated models. The IPSE 2.5 project in the late 1980s and early
1990s aimed to address this by developing a prototype proof support envi-
ronment that mimicked the exploratory style of rigorous reasoning, but with
formal support. The main products were the mural tool [37] and formal the-
ories of the typed logic that underpins VDM [10].

A formal proof of the DEQUEUE satisfiability conjecture in the mural style
is shown in Fig. 6. There are several points of contrast between the formal
proof and the rigorous argument shown in Fig. 2. The most obvious difference
is the length and apparent complexity of the formal proof. However, it should
be noted that the structure of the formal proof is basically the same as that
of its rigorous counterpart. The main difference is that every line is justified
by reference to an inference rule or folding/unfolding of a syntactic definition.

The formal proof is required to contain more detailed bookkeeping in-
formation than does the rigorous version. For example, the rigorous proof

introduces local variables i and s (and their “before state” versions
↼−
i and

↼−s ) by means of an informal “let” expression. In contrast, the formal proof

4
http://www.csk.com/support e/vdm/index.html

5 http://www.overturetool.org.
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from
↼−
qb ∈ Queueb, pre-DEQUEUE (

↼−
qb )

1
↼−
qb .i < len

↼−
qb .s unfolding(h2)

2
↼−
qb .i : N i-form(h1)

3
↼−
qb .s: Qel∗ s-form(h1)

4 len
↼−
qb .s: N len-form(3)

5
↼−
qb .i + 1 ≤ len

↼−
qb .s <→≤(2,4,1)

6
↼−
qb .i + 1: N1 N → N1(2)

7
↼−
qb .s(

↼−
qb .i + 1): Qel appl -form-seq(3,6,5)

8 inv -Queueb(
↼−
qb .s,

↼−
qb .i + 1) folding(5)

9 mk-Queueb(
↼−
qb .s,

↼−
qb .i + 1):Queueb mk -Queueb-form(3,6,8)

10 mk-Queueb(
↼−
qb .s,

↼−
qb .i + 1).i =

↼−
qb .i + 1 i-defn(9)

11
↼−
qb .s(mk-Queueb(

↼−
qb .s,

↼−
qb .i + 1).i):Qel =-subs-left(a)(7,10,7)

12
↼−
qb .s(mk-Queueb(

↼−
qb .s,

↼−
qb .i + 1).i) =

↼−
qb .s(mk-Queueb(

↼−
qb .s,

↼−
qb .i + 1).i) =-self-I(11)

13
↼−
qb .s(mk-Queueb(

↼−
qb .s,

↼−
qb .i + 1).i) =

↼−
qb .i + 1∧

↼−
qb .s(mk-Queueb(

↼−
qb .s,

↼−
qb .i + 1).i) =

↼−
qb .s(mk-Queueb(

↼−
qb .s,

↼−
qb .i + 1).i) ∧-I(10,12)

14 post-DEQUEUE (
↼−
qb ,mk-Queueb(

↼−
qb .s,

↼−
qb .i + 1),

↼−
qb .s(mk-Queueb(

↼−
qb .s,

↼−
qb .i + 1).i)) folding(13)

15 ∃e:Qel · post-DEQUEUE (
↼−
qb ,mk-Queueb(

↼−
qb .s,

↼−
qb .i + 1), e)

∃-I(11,14)

infer ∃qb ∈ Queueb, e ∈ Qel · post-DEQUEUE (
↼−
qb , qb, e) ∃-I(9,15)

Fig. 6. Formal proof of satisfiability of DEQUEUE in the style of [10]

refers properly to the state variable qb, with i and s treated as selector func-
tions. Formation and definition axioms are used in the justifications of the

expressions introducing
↼−
qb .i and

↼−
qb .s at lines 2 and 3 of the formal proof. We

give examples of such axioms in Sect. 5.
The requirement that justifications must appeal directly to defined rules

of inference means that substantial theories of the underlying data types must
be constructed. For example, consider line 4 of the rigorous proof in Fig. 2:
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. . .

4 i ≤ len↼−s N,3,1
. . .

The justification of this line appeals to the general theory of natural numbers.
In the formal proof, the inference is done at line 5 by appealing to a specific
lemma:

<→≤
i : N;n: N; i < n

i + 1 ≤ n

Most of the justifications in the rest of the proof refer to such rules.
The mural work concentrated on user-guided proof, specifically on the pro-

duction of what might be considered “convincing” arguments in support of
conjectures made about VDM models. The proof theory developed for mural
was designed to have intuitive appeal and was aimed at largely manual use.
A contrasting view, stressing the value of largely automatic proof production,
motivated another strand of work, on experiments using the PVS and HOL
theorem provers to discharge proof obligations automatically generated by
VDMTools. Whichever approach is preferred, it is necessary to develop the-
ories to underpin reasoning about VDM models, including properties about
data types like the natural number examples above.

In Sects. 3 and 4, we consider typed LPF, and in Sect. 5, the theories that
must be developed for reasoning about VDM models in the logic. In Sect. 6,
we examine the forms of proof support that have been developed to date and
the underlying theory itself.

Terminology and Notation

Since we take a “lightweight” view of formal methods in this context, we will
tend to use the neutral term “model” to describe formal artefacts constructed
in VDM-SL, rather than refer to them as specifications or designs, implying a
particular development process. Models and model fragments in VDM-SL are
presented using the mathematical syntax from the ISO standard [7], as this
provides for a concise presentation.

3 A Proof Framework for VDM

This section introduces the logical framework for proof developed in the mural
project [10, 37], which was based upon Jones’s adaptation of the Natural
Deduction style. Here, the elements of the framework are introduced in enough
detail to discuss the representation of typed LPF and VDM.
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3.1 Constants and Expressions

Three kinds of symbol are admitted: variables, constants and binders . Vari-
ables range over collections of values. Constants represent value and type con-
structors such as the empty set { }, the singleton sequence [ ] or the finite-set
type constructor -set. Each constant has a fixed arity (x , y), where x is the
number of value arguments it takes and y the number of type arguments (e.g.
the arity of [ ] is (1, 0) and the constant -set is of arity (0, 1)). Binary op-
erators such as sequence concatenation �, which expects two sequences as
arguments (arity (2, 0)) will often be written using an infix form, for exam-
ple z � y. Binders introduce and bind new variables, limiting their scope.
The usual quantifiers of first-order predicate logic (∀,∃) and comprehension
expression forms such as { : | } are treated as binders.

An expression is either a variable symbol, or a constant symbol with the
correct number of arguments instantiated, or a binder binding a variable in
another expression. The mural logical framework also exploited a special no-
tation for subtypes. The expression 〈〈x : N | x < 10〉〉 denotes the subtype
of natural numbers less than 10. In the remainder of this chapter, we will
be liberal about the syntax, admitting infix versions of binary operators and
omitting parentheses for commutative/associative operators.

3.2 Rules of Inference

Inference rules are given in a Hilbert-style system. An inference rule consists
of a set of hypotheses, shown above a horizontal line, and a conclusion shown
below the line. A name for the rule may be given in a box to the left of the
line. For example, the following rule has one hypothesis and one conclusion:

+ 1-form
n: N

(n + 1): N

The symbol N in the rule + 1-form is a constant, but the symbol n
may be instantiated by an expression in a proof. Such a symbol is termed a
meta-variable. On application in a proof, the meta-variables in a rule are con-
sistently instantiated by expressions. It should be noted that meta-variables
can take arguments, as in the following rule (we separate hypotheses by semi-
colons):

=-subs
a = b;P(a)

P(b)

In using this rule, P could be instantiated by an expression which contains
placeholders representing the argument. For example, P( ) could be ∀x : N · =
x ∨ x > . Renaming avoids capture of free variables.

Axioms are distinguished by “Ax” to the right of the rule, thus:



466 John S. Fitzgerald

0-form
0: N

Ax

3.3 Proofs

Proofs are represented as arguments from hypotheses to the conclusion. Con-
sider a proof of the following conjecture:

Conj1
ns : N∗

[0] � ns : N∗

The proof might have the following form:

from ns : N∗

1 0: N 0-form
2 [0]: N∗ singl-form(1)

infer [0] � ns : N∗ �-form(2,h1)

Each proof is organised into blocks bounded by from and infer lines. Each
block limits the scope of the hypotheses stated on the from line. Within
each block, inference steps are represented as numbered lines, each bearing a
formula and a justification. Each justification is an appeal to an inference rule
or a folding/unfolding of a syntactic definition.

The block structuring of proofs enables localised assumptions, permitting
the discharging of sequent hypotheses, indicated by the turnstile symbol � .
For example, consider a proof based on the following rules from classical logic:

deduction
e1 � e2

e1 ⇒ e2

modus ponens
e1; e1 ⇒ e2

e2

A proof using deduction discharges the sequent hypothesis in a sub-proof:

from P ⇒ Q ; Q ⇒ R
1 from P
1.1 Q modus ponens(1.h1,h1)
2 infer R modus ponens(1.1,h2)

infer P ⇒ R deduction(1)

The framework supports syntactic definitions of constants, for example

e1 ∧ e2
� ¬ (¬ e1 ∨ ¬ e2)
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This allows justifications by folding or unfolding across the definition, with
expressions matching the meta-variables in the definition, for example:

. . .

5 ¬ ((A ∧ B) ∨ ¬C )
6 ¬ (¬ (¬A ∨ ¬B) ∨ ¬C ) unfolding(5)
7 (¬A ∨ ¬B) ∧ C folding(6)

. . .

3.4 Theories

In the mural framework, a theory is a collection of constant and binder defi-
nitions, axioms and derived results and their proofs. A theory store is then a
collection of theories in an inheritance structure. This structuring into theories
was intended to promote reuse and to help to limit the scope of searches for
applicable inference rules. No information-hiding mechanisms were proposed
in the original mural project, but were suggested subsequently [20].

In order to support VDM modelling, theories were built for propositional
LPF, and then typed predicate LPF with equality (see Sect. 4 for an intro-
duction to the content of these core theories). This has been inherited into
theories describing the base types (such as natural numbers) that are present
in the modelling language, and the type constructors such as sets, sequences
and mappings. These theories have then been inherited by a single theory that
gathers together results sufficient to support proofs of properties of specific
models (Sect. 5).

4 The Typed Logic of Partial Functions

Partial functions are commonplace in computing, at the implementation and
specification levels. There is a long history of research into logics that handle
the undefined terms resulting from the application of such functions. We will
not describe the competing approaches here, but refer the reader to papers
by Cheng and Jones setting out the view that underpins VDM [17, 34].

Partial functions and operators arise frequently in VDM models. Even in
the simple biased-queue model presented in Fig. 1, a partial operator arises
in the postcondition of the DEQUEUE operation, namely the indexing into a
sequence ↼−s (i), which is defined only if i is in the set of indices for the sequence
↼−s . Thus, the operation’s precondition i < len s ensures the definedness of
this expression.

The Logic of Partial Functions (LPF) is a first-order predicate logic which
admits undefined terms resulting from the application of partial functions or
operators. In the context of VDM, LPF was first introduced in the untyped
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propositional form by Barringer, Cheng and Jones in 1984 [9], and then in the
predicate form by Cheng in 1986 [16]. A typed version of LPF was presented by
Jones and Middelburg [36], and the mural group extended the basic predicate
logic with types and operators specifically designed to support VDM [10].

4.1 Propositional LPF

Aside from the logical values true and false, LPF admits undefined terms.
Within the proof theory, there is no need to assign a model theory to LPF
which then includes a value ⊥B intended to denote undefined terms. The truth
tables for propositional disjunction and negation (Fig. 7) may be thought of
as describing a parallel lazy evaluation of the operands. For example, the
expression A ∨ B evaluates to true if either disjunct evaluates to true, even
if the other disjunct is undefined.

∨ true false ⊥B

true true true true

false true false ⊥B

⊥B true ⊥B ⊥B

¬

true false

false true

⊥B ⊥B

Fig. 7. Example truth tables for propositional LPF

The axiomatisation of propositional LPF may be defined from the constants
true, ∨ and ¬ . The axioms (Fig. 8) are similar to those of classical proposi-
tional logic except for the absence of the law of the excluded middle:

Excl-Mid
e ∨ ¬ e

Note that the third value present in the model theory is not actually required
in the proof theory, and is often referred to as a ‘gap’ or absence of a value,
rather than as a special value.

Several operators are introduced by syntactic definition:

false � ¬ true

e1 ∧ e2
� ¬ (¬ e1 ∨ ¬ e2)

e1 ⇒ e2
� ¬ e1 ∨ e2

e1 ⇔ e2
� e1 ⇒ e2 ∧ e2 ⇒ e1

A consequence of losing the excluded middle is that the classical Deduction
Theorem does not hold:

Deduction
e1 � e2

e1 ⇒ e2

To see this, consider the possibility that e1 and e2 are the same expression, say
e. Certainly we can prove e�e, but e ⇒ e does not hold in LPF as it unfolds to
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true-I
true

Ax

∨-I-R
e1

e1 ∨ e2

Ax

∨-I-L
e2

e1 ∨ e2

Ax

∨-E
e1 ∨ e2; e1 � e; e2 � e;

e
Ax

¬¬ -I
e

¬¬ e
Ax

¬¬ -E
¬¬ e

e
Ax

contr
e1;¬ e1

e2

Ax

¬ - ∨-I
¬ e1;¬ e2

¬ (e1 ∨ e2)
Ax

¬ - ∨-E-L
¬ (e1 ∨ e2)

¬ e2

Ax

¬ - ∨-E-R
¬ (e1 ∨ e2)

¬ e1

Ax

Fig. 8. Axioms of propositional LPF

the excluded middle (¬ e∨e). In order to recover the full power of classical logic
for propositions and predicates that are well defined, a definedness judgement
is added:

δe � e ∨ ¬ e

This leads to derived rules for the introduction and elimination of δ:

δ-I
e
δe

δ-I-¬
¬ e
δe

δ-E
δe1; e1 � e;¬ e1 � e

e

These allow the derivation of the qualified version of the Deduction Theorem
that holds in LPF:
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⇒ -I
δe1; e1 � e2

e1 ⇒ e2

In general, theorems of classical logic can be formed into theorems of LPF by
adding the necessary δ hypotheses.

4.2 Typed Predicate LPF with Equality

Predicate LPF introduces the possibility of terms denoting values, and hence
also the possibility that these terms may be undefined. Logical expressions of
the form e:T are typing judgements and assert that the expression e denotes
a value belonging to a type T . Expressions that are undefined are termed
non-denoting and do not represent values in any data type. Thus, we do not
use special symbols or values to denote undefined terms, just as, in the propo-
sitional logic, we did not require the ‘bottom’ value in the axiomatisation.

The logical framework treats quantifiers as binders, with a type restrict-
ing the bound variable. Consequently, the rules for quantifiers often contain
type judgements. For example, the axiom for introduction of the existential
quantifier requires that the witness value is denoting:

∃-I
a:A;P(a)
∃x :A · P(x )

Ax

The corresponding elimination axiom is a generalisation of ∨-Elimination:

∃-E

∃x :A · P(x );
y:A,P(y) �y e

e
Ax

The subscript under the sequent indicates the variable bound in the sequent.
If the same variable name occurs free in e, it must be renamed on instantiation
of the rule.

The axiomatisation for predicate LPF is, by analogy with propositional
LPF, given in terms of existential quantification and negation. Just as rules
for ¬ -∨-Introduction and Elimination are required, so there are corresponding
axioms at the quantifier level:

¬ -∃-I
x :A �x ¬P(x )
¬∃y:A · P(y)

Ax

¬ -∃-E
a:A,¬∃y:A · P(y)

¬P(a)
Ax

Universal quantification is introduced by syntactic definition:

∀x :A · P(x ) � ¬∃x :A · ¬P(x )
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This leads to the expected introduction and elimination rules:

∀-I
y:A �y P(y)
∀x :A · P(x )

∀-E
a:A; ∀x :A · P(x )

P(a)

When are quantified expressions defined? Consider the existentially quan-
tified expression ∃x :A · P(x ). If a witness value a can be produced for the
predicate P , the existential expression is true by ∃-I, and so (δ(∃x :A ·P(x )))is
certainly defined, even if P is undefined for some values in A. Similarly, if it
can be shown that no witness value exists, the quantified expression is false
and likewise is defined. A third possibility is that, although P is known to be
defined everywhere on A, there is not enough information to prove or refute
the existence of a witness value. A further axiom covers this weaker case:

δ-∃-inherit
x :A �x δP(x )
δ(∃x :A · P(x ))

Ax

This extends in the expected way to ∀.
Equality has to be treated with some care where undefinedness is possible.

LPF equality is weak in that it is only defined over denoting terms:

δ-=-I
a:A; b:A
δ(a = b)

Ax

This leads to an abundance of typing hypotheses in the rules relating to equal-
ity. Even the simple reflexivity axiom requires one:

=-self-I
a:A

a = a
Ax

Substitution of equals is done through inference rules, rather than building
weak equality directly into the logical framework. For example,

=-subs-right(a)
a:A; a = b;P(a)

P(b)
Ax

Different combinations of typing hypotheses, P(a) and P(b) lead to a quar-
tet of substitution rules which prove to be rather clumsy to select and use
in practice. Other features, such as inequality (�=), unique existential quan-
tification (∃!), unique choice (ι) and conditionals (if . . . then . . . else . . .) are
defined using the basic constructs of typed predicate LPF with the equality
described here.
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5 Theories Supporting VDM-SL

In order to use LPF to reason about the elements of a VDM model, it is
necessary to provide theories that embody the properties of the constructs
available in the language. Chief among these are the type constructors, and in
particular those used to build collection types including finite sets, sequences
and mappings. General theories are provided for these type constructors. Cer-
tain other constructors, such as records, are better handled on a per-model
basis, translated into definitions and axiom sets in terms of the constructs in
the VDM theories. Below, we show how both kinds of construct are handled.
Section 5.1 describes the general theory of sets, while Sect. 5.2 shows how
record structures are handled.

5.1 Theories for Generic VDM Features

In order to give a flavour of the theories describing generic VDM features,
consider a simple example: the theory of finite sets. The axiomatisation is
given in terms of constructors introduced as constants. In the case of sets these
are the empty set ({ }) and an add operator. Other operators, including the
conventional operators on sets such as union and intersection, are introduced
as constants and then defined either inductively or by syntactic definition.
The majority of operators have formation rules which allow the introduction
of typing judgements, for example

{ }-form
{ }:A-set

Ax

add -form
a:A; s :A-set

add(a, s):A-set
Ax

Properties of operators are usually defined inductively over the constructors.
For example, set membership has the following rules:

{ }-is-empty
a:A

a /∈ { }
Ax

∈-add -defn
a:A; b:A; s :A-set

a ∈ add(b, s) ⇔ a = b ∨ a ∈ s
Ax

The constructors form the basis of the induction rule:

set-indn

s :A-set;P({ })
a:A, s1:A-set,P(S1), a /∈ s1 �s,s1 P(add(a, s1))

P(s)
Ax
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Collections in VDM-SL (sets, sequences and mappings) are finite. This com-
plicates the axiomatisation slightly, in that it is necessary to ensure finiteness
in building comprehension expressions. For example, naive versions of the set
comprehension formation and definition axioms might be as follows:

{x :A | P(x )}:A-set

a:A
a ∈ {x :A | P(x )} ⇔ P(a)

Finiteness is ensured by adding hypotheses requiring that there exists a valid
set containing all the members of the newly constructed set:

∃s :A-set · ∀y:A · P(y) ⇒ y ∈ s
{x :A | P(x )}:A-set

a:A; ∃s :A-set · ∀y:A · P(y) ⇒ y ∈ s
a ∈ {x :A | P(x )} ⇔ P(a)

This is further complicated by the need to handle undefinedness. The charac-
teristic predicate must be total:

∀x :A · δP(x )
∃s :A-set · ∀y:A · P(y) ⇒ y ∈ s

{x :A | P(x )}:A-set

∀x :A · δP(x )
a:A; ∃s :A-set · ∀y:A · P(y) ⇒ y ∈ s

a ∈ {x :A | P(x )} ⇔ P(a)

The more general form of set comprehension available in VDM-SL allows
the construction of expressions from the elements satisfying the characteristic
predicate, for example

{f (x ) | x :A · P(x )}

Here again, the finiteness and consistency requirements must be taken into
account, with the additional constraint that the elements of the constructed
set should be denoting:

set-comp-form

∀x :A · δP(x )
x :A,P(x ) �x f (x ):B

∃s :B -set · ∀y:A · P(y) ⇒ f (y) ∈ s
{f (x ) | x :A · P(x )}:B -set
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∈-set-comp-defn

b:B
∀x :A · δP(x )

x :A,P(x ) �x f (x ):B
∃s :B -set · ∀y:A · P(y) ⇒ f (y) ∈ s

b ∈ {f (x ) | x :A · P(x )} ⇔ ∃a:A · P(a) ∧ b = f (a)

5.2 Model-specific Theories

In the proof framework that was developed for mural , each construct had a
fixed arity. It was not therefore possible to give a generic theory for constructs
that have variable numbers of component parts: these are translated into
definitions and axioms. The best example of this approach is the handling of
composite types, or records. Consider, for example, the following VDM type
definition from our Queueb example (for the moment omitting consideration
of the invariant):

Queueb :: s : Qel∗

i : N

This is translated into a type name Queueb, a constructor mk -Queueb ex-
pressed as a two-argument constant, and two selectors, .s and .i , each taking
one argument. Axioms of formation and definition link the components. For
example, the formation and definition axioms for the selector .s are

s-form
q:Queueb
q.s :Qel∗

Ax

s-defn
mk -Queueb(x , y):Queueb
mk -Queueb(x , y).s = x

Ax

The axioms for the constructor take the following form:

mk -Queueb-form
s :Qel∗; i : N

mk -Queueb(s , i):Queueb
Ax

mk -Queueb-defn
q:Queueb

mk -Queueb(q.s , q.i):Queueb
Ax

These rules have been seen applied in the formal proof in Fig. 6. In the presence
of invariants, the rules are complicated slightly by the need to ensure that the
invariant is respected on formation of the composite value, and an axiom is
added to allow the invariant to be introduced:

mk -Queueb-form
s :Qel∗; i : N; inv -Queueb(s , i)

mk -Queueb(s , i):Queueb
Ax



The Typed Logic of Partial Functions and VDM 475

inv -Queueb-I
mk -Queueb(x , y):Queueb

inv -Queueb(x , y)
Ax

Note that the invariant is introduced here as a binary constant and defined
by a syntactic definition:

inv -Queueb(x , y) � x ≤ len y

5.3 Choices and Trade-offs

The main choices and trade-offs that have to be made in developing theories
representing VDM-SL concepts within the mural logical framework have been
discussed in depth elsewhere [25]. However, it is worth mentioning briefly two
areas in which compromises were made. First, the syntactic definition mecha-
nism does not support side conditions on the folding and unfolding of terms.
Where such side conditions are required, it is necessary to use axiomatic defi-
nition. In particular, if a polymorphic term, for example including an equality,
is included in the definition of a term not intended to be polymorphic, the
whole defining expression can have a meaning outside its intended scope. Sec-
ond, as already indicated, the decision to fix the arities of constants made
reasoning about some VDM-SL constructs which have a variable number of
components, such as record types (Cartesian products with field designators),
quite unwieldy. This might be seen as a rather harsh criticism, bearing in
mind that many formalisms avoid such constructions in the first place.

Some aspects of VDM-SL itself add to the complexity of the proof theory.
The effect of requiring finiteness has already been indicated. Similar com-
plexity arises when function types are introduced. VDM-SL provides for the
restricted use of types of total functions, their elements being denoted by
lambda expressions. Restrictions are imposed on the combination of function
types with other type constructors such as sets (sets of functions are not
permitted), and these can surface as still further typing hypotheses.

Loose specification is particularly challenging for modelling languages that
aim to support abstract specification. VDM-SL admits loose specification via
choice constructs. For example, the ‘let . . . be such that’ expression:

let x :A be s.t. P(x ) in Q(x )

incorporates some degree of choice. This expression implicitly specifies x as
any value of type A that satisfies the condition P . If more than one value in
A satisfies P , the expression’s semantics becomes problematic. One might try
to give the semantics in terms of a deterministic (Hilbert) choice operator ε:

ε-form
∃x :A · P(x )

(ε x :A · P(x )):A
Ax

ε-I
∃x :A · P(x )

P(ε x :A · P(x ))
Ax
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∃x :A · P(x ); E (εx :A · P(x )):B
(let x :A be s.t. P(x ) in E (x )) = E (ε x :A · P(x ))

However, this does not match the semantics of loose expressions in VDM-SL.
The ε-form rule and the reflexivity of equality (=-self-I), allow us to conclude
the following:

∃x :A · P(x )
(ε x :A · P(x )) = (ε x :A · P(x ))

This is at odds with the semantics of loose expressions in VDM func-
tion definitions. Such definitions denote deterministic functions. Function def-
initions containing loose choice expressions are treated as under-determined.
That is, they specify deterministic functions, but the specification does not
constrain the particular deterministic function chosen from the range allowed
by the choice operator. In contrast, VDM operations are non-deterministic.
The use of a loose choice expression in an operation is treated as non-
determinism: the same expression may denote different results at each oc-
currence. Thus, if the same loose expression occurs in different places in a
VDM-SL model, it may denote different values. Consider, for example, the
following fragment [39]:

f : () → N

f () � let x : N be s.t. x ∈ {1, 2} in x

g : () → N

g() � let x : N be s.t. x ∈ {1, 2} in x

The looseness in the definitions means that a valid implementation of f may
always return the value 1, while a valid implementation of g may always return
2. However, our proof rules based on ε, along with reflexivity of equality over
denoting terms, allow us to conclude f () = g(). In order to deal with this while
retaining the basic equality rules, it becomes necessary to add context infor-
mation differentiating the occurrences of expressions containing varepsilon.
Larsen [39, 41] has explored the addition of this context information in some
depth, in order to derive some more general rules for loose expressions. He
went on to develop proof rules for recursive definitions incorporating loose-
ness, utilising a determinism predicate which augments inference rules that
introduces new equalities.

Loose specification is potentially a valuable feature. It contributes to com-
positional refinement, since different occurrences may be treated differently
in a refinement step. However, there is a price to be paid, because of the need
to tag expressions with contextual information.
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6 Three Approaches to Supporting Logic in VDM

As discussed in Sect. 2, the provision of strong tool support has been a domi-
nant theme in the VDM community in recent years. In this section we examine
three approaches to the provision of support for reasoning about VDM models
with partial functions. Each is characterised by a different understanding of
the potential uses and users of the tools. First, in Sect. 6.1 we examine the
implementation of support for user-led proof of obligations and conjectures
about models, directly implementing LPF in the logical framework of Sect. 3.
The second approach that we describe, in Sect. 6.2, is that taken in VDM-
Tools, in which the logic is used indirectly and the tool support is geared
primarily to the needs of a developer wishing to explore a model through ap-
proaches familiar from conventional software engineering, particularly testing.
Third, in Sect. 6.3 we examine the use of automated proof support and the
adaptation of general provers to LPF and VDM.

6.1 The “Pencil and Paper” Metaphor: the mural Approach

The mural tool was aimed at users with some expertise in structuring a formal
proof. A basic specification support environment provided some rudimentary
facilities for constructing models, and generating model-specific theories from
them in the manner outlined in Sect. 5.2. Proof obligations would be added
as unproven conjectures to a theory store which had been pre-populated with
definitions and theorems for typed LPF. Users would complete proofs of obli-
gations and manually added validation conjectures within a proof support
environment that aimed to provide lightweight tools to assist with the book-
keeping tasks involved in proof, as well as in the selection of applicable rules.

As an example of this style of reasoning, consider the proof of the inference
rule for ∀-Introduction:

∀-I
y:A �y P(y)
∀x :A · P(x )

In mural , the rule would initially have an ‘unproved’ status within the theory
store. Upon selection, a proof display opens in a window looking like a sheet
of paper with the hypotheses at the top and the conclusion at the bottom:

from y:A �y P(y)
. . .

infer ∀x :A · P(x ) 〈 ?? justify ?? 〉

Note that the conclusion line is flagged as unjustified. The user is free to
decide how to approach the problem, by working backwards from the goal
or forwards from the knowns. Tools are supplied to search the theory store
for applicable rules that can be matched to the knowns or goals. However,
the expert user will often want to select a specific rule for application, and
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the mural ‘justification tool’ in this case manages the pattern-matching of the
rule to the expressions in the proof. For example, the user may choose to work
backwards from the conclusion by using the fact that ∀ is defined syntactically
in terms of ¬∃. With the aid of the justification tool, the proof is updated:

from y:A �y P(y)
. . .

a ¬∃y:A · P(y) 〈 ?? justify ?? 〉

infer ∀x :A · P(x ) folding(a)

Rules with sequent hypotheses lead to the establishment of sub-proofs and,
again, the mural tools can handle the bookkeeping:

from y:A �y P(y)
b from z :A

. . .

infer ¬ (¬P(z )) 〈 ?? justify ?? 〉

a ¬∃y:A · P(y) ¬ -∃-I(b)
infer ∀x :A · P(x ) folding(a)

The proof is completed by forward reasoning within the sub-proof (and renum-
bering lines to clean up the presentation):

from y:A �y P(y)
1 from z :A
1.1 P(z ) sequent h1 (1.h1)

infer ¬ (¬P(z )) ¬¬ -I(1.1)
2 ¬∃y:A · P(y) ¬ -∃-I(1)

infer ∀x :A · P(x ) folding(2)

Note some of the characteristics of this approach to implementing LPF
in VDM. The user is assumed to have some knowledge of proof construction.
The tools are specialised engines that provide a lightweight form of assistance
to basic proof construction tasks, and the stress is on the crafting of a satis-
fying human-readable proof rather than a machine-readable proof script as is
the case with some high-automation approaches. Other than the justification
tool, the prototype tools supported the use of decision procedures and the
application of tactics. All the tools operated on the underlying presentation
of the proof.

The mural logical framework is similar to that used in Sect. 3 and was
designed to be capable of adaptation to several logics. Apart from its instan-
tiation for typed LPF, it has been applied to higher-order logics, modal logics
and Hoare logic [37]. The generic character of the logical framework means
that the handling of partial functions is done through the theory held in the
tool’s theory store. The user is faced directly with the problem of handling
definedness.
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Other VDM-specific characteristics of Typed LPF, such as finiteness and
underspecification, must be understood by the mural user. The complexity
of doing so taxed the mural logical framework and tools. In fact, the de-
velopers of the Typed LPF theory in [10] did not implement a solution to
the underspecification problem. Certain styles of reasoning were not so well
supported, notably chains of equalities, inequalities and implications, associa-
tive/commutative reasoning etc. However, some experimental tactic-like tools
were built to help support reasoning in these cases.

In spite of some limitations, the mural environment provided for a faith-
ful implementation of LPF and introduced the possibility of user-guided ar-
gument construction. Alan Wills’ speculative but prescient appendix to the
book on mural [37] entitled “The Theorem Prover’s House” presented a vision
of the future in which a theorem prover is emphatically not a computer pro-
gram, but a skilled human. Wills’s prover has access to on-line theory stores,
specialist proof engines and intuitive interfaces. He does not prove every line
himself, as the mural user had to do, but he does remain in control of the
argument.

6.2 Logic in VDMTools

In contrast with mural ’s very proof-focused tool set, the industry-developed
VDMTools is driven by the “lightweight formal methods” paradigm. These
tools are designed to encourage modelling and the exploration of models, often
in collaboration with a domain expert. The targeted user of VDMTools is not
necessarily a formalist with training in proof at all, but is assumed to be
a competent software engineer. The tools correspond to those of a design or
programming support environment: syntax and type checking, pretty printing,
interpretation, batch mode testing and test coverage analysis. Models may
be expressed in the classical “flat” VDM-SL language or its object-oriented
extension VDM++. For the latter, there is an explicit link with UML modelling
tools.

The objective in the development of VDMTools has been on supplying
forms of analysis that are familiar to the software engineering practitioner,
and proof has not been a high priority. Nevertheless, the influence of the logic
is present from the type-checking tools and along the rest of the chain. For
example, type checking is not decidable in general for VDM, because of the ar-
bitrary complexity of data type invariants. The approach taken is to offer two
levels of type checking: possibly correct (pos) and definitely correct (def ) [48].
The pos check is precise in that it only raises errors that are surely errors.
The def check is imprecise but safe in the sense that it raises an error message
for any situation in which an error may occur. The def checking process has
been extended to generate proof obligations automatically for each case. The
tools support user “sign-off” of each obligation, on the basis of inspection.
Models which pass the syntax check may be executed in the VDMTools in-
terpreter. Consequently, the interpreter has to take a position with respect
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to the evaluation of Boolean formulae written in VDM. Given the infeasi-
bility of implementing parallel evaluation of the kind required for a faithful
LPF interpretation of such formulae, the VDMTools interpreter treats propo-
sitional operators in VDM models as their McCarthy conditional counterparts
based on a left-to-right evaluation, as taken in the RAISE Specification Lan-
guage (RSL) [49, 50].

6.3 Use of Automation: PVS and HOL Support

VDM was not developed specifically for implementation in a proof support
tool. It is therefore a considerable challenge to develop a useful embedding of
the language in such a tool. There have been various attempts to date.

Shallow embeddings involve a translation from the concepts of the source
language to those of the theorem prover. There are several superficial similar-
ities between PVS and VDM, making it appealing to attempt a shallow em-
bedding and explore the extent to which proof support might be automated.
The implementation reported by Agerholm, Bicarregui and Maharaj [1, 2]
takes this form. Each formal model is hand-translated to PVS. This approach
has yielded a considerable reduction in the effort spent on handling tedious
applications of associative/commutative principles. On the down side, PVS
does not handle partial functions directly for Typed LPF. Handling of un-
derspecification is not clean. PVS requires that each occurrence of a choice
expression should yield the same result. Thus, as indicated in [2], the trans-
lation of genuine non-determinism in operation specifications to PVS choice
operators is not correct.

Agerholm and Frost presented an embedding of Typed LPF in Isabelle [3,
4] as part of a larger scheme to extend the capabilities of the IFAD VDM-
SL Toolbox (as it was then known). It is a straightforward embedding of the
logic represented in [10], including therefore the handling of undefinedness.
This approach has been successful, though limited by the “ad hoc” nature of
the collection of rules in the initial sets of theories.

A subsequent implementation of Typed LPF in HOL98 within the PROS-
PER project [18] included the realisation of a much more sophisticated user
interface which aimed to present proof-level expressions to the user within
the specification formalism, rather than requiring the user to switch mentally
between the model and the theorem prover. The PROSPER theories support-
ing VDM were structured into rule sets to aid efficient proof, and a more
sophisticated set of tactics were developed. The link to VDMTools supported
automatic generation and discharging of proof obligations, achieving around
90% automation. An interface was developed for limited user guidance of proof
construction in cases where the obligation could not be discharged automat-
ically. However, this received only limited experimental use. The PROSPER
tools were limited to a subset of VDM models that stayed within a two-valued
logic. Proof obligations were generated to ensure adherence to this require-
ment. Loose specification was handled using the Hilbert choice operator, so
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reflexivity of equality could be preserved. The PROSPER team, which in-
cluded the author at various points, took the view that these restrictions were
worth tolerating in order to produce a first integrated tool set.

7 Conclusions and Future Directions

We have attempted to characterise the Typed Logic of Partial Functions as it
is used to support reasoning about models in VDM. In the earlier sections of
the chapter, we painted a relatively simple picture of the underlying logic, in
particular its features for handling undefined terms. The basic logic was ex-
tended with features to support VDM directly, including definitions of types
and operators present in the modelling language. This attempt to accommo-
date features such as finiteness of data values and looseness poses a first set
of challenges to the logical framework.

Once one begins to consider the requirements for robust, highly capable
tool support, the picture becomes rather less clear because of the need to
resolve conflicting aims, for example handling undefinedness in a way that is
clean for both execution (as in VDMTools) and proof (as in mural). It remains
an open question to see if a proof support environment can be developed that
works in conjunction with VDMTools but also provides greater faithfulness
to LPF than was the case in the PROSPER embedding.

This chapter has sought to make one critical point in regards to logics for
formal modelling languages: it is a mistake to design or analyse a logic for
formal modelling in isolation. The logic is just one of several interdependent
elements (modelling language, static and dynamic semantics, proof theory, in-
terpreter, analysis tools etc.) of a useful formal method. A decision to simplify
one element usually has effects on others. For example, we could try to deal
with undefinedness in VDM by prohibiting potentially undefined expressions
in the modelling language in the first place. This is, in some sense, moving
responsibility for handling undefinedness from the logic to the specification
support tools. A motto for LPF might be that “there’s no such thing as a free
lunch.”

A similar argument holds as we move from abstract specification to run-
ning systems via refinement. While it may be possible to sweep undefined
expressions away at an abstract level, undefinedness must be faced in im-
plementations, as must the resolution of loose specification and finiteness of
representations. Exactly where specific responsibilities lie is a critical factor
in determining the utility of a formal method. It is reasonable to expect that
large-scale formal developments might employ a variety of related formalisms,
and hence logical systems, at different stages. This trend is becoming all the
stronger as work on tools moves away from monolithic solutions such as the
current VDMTools towards collections of interoperable tools such as those
envisaged in Overture and the fault-tolerance-focused RODIN project.6

6 http://rodin.cs.ncl.ac.uk.
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Several technological developments will have a significant influence on how
we apply logics for specification languages in the future. Many of the core
technologies needed to realise the mural vision of human-led proof are be-
ginning to become available [11]. These include network-enabled capabilities
such as shared work-spaces for developing specifications and theorems, access
to searchable large-scale on-line theory libraries, remote access to reasoners
and proof tools, and shared visualisation. These technologies have the po-
tential to revolutionise our approach to advanced proof-based validation and
verification as much as to increase the efficiency of provers and model checkers.

We have observed the challenge posed to automated proof by the handling
of partial functions in VDM, as evidenced in the work to date on PVS, Isabelle
and HOL98. Along the same lines, Chalin [15] has attacked the mismatches
between the logics that underpin run-time assertion checking in programs and
those supported in program verification tools. He reports a survey which sug-
gests that programmers would prefer verification technology that provides an
interpretation of terms consistent with that already used in run-time assertion
checking. LPF is one possible candidate logic, and an interesting research topic
is the use of LPF variants in assertion-based environments akin to ESC [38]
and Spec# [8].
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VDM Indexes

Symbol Index

0-form, 466

<→≤, 464

=-subs, 465

=-subs-right(a), 471
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[ ], 465
∧, 467, 468
∧-I, 459
∃, 465
∃-E, 470
∃-I, 459, 470
∀, 465
∀-E, 471
∀-I, 471
N, 456
∨, 468, 469
∨-E, 469
∨-I-L, 469
∨-I-R, 469
+ 1-form, 465
-set, 465
∗, 457
δ, 469, 473
δ-=-I, 471
δ-E, 469
δ-I, 469
δ-I-¬ , 469
δ-∃-inherit, 471
false, 468
let ... be s.t., 475, 476
rd, 457
true, 468, 469
true-I, 469
wr, 457
∈, 472
∈-add -defn, 472
∈-set-comp-defn, 474
ι, 471
¬ , 468, 469
¬ -∃-E, 470
¬ -∃-I, 470
¬ - ∨-E-L, 469
¬ - ∨-E-R, 469
¬ - ∨-I, 469
¬¬ -E, 469
¬¬ -I, 469
⇒ , 468, 470
⇒ -I, 470
⇔ , 468
ε, 475, 476

�, 466
{ }, 465, 472
{ }-form, 472
{ }-is-empty, 472
add , 472
add -form, 472
inv -, 474, 475
mk -, 474
from, 458
infer, 458
=-self-I, 471

contr, 469

set-comp-form, 473
set-indn, 473

Concept Index

Afrodite, 460
arity, 465, 474
axiom, 465, 467

definition, 463, 473, 474
formation, 463, 472–474

binder, 465, 467, 470

conclusion, 465, 466, 478
constant, 465–468, 472, 474, 475

data type invariant, 457, 459, 474, 479
Deduction Theorem, 468

equality, 470, 471, 475, 481
weak, 471

excluded middle, 469
executable specification, 460
explicit specification, 460

folding/unfolding, 462, 467
framing constraint, 457

HOL, 464, 480, 482
hypothesis, 465, 466, 473

IFAD, 454, 459, 480
implicit specification, 457, 458
inference rule, 459, 463, 465
IPSE 2.5, 462
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Isabelle, 480, 482

justification, 458, 459, 463, 464, 466,
467, 478

lightweight formal methods, 454, 460,
464

Logic of Partial Functions, see LPF
loose specification, 457, 475, 476, 480,

481
LPF, 453, 467, 471, 477, 481, 482

predicate, 468, 470, 471
propositional, 468, 470
typed, 464, 467, 477–481
untyped, 467

meta-variable, 465, 467
model-oriented language, 456
mural, 462, 464, 465, 467, 468, 474,

475, 477–479, 481, 482

natural deduction, 464
non-denoting term, see undefinedness

Overture, 462

partial functions, 467
postcondition, 457, 458
precondition, 457, 458
proof, 458, 462, 465, 466

formal, 459, 462, 463
rigorous, 458, 462, 463
support environment, 462

proof obligation, 456, 458, 459, 464,
477, 479, 480

PROSPER, 480, 481
PVS, 464, 480, 482

quantifier, 470, 471
existential, 459, 470, 471
universal, 470

refinement, 458

satisfiability, 458, 462
sequent, 466, 470
SpecBox, 459
syntactic definition, 462, 466–468,

470, 472, 475, 478
system state, 456, 457, 460

theorem prover, 464, 477, 479, 480,
482

theory, 463, 464, 467, 482
tool support, 459, 460
type constructors, 457

UML, 460
undefinedness, 454, 455, 467, 468, 470,

471, 473, 480, 481

validation conjecture, 477
variable, 465
VDM, 453, 454, 462, 464, 477, 479–

481
Irish School of, 454

VDM Specification Language, see
VDM-SL

VDM Toolbox, 459, 480
VDM++, 454, 460
VDM-SL, 453, 454, 456, 457, 459, 460,

462, 464, 475, 476
interchange syntax, 459
ISO standard, 454, 456, 459, 460,

464
VDMTools, 454, 459, 460, 462, 464,

477, 479–481
Vienna Definition Language (VDL),

455
Vienna Development Method, see

VDM

XML, 459
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Summary. We provide an introduction to the specification language Z from a log-
ical perspective. The possibility of presenting Z in this way is a consequence of a
number of joint publications on Z logic that Henson and Reeves have co-written
since 1997. We provide an informal as well as a formal introduction to Z logic and
show how it may be used, and extended, to investigate issues such as equational
logic, the logic of preconditions, operation and data refinement, and monotonicity.

1 Introduction

This chapter describes an approach to the logic of the specification language
Z – it is relatively unconcerned with the semantics of Z, except insofar as the
existence of a non-trivial model is useful for establishing the consistency of the
logic. The approach attempts neither to replicate nor to extend the excellent
work on the standardisation of Z that led to ISO standard 13568.1 It is, rather,
complementary, seeking to explore and express the logical preliminaries of Z2

and aiming to describe those uncontroversial properties of the major elements
of the language, in particular, the language of schemas and its calculus.

The approach to Z logic taken here is based mainly on three papers [35,38,
39]; these remain the comprehensive technical resource for two separate though
related approaches (we make some reference to the distinction in Sect. 3.5).
Our objective in this chapter is to provide a more accessible overview of that
work and to highlight some more advanced related work beyond specification,

1 The Z Standard does not provide a logic. The strategic decision to exclude a logic
was reported in [44]. An inconsistency [32] was discovered in the (unfinished)
draft logic submitted as part of the ISO Committee Draft 1.2 of the Z standard
in 1995.

2 Although beginning from its logical first principles, we do not begin Z itself from
first principles. The reader is assumed to be familiar with Z notation and concepts
as described in one of the better textbooks, for example [68].



490 M C Henson, M Deutsch and S Reeves

in particular in the theory of refinement, that becomes possible by virtue of
the Z logic that we describe.

The present work is structured into three parts. The first is the least formal
and most accessible: it explores initial considerations concerning the formali-
sation of vernacular3 Z with particular reference to the novel features (those
that take Z beyond higher-order logic, at least in expressivity.) concerning
schema types and bindings. The second part is a more formally presented ac-
count of Z logic (the logic ZC) and how that logic may be extended by means
of a series of conservative extensions to more comprehensive logical systems
with wider coverage. The chapter is by no means encyclopaedic, and the ear-
lier papers referred to above contain more detail and a more formal account.
The final part contains the most advanced material: it looks beyond Z as a
specification language and ZC as a logic for reasoning about specification. It
demonstrates the further utility of such a logic by showing how various the-
ories of equality, operation and data refinement can be integrated with, and
issues such as monotonicity explored within, the base logic in a smooth and
systematic manner: something made possible with a logic in place. We end
with some concluding remarks, our acknowledgements and relevant references
to the literature.

2 Initial Considerations

We take it as self-evident that any formal specification should permit pre-
cise consequences to be obtained: the emphasis in the term formal method
should fall on the second word and not the first. A language, even one with
a semantics, is impoverished if there is no logic: it would provide no means
for obtaining those consequences in a methodical, reproducible and agreed
fashion. In this first part, we reintroduce the key features of specification in
Z from a logical perspective. Our objective is to describe the motivation for,
and introduce the basic principles of, the logic ZC , and to explain why this
core logic is sufficient for capturing a range of Z concepts.

2.1 Z Schemas and Bindings

At the heart of Z is the schema. Schemas are usually used in two ways: for
describing the state space of a system and for describing operations which the
system may perform.

Example 1. The informal state space is a jug of water of capacity 250ml having
a current volume and a current temperature. As a schema, this can be written
as follows:

3 By vernacular Z we mean Z as it has been used in practice and as it is reported
in informal and semi-formal accounts in the literature.
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Jug
volume : N

temp : N

volume ≤ 250
temp ≤ 100

Written in linear form, this would be

Jug =df [volume : N; temp : N | volume ≤ 250 ∧ temp ≤ 100]

This schema has the name Jug and introduces two observations, volume and
temp, which have some natural number value (i.e. drawn from the set N) in
each system state.4 The states which comprise a schema are called bindings;
each binding belonging to a schema is a legitimate state of the system. In
this example, the bindings associate values (of the correct type) with the
observations named volume and temp. We use the word “observations” and
never call them “variables”. If one pursues the “schemas as sets of bindings”
interpretation (which has been quite standard), then these are constants, not
variables. Most informal accounts run into immediate difficulty in this area.5

We shall write bindings like this:6

〈| volume � n, temp � m |〉
where, in this case, n,m ∈ N. Naturally, it should follow that, for example,

〈| volume � 100, temp � 20 |〉 ∈ Jug

and also
〈| volume � 100, temp � 200 |〉 �∈ Jug

It is possible to extract the values associated with observations from bindings.
This is called binding selection. For example, we should be able to show that

〈| volume � 100, temp � 20 |〉.volume = 100

In order to capture these ideas, we begin by introducing the idea of a schema
type:

[ · · · zTi

i · · · ]
This is an unordered sequence of typed (indicated by superscripts) observa-
tions (the zi). Then schemas are either schema sets:
4 Note that the schema describes a state space, that is, a set of legitimate sys-

tem states. This is worth stressing because some informal accounts give a mixed
message, sometimes suggesting that a schema describes a particular state.

5 See, for example, [68]. In chapter 11, page 149 of that book, they are “variables”;
by page 154 they are “components” (constants).

6 ISO Z uses == rather than �, a notation which dates back to [56,57].
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[ · · · zi : C P Ti

i · · · ]
or atomic schemas :

[S | P ]

where the Ci are sets, S is a schema and P is a predicate.
Of particular note are the carrier sets of the various types. These are

formed by closing
N =df {zN | true}

under the Cartesian product, power type and schema type operations.7 No
ambiguity results from the overloading of the symbol N here: types appear
only as superscripts – all other uses denote the carrier set.

We have remarked that schemas are sets of bindings. So the logic of
schemas can be obtained from the logic of sets and bindings. In ZC , for sets,
we have

P [z/t ]
t ∈ {z | P} ({}+)

t ∈ {z | P}
P [z/t ]

({}−)

Note that ZC is strongly typed, so these (typed) set comprehensions present
no technical difficulties. See Sect. 3 for further details.

For bindings, ZC has

〈| · · · zi�ti · · · |〉.zi = ti
(�=

0 ) 〈| · · · zi�t .zi · · · |〉 = t [···zTii ··· ]
(�=

1 )

The first of these establishes what information may be extracted from bind-
ings; the second confirms that these values are all that the binding contains.

The logical rules for schemas flow from the following ZC definitions:

[ · · · zi : Ci · · · ] =df {x | · · · ∧ x .zi ∈ Ci ∧ · · · }
and

[S | P ] =df {z ∈ S | z .P}
The binding selection operator, introduced in the object logic for selection
from bindings (that is, ZC terms such as z .x), is generalised into a meta-
language substitution over terms (that is, meta-terms such as z .t) and over
propositions (meta-terms such as z .P).8 This is essentially a straightforward
structural recursive generalisation of binding selection, and appears in more
detail in Sect. 3 below.

The rules for schema sets are then derivable in ZC :

· · · ti ∈ Ci · · ·
〈| · · · zi�ti · · · |〉 ∈ [· · · zi : Ci · · · ] ([]+)

t ∈ [· · ·zi : Ci · · · ]
t .zi ∈ Ci

([]−)

7 In fact N is only one possible base type. See Sect. 3 for further details.
8 This is modelled to some extent on the more complex object language substitution

operator frogspawn to be found in the faulty logic presented in [50]. A thorough
analysis of frogspawn terms is presented in [35].
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and, for atomic schemas,

t ∈ S t .P
t ∈ [S | P ]

(S+)
t ∈ [S | P ]

t ∈ S
(S−

0 )
t ∈ [S | P ]

t .P
(S−

1 )

Then, for example, writing b for 〈| volume � 100, temp � 20 |〉, we have

....
100 ∈ N ∧ 20 ∈ N

b ∈ [volume : N, temp : N]
([]+)

....
100 ≤ 250 ∧ 20 ≤ 100

b ∈ Jug
(S+)

as expected, with the trivial steps omitted.
The elimination rules allow us to determine properties of specifications.

For example, taking the product of the temperature and the volume as a
rudimentary measure of the thermal energy of the water, we can show that
this is never bigger than 25 000:

b ∈ Jug
1, (S−

1 )

b.volume ≤ 250 ∧ b.temp ≤ 100

b.volume ∗ b.temp ≤ 25000

∀ b ∈ Jug • b.volume ∗ b.temp ≤ 25000
1

2.2 Schema Algebra and Filtered Bindings

Having now considered simple schemas, we shall move on immediately to
consider an operator from the schema calculus: schema conjunction.

In order to provide a logical account of schema conjunction, we need to
introduce a concept crucial to ZC : the type restriction of a binding (this is
also called filtering). Roughly, the bindings we expect in the schema S0 ∧ S1

are those common to S0 and S1. But the story is more complicated: the types
of S0 and S1 (say T0 and T1) need not necessarily be the same. In order
for S0 ∧ S1 to be well-defined, these types must agree on their overlap. We
shall write T0 � T1 (in the meta-theory) for the compatible type union (it is
not defined if they are incompatible) of T0 and T1. Then, more precisely, the
bindings in S0 ∧ S1 will be all the bindings z in T0 � T1 so that z restricted
to T0 is a member of S0, and z restricted to T1 is a member of S1. Note that
when the types are disjoint, this is effectively a union operation.

We write z � T for the ZC term called the restriction (or filtering) of the
binding z to the type T . Naturally it is only well-formed when the type of z
is an extension of T . For example, in ZC we can prove

〈| x�3, y�4 |〉 � [xN] = 〈| x�3 |〉
We shall write T0 	 T1 in the meta-theory when T0 is a schema subtype of
T1 in this sense. The critical ZC rule which effects restricted bindings is this:
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tT0 .zi = ti
(t � T1).zi = ti

(�=) T1 	 T0 and z ∈ αT1

The meta-term αT refers to the (meta-)set of observations occurring in T
(the alphabet of T , see Sect. 3.

A natural generalisation of membership is useful, when T1 	 T0:

zT0
.∈ SP T1 =df z � T1 ∈ S

This idea can also be applied to equality:

tT0

0

.
= tT1

1 =df t0 � (T0 � T1) = t1 � (T0 � T1)

Here we have written T0 � T1 for schema type intersection. The notation is
most usefully employed when T1 	 T0 or T0 	 T1. More generally, we have

tT0

0 =T tT1

1 =df t0 � T = t1 � T

This notation is most usefully employed when T 	 T0 and T 	 T1.
With all this in place, we can define schema conjunction by translating

the informal description above into a ZC definition,

SPT0

0 ∧ SP T1

1 =df {zT0�T1 | z � T0 ∈ S0 ∧ z � T1 ∈ S1}
which leads immediately to the following rules:

t
.∈ S0 t

.∈ S1

t ∈ S0 ∧ S1

(S+

∧ )
t ∈ S0 ∧ S1

t
.∈ S0

(S−
∧0

)
t ∈ S0 ∧ S1

t
.∈ S1

(S−
∧1

)

Example 2. Now let us move on to consider operations which change the state.
Adding water to the jug is represented as:

AddWater
∆Jug
more? : [v : N, t : N]

volume′ = volume + more?.v
temp′ = (volume ∗ temp + more?.v ∗ more?.t) div volume′

where a primed observation, for example volume′, refers to a value in the
state after the operation has been performed, while an unprimed observation
refers to a value in the state before the operation has been performed. The
declaration in this case amounts to the schema:

Jug ∧ Jug ′ ∧ [more? : [v : N, t : N]]

Given this observation, no modification of the interpretation of our definition
for atomic state schemas is necessary. For example, using the rules already pro-
vided (together with other unexceptional rules of equality and propositions)
we can prove:
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b ∈ AddWater

where b is the binding

〈| volume�50, temp�25,more?�m, volume′�150, temp′�41 |〉
and m is the binding

〈| v�100, t�50 |〉
We have

....
b

.∈ Jug

....
b

.∈ Jug ′

b
.∈ Jug ∧ Jug ′ (S+

∧ )

δ....
b

.∈ [more? : [v : N, t : N]]

b ∈ Jug ∧ Jug ′ ∧ [more? : [v : N, t : N]]
(S+

∧ )

....
P

b ∈ AddWater
(S+)

where we have written P for 150 = 50+100 ∧ 41 = (50∗25+100∗50) div 150
and where, for example, δ is

b .
= 〈| more?�m |〉

100 ∈ N 150 ∈ N

m ∈ [v : N, t : N]

〈| more?�m |〉 ∈ [more? : [v : N, t : N]]

b
.∈ [more? : [v : N, t : N]]

Example 3. This operation simply takes the temperature of the water in the
jug:

TakeTemp
ΞJug
read ! : N

read ! = temp

This is, as is well known, shorthand for

TakeTemp
∆Jug
read ! : N

read ! = temp
θJug = θJug ′

According to the definition given above, this is interpreted as the following
set of bindings in ZC :

{z ∈ ∆Jug ∧ [more? : [v : N, t : N] ∧ [read ! : N]] |
z .(read ! = temp ∧ θJug = θJug ′) }
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An explanation of θ-terms is missing from our account: in the unprimed case,

θSP[···zTii ··· ] =df 〈| · · · zi�zi · · · |〉
Thus zT0 .θSP T1 = z � T1 whenever T1 	 T0. In the primed case, we have
θS ′ = θ′S , where

θ′SP[···zTii ··· ] =df 〈| · · · zi�z′i · · · |〉
The second of these suggests, correctly, that in fact we have an operation
(called θ′) on S rather than S ′. Indeed, we have not yet provided a precise
explanation of the priming of schemas; θ′ is, in fact, the more fundamental
concept:

[ · · · xi : Ti · · · ]′ =df [ · · · x′i : Ti · · · ]
and

[S | P ]
′
=df [S ′ | θ′S .P ]

The special Z term θ has a history of notoriously poor and incomplete expla-
nation. The introduction of characteristic bindings in [68] was a step forward.
Integrating this with a comprehensive logic, adding a proper analysis of terms
such as θS ′, in particular the role of the rule (�=

1 ) (see above), provides
a complete description of its function and the circumstances in which it is
properly typed.

2.3 Schema Algebra and Promotion

Promotion is a Z idiom which seeks to bring uniformity (and so security and
likelihood of correctness) to a common situation when one is building models
of systems. A similar idea is found with mapping (and its generalisations), as
we find in functional programming languages.9

In addition to schema conjunction, schema existential quantification (hid-
ing) also makes an appearance in promotion.

Further details of existential quantification appear in Sect. 3 below. For
now, we note that this idea can be formalised in ZC and that the rules for
reasoning about such schema expressions are

t ∈ S
t

.∈ ∃ z ∈ T • S
(S+

∃ )

t ∈ ∃ z ∈ T • S y ∈ S , y .
= t � P

P
(S−

∃ )

where y must not appear free in P , S or t or in any other assumption (we
often refer to this sort of condition as “the usual” side-condition, or sum it
up by saying that y must be an eigenvariable of the rule).

Let us illustrate promotion by examining the simplest of examples.

9 Once again we assume familiarity with practical Z. Promotion is introduced and
very well explored in, for example, [5,68].
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Example 4. Consider the following trivial operation:

Inc
v , v ′ : N

v ′ = v + 1

We wish to promote this operation, which is over the local state N, to an
operation over the global state N×N. The global operation simply generalises
the local operation by applying it to the first of the pair. The promotion
schema, as usual, explains how the local and global state spaces are to be
connected:

ΦPair
v , v ′ : N

w ,w ′ : N × N

w .1 = v
w ′.1 = v ′

w ′.2 = w .2

And the global operation is

PairInc =̂ ∃ v , v ′ : N • Inc ∧ ΦPair

We should, for example, be able to prove that

〈| w�(3, 5),w ′�(4, 5) |〉 ∈ PairInc

We shall write this binding as b0, and the extended binding

〈| v�3, v ′�4,w�(3, 5),w ′�(4, 5) |〉
as b1. This is straightforward:

....
b0

.
= b1

δ0....
b1

.∈ Inc

δ1....
b1

.∈ ΦPair
b1 ∈ Inc ∧ ΦPair

(S+

∧ )

b1

.∈ PairInc
(S+

∃ )

b0 ∈ PairInc

Let b2 be 〈| x�3, x ′�4 |〉, then δ0 is

....
b1

.
= b2

3 ∈ N 4 ∈ N

b2 ∈ [v , v ′ : N] 4 = 3 + 1

b2 ∈ Inc
b1

.∈ Inc
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and δ1 is

....
b1 ∈ [v , v ′ : N,w ,w ′ : N × N]

....
3 = 3 ∧ 4 = 4 ∧ 5 = 5

b1

.∈ ΦPair

Here we omit all trivial steps, and those previously illustrated. Naturally,
this proof illustrates the direct use of the basic rules for schema expressions,
schemas and the base logic itself. As with all logics, it is in practice necessary
to develop further derived rules to streamline derivation.

One can, of course, also reason from complex expressions (using the elimina-
tion rules). The following example shows that the second part of the global
state is always unchanged. This trivial example is a prototype for the general
policy of determining general properties that complex specifications possess.

Example 5. Consider the following property:

∀ b ∈ PairInc • b.w .2 = b.w ′.2

And the proof, which uses the elimination rules for existential, conjunctive
and atomic schemas, is

b ∈ PairInc 1
y .

= b
2

y ∈ Inc ∧ ΦPair
2

y
.∈ ΦPair

y.w .1 = y.v ∧ t .w ′.1 = y.v ′ ∧ y.w .2 = y.w ′.2
y.w .2 = y.w ′.2

b.w .2 = b.w ′.2
b.w .2 = b.w ′.2

2, (S−
∃ )

∀ b ∈ PairInc • b.w .2 = b.w ′.2
1

3 The Specification Logic ZC

ZC is an extension of higher-order logic with the addition of the schema types
that we introduced above.

3.1 The Types of ZC

We begin with the language of types.

T ::= Υ | P T | T × T | [· · · zT · · · ]

Types of the form Υ are the names of free types and are given by equations
of the form
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Υ ::= · · · | ci 〈〈· · ·Υ ij · · ·〉〉 | · · ·
In order to permit recursion, any of the Υ ij may be Υ . Also, 〈〈· · · Υ ij · · ·〉〉 may
be omitted. An important example is

N ::= zero | succ 〈〈N〉〉
This class of free types is quite simple, but has the virtues of covering many
practical cases and ensuring the existence of trivial set-theoretic models. We
do not permit mutual recursion here, but the generalisation is straightfor-
ward.10

Types of the form [· · · zTi

i · · · ] (the order is not important) are called
schema types. We write α[· · · zTi

i · · · ] for the alphabet set (in the meta-
language) of observations {· · ·zi · · · }. No observation may occur more than
once in such a type. The symbols 	, �, � and − denote the schema subtype
relation, and the operations of schema type intersection, schema type union
and schema type subtraction. All these relations and operations are defined
only for schema types, and so any future definition which makes use of them
is well defined only when the types in question are schema types. Schema
type union imposes an additional constraint, since it is defined only when its
schema type arguments are compatible (common observations agree on their
type).

The last important operation on types is priming. First we associate with
every observation z its co-observation z′, where z′′ = z. Then we set [· · · z · · · ]′
to be [· · · z′ · · · ]. This is not a convention of vernacular Z but turns out to be
extremely useful in Z logic, especially when combined with pattern-matching
syntax in definitions.11

All further syntactic categories of the language of ZC must be well formed
with respect to these types. Types are indicated by superscripting and omitted
whenever possible.

We now move on to describe the languages of terms and propositions and
their corresponding logical rules. The judgements of ZC have the form Γ � P ,
where Γ is a set of formulae. The logic is presented as a natural deduction
system in sequent form. We shall omit all data (entailment symbol, contexts,
type, etc.) which remain unchanged by any rule.

3.2 The Terms of ZC

First, we have variables, bindings, pairs and their projections:12

10 For the reader interested in pursuing the technical issues concerning free types,
see [3,55] for example.

11 Much use of the idea of treating priming as an operation, rather than a diacritical,
is made in Sect. 4.8 (the definition of composition), especially in connection with
data refinement and the definitions of simulations.

12 The reader may already have noticed, from the examples in Sect. 2, that we care-
fully distinguish between observation meta-variables and variable meta-variables.
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tT ::= xT | t [···zT··· ].z | tT×T1.1 | tT0×T .2
tT0×T1 ::= (tT0 , tT1)

t [···zT··· ] ::= 〈| · · · z�tT · · · |〉

These terms are characterised by various logical rules:

〈| · · · zi�ti · · · |〉.zi = ti
(�=

0 ) 〈| · · · zi�t .zi · · · |〉 = t [···zTii ··· ]
(�=

1 )

(t0, t1).1 = t0
(()=0 )

(t0, t1).2 = t1
(()=1 )

(t .1, t .2) = t
(()=2 )

Second, we have the filtered (restricted) bindings:

tT0 ::= tT1 � T0 where T0 	 T1

As we have seen, the rule for these is

tT0 .zi = ti
(t � T1).zi = ti

(�=) T1 	 T0 and z ∈ αT1

Third, the values of free-type are

tΥ ::= ci · · · tΥij · · ·

The logic of free types permits the introduction of values in the type, equality
reasoning and finally, elimination (generally by induction):

· · · zij ∈ Υ ij · · ·
ci · · · zij · · · ∈ Υ

(Υ+)
· · · zij ∈ Υ ij · · · · · · zkl ∈ Υ kl · · ·

ci · · · zij · · · �= ck · · · zkl · · · (Υ �=)

ci · · · zij · · · = ci · · · yij · · ·
zij = yij

(Υ =)

· · · · · · zij ∈ Υ ij · · · , · · ·P [z/yk ] · · · � P [z/ci · · · zij · · · ] · · ·
z ∈ Υ � P

(Υ−)

where the yk are all those variables occurring in the zij with type Υ .
Finally, we have sets

tPT ::= {zT | P}

These are governed by

In the object language, we do not make any distinction. The latter is quite standard
in vernacular Z and the former ensures that the potential ambiguity is resolved
at the level of the syntax.
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P [z/t ]
t ∈ {z | P} ({}+)

t ∈ {z | P}
P [z/t ]

({}−)

For clarity of presentation we shall use the meta-variable C (etc.) for sets
(terms of power type), and S (etc.) for sets of schema type. The latter are, as
we have seen, the schemas.

We employ the notation b.P and b.t (generalising binding selection), which
is adapted from [67]. Suppose that {· · ·zi · · · } is the alphabet set of t ; the
following equation then holds:

t .P = P [· · · zi · · · / · · · t .zi · · · ]

3.3 The Formulae of ZC

The formulae of ZC delineate a typed bounded predicate logic:

P ::= false | tT = tT | tT ∈ C P T | ¬P | P ∨ P | ∃ zT ∈ C P T • P

The logic of ZC is classical, so the remaining logical operations are available
by definition. We also, as usual, abbreviate ¬ (t ∈ C ) to t �∈ C .

A crucial observation is the unicity of types: every term of ZC has a unique
type. We can make great use of this observation. It enables us to remove type
decoration in most circumstances.

The logic for the propositions is then standard:

P0

P0 ∨ P1

(∨+
0 )

P1

P0 ∨ P1

(∨+
1 )

P0 ∨ P1 P0 � P2 P1 � P2

P2

(∨−)

P � false
¬P

(¬+)
P ¬P
false

(false+) ¬¬P
P

(¬−)
false
P

(false−)

P [z/t ] t ∈ C
∃ z ∈ C • P (∃+

)
∃ z ∈ C • P0 y ∈ C ,P0[z/y] � P1

P1

(∃−)

The eigenvariable y may, as usual, occur free neither in C ,P0norP1 nor in
any other assumption.

Γ,P � P
(ass)

t = t (ref)
t0 = t1 P [z/t0]

P [z/t1]
(sub)

t0 ≡ t1
t0 = t1

(ext)

where
t0 ≡ t1 =df ∀ z ∈ t0 • z ∈ t1 ∧ ∀ z ∈ t1 • z ∈ t0
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The transitivity of equality and numerous equality congruence rules for the
various term-forming operations are all derivable in view of the rule (sub). In
particular, we can prove that set equality in ZC is extensional.

As an example of the rules for free types, we can give the following spe-
cialisations for N, as defined above:

zero ∈ N

n ∈ N

succ n ∈ N

n ∈ N

zero �= succ n

succ n = succ m
n = m

P [n/zero] m ∈ N,P [n/m] � P [n/succ m]

n ∈ N � P

The following weakening rule is admissible and is incorporated within the
system:

Γ � P1

Γ,P0 � P1

(wk)

Finally, a term of type T always belongs to the carrier set of T :

tT ∈ T

3.4 Consistency

The only interesting issue is the interpretation of schema types and bindings,
including binding selection and filtering.

Let B be an I -indexed family of sets over a suitable universe U .13 We can
define a dependent function space which is suitable for our purposes as follows:

Π(i∈I ).B(i) =df {f ∈ I → U | (∀ i ∈ I )(f (i) ∈ B(i))}
We can harness this to interpret the schema types of ZC :

�
[· · · zTi

i · · · ]
�

=df Π(x∈I ).B(x )

where I =df {· · ·zi · · · } and B(zi) =df �Ti�. The observations zi can be
modelled in ZF in any number of ways, for example as finite ordinals. The
only important point is that they must be distinguishable from one another.
Then bindings, binding projection and filtered terms are defined as follows:

�〈| · · · zi�ti · · · |〉� =df f0
�t .z� =df �t� (z)
�t � T � =df f1

where f0 ∈
�
[· · · zTi

i · · · ]
�
, f0(zi) = �ti�, f1 ∈ �T � and f1(z) = �t� (z) when

z ∈ α[D ]. Further detail is provided in [38] and (for free types) in [35].

13 F (ω) is a suitable universe: see [38] for further details.
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3.5 An Alternative Approach

The system we have described is a “Church-style” theory, in which the syn-
tax formation rules are controlled by typing considerations and where terms
explicitly carry their types. The unicity of types does simplify matters, permit-
ting types to be omitted in most circumstances. The meta-language is imposed
upon to carry the burden of this. Naturally, a machine implementation of the
logic would need to consider these issues explicitly.

An alternative “Curry-style” approach was described in [38, 39]. In that
presentation neither terms nor propositions were type-controlled. The logic, in
that context, comprises two linked theories of typing and inference. This has
the effect of making the logic as a whole considerably more complex, though
the added explicit information might well be more convenient as a basis for a
machine implementation.

In the “Curry-style” system one has additional judgements of the form
Γ 
 P prop and Γ 
 t : T . There are then typing rules such as

t0 : T t1 : T
t0 = t1 prop (C=)

t : T C : PT
t ∈ C prop

(C∈)

These rules ensure that well-formed equality statements are between terms of
the same type and that well-formed membership propositions are also appro-
priately typed.

We also have rules for non-atomic propositions such as

P0 prop P1 prop
P0 ∨ P1 prop

(C∨)
x : T 
 P prop
∃ x : T • P prop

(C∃)

With these in place, the logical rules can be stated. These typically make
reference to typing judgements. For example,

Γ � P0 Γ− 
 P1 prop
Γ � P0 ∨ P1

(∨+
0 )

and
Γ � P [z/t ] Γ− 
 t : T

Γ � ∃ z : T • P
(∃+)

In these rules, the context Γ− represents the restriction of the context Γ to
its typing assertions only.

In this version of the logic, one has the following critical result concerning
syntactic consistency:

If Γ � P then Γ− 
 P prop

This is proved by induction on the structure of the derivation Γ � P .
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4 Conservative Extensions

The base logic ZC contains only rudimentary features of Z (schema types
and bindings). We have, in Sect. 2, indicated in overview how ZC can host
more advanced features by means of conservative extensions. This approach
is simple and attractive; in particular, the question of the consistency of more
complex features is automatic.

4.1 Schema Sets and Atomic Schemas

Let T = [· · · zTi

i · · · ]. The syntax of basic schemas is

SP T ::= [· · · zi : C P Ti

i · · · ] | [SP T | P ]

These are the schema sets and atomic schemas, respectively. As usual, we
shall write schemas of the form [[· · ·zi : Ci · · · ] | P ] as [· · · zi : Ci · · · | P ].
We allow the obvious generalisation of our alphabet operator to atomic state

schemas and state schema sets: α[S | P ] =df αS and α[· · · zi : C P Ti

i · · · ] =df

α[· · · zTi
i · · · ]. Then these two basic schemas can be interpreted in ZC as fol-

lows:14

[ · · · zi : Ci · · · ] =df {x | · · · ∧ x .zi ∈ Ci ∧ · · · }
and

[S | P ] =df {z ∈ S | z .P}
As we have already seen, the rules for schema sets are

· · · ti ∈ Ci · · ·
〈| · · · zi�ti · · · |〉 ∈ [· · · zi : Ci · · · ] ([]+)

t ∈ [· · ·zi : Ci · · · ]
t .zi ∈ Ci

([]−)

and, for atomic schemas,

t ∈ S t .P
t ∈ [S | P ]

(S+)
t ∈ [S | P ]

t ∈ S (S−
0 )

t ∈ [S | P ]

t .P (S−
1 )

There is an important point to be made regarding the interpretation of
schemas: the proposition P appearing in a schema is drawn from a more
permissive grammar of propositions than that established for ZC . In partic-
ular, propositions in that context can contain observations as terms. A simple
example will suffice to illustrate this.

14 Strictly speaking, we should indicate (both here and below) the translation ex-
plicitly, writing for example

�[S | P ]� =df {z ∈ �S� | z .P}
We shall not bother with this as the intention is always quite obvious, and the
use of the extra brackets is notationally very burdensome.
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Example 6. Consider the following schema:

Inc
v , v ′ : N

v ′ = v + 1

Consultation of the syntax of ZC will reveal that the proposition v ′ = v +1 is
not a ZC proposition, because the observations v and v ′ are not terms of ZC .
This generality in the specification language is perfectly acceptable in view of
the interpretation of schemas. Pursuing this example, the ZC interpretation
is

{z [vN,v ′N
] | z .(v ′ = v + 1)}

which simplifies to

{z [vN,v ′N
] | z .v ′ = z .v + 1}

Note that z .v ′ = z .v +1 is a bona fide proposition in ZC . In all cases, a schema
proposition P becomes z .P under the interpretation and z .P will always be
well defined.

4.2 θ-Terms

The special Z term θ is interpreted as described in Sect. 2.2:

θSP[···zTii ··· ] =df 〈| · · · zi�zi · · · |〉

In the primed case we have θS ′ = θ′S , where

θ′SP[···zTii ··· ] =df 〈| · · · zi�z′i · · · |〉

It is also worth noting that these special terms are not in themselves ZC terms,
but will translate under the interpretation appropriately. Another example is
the following.

Example 7. Consider the following schemas:

Example
∆S

θS = θS ′

where

S
v : N
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Under the above interpretation, we have

{z [vN,v ′N
] | z .(θS = θS ′)}

and this simplifies to

{z [vN,v ′N
] | z .v = z .v ′}

This is as expected, and the proposition z .v = z .v ′ contains well-formed ZC
terms.

4.3 Schema Disjunction

When the schemas S0 and S1 have the types P T0 and PT1, the schema ex-
pression S0 ∨ S1 has the type P(T0�T1). The definition of schema disjunction
in ZC is

SP T0

0 ∨ SPT1

1 =df {zT0�T1 | z .∈ S0 ∨ z
.∈ S1}

This leads to the following rules:

t
.∈ S0

t ∈ S0 ∨ S1

(S+

∨0
)

t
.∈ S1

t ∈ S0 ∨ S1

(S+

∨1
)

t ∈ S0 ∨ S1 t
.∈ S0 � P t

.∈ S1 � P
P

(S−
∨ )

4.4 Schema Conjunction

When the schemas S0 and S1 have the types PT0 and P T1, the schema expres-
sion S0 ∧ S1 has the type P(T0 � T1). The definition of schema conjunction
in ZC is, as we have seen,

SP T0

0 ∧ SPT1

1 =df {zT0�T1 | z .∈ S0 ∧ z
.∈ S1}

and the rules are

t
.∈ S0 t

.∈ S1

t ∈ S0 ∧ S1

(S+

∧ )
t ∈ S0 ∧ S1

t
.∈ S0

(S−
∧0

)
t ∈ S0 ∧ S1

t
.∈ S1

(S−
∧1

)

4.5 Schema Negation

Schema negation is straightforward:

¬SP T =df {zT | z �∈ S}
These rules follow:

t �∈ S
t ∈ ¬S (S+¬ )

t ∈ ¬S
t �∈ S

(S−¬ )
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4.6 Schema Inclusion

In addition, our notion of atomic schemas combines with schema conjunction
to provide an immediate treatment of schema inclusion by interpreting the
separation of declarations in a schema as schema conjunction. For example,
the schema [z : T ; S | P ] is just [[z : T ] ∧ S | P ], and so on.

4.7 Schema Existential Hiding

If the schema S has the type PT1 and [zT0 ] 	 T1, then the type of the schema
expression ∃ z : T0 • S is P(T1 − [zT0 ]). Existentially quantified schemas are
interpreted in ZC as follows:

∃ z : T0 • SP T1 =df {x ∈ T1 − [zT0 ] | ∃ y ∈ T1 • y ∈ S ∧ x = y � (T1 − [zT0 ])}
These logical rules then follow:

t ∈ S
t

.∈ ∃ z : T • S
(S+

∃ )

t ∈ ∃ z : T • S y ∈ S , y .
= t � P

P
(S−

∃ )

with the usual side-conditions on y.

4.8 Schema Composition

In this and the next section, we shall consider operation schemas, that is,
those schemas whose type is PT , where T has the form T in � T out′ , and
where T in contains declarations of all before observations and T out′ contains
declarations of all after observations. We shall also need to refer to T out , the
co-type of T out′ . We shall use the meta-variable U when we are specifically
referring to operation schemas.

Note that the types T in and T out′ are always disjoint. We can therefore
write the bindings belonging to U in the form t0 � t ′1, where t0 has the type
T in , t ′1 has the type T out′ , and the star represents binding concatenation,
which will be defined only in circumstances in which its arguments have non-
overlapping types. This operation can be raised to sets:

C0 � C1 =df {z0 � z1 | z0 ∈ C0 ∧ z1 ∈ C1}
For schema composition, we present only a special case. For the general case
(which is substantially more complex) and for related operations, such as
schema piping, see [35]. Suppose T out

0 = T in
1 . Then,

U P(Tin
0

�Tout′
0

)

0
o
9 U P(Tin

1
�Tout′

1
)

1 =df { (z0 � z ′
1)

Tin
0

�Tout′
1 |

∃ yTout′
0 • z0 � y ′ ∈ U0 ∧ y � z ′

1 ∈ U1}
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The rules are then

t0 � t ′2 ∈ U0 t2 � t ′1 ∈ U1

t0 � t ′1 ∈ U0
o

9 U1

(U+
o
9

)

t0 � t ′1 ∈ U0
o

9 U1 t0 � y ′ ∈ U0, y � t ′1 ∈ U1 � P
P

(U−
o

9

)

The usual side-conditions apply to the eigenvariable y.

4.9 Schema Preconditions

We can introduce the idea of the precondition of an operation schema (essen-
tially the domain of the partial relation that the schema denotes).

Let T in 	 V . Then,

Pre U xV =df ∃ z ∈ U • x =Tin z

This leads to the following rules:

t0 ∈ U t0 =Tin t1
Pre U t1

(Pre+)
Pre U t y ∈ U , y =Tin t � P

P
(Pre−)

with the usual side-conditions on y.
For later convenience, the notion of a precondition is introduced as a pred-

icate. In vernacular Z, the precondition is a schema (a set of bindings). This

is easily recovered when necessary as {zTin | Pre U z}.
The reader interested in pursuing these issues in more depth, for example

for more general operations such as schema-level quantification and generic
schemas, should consult [35, 38, 39] which contain more detail.

4.10 Pause for Breath . . .

We now move into the final, though the largest, part of this chapter: First
covering applications of the logic and then investigating a range of topics which
build still further on the mathematical basis. Once Z has been established as a
specification logic, it becomes possible to address new issues and characteristic
properties in a systematic and integrated manner. We shall begin with the
equational logic of Z and the precondition logic for schema expressions. After
this, we tackle the crucial topic of refinement. With all this in place, it becomes
possible to investigate the monotonicity (or otherwise) of the schema calculus
operators with respect to refinement.
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5 Equational Logic

It is interesting to note that the fundamental relation of Z is, in fact, equality.
So far as schemas are concerned, this is essentially equality of the partial
relations which schemas denote.

In the absence of a logic, the informal explanation of schema operators has
often been given in terms of certain equalities.

Example 8. It is the case that

[T0 | P0] ∧ [T1 | P1] = [T0 � T1 | P0 ∧ P1]

Note that this equality is not definitional. In the context of the logic, it should
be (and indeed is) derivable. This, and all other expected schema equations,
are derivable in the schema logic described in Sect. 3. By way of example,
consider the expected equation for negated schemas,

¬[T | P ] = [T | ¬P ]

This is the proof: the result follows, by the rule (ext), from these two deriva-
tions:

t ∈ ¬[T | P ]

t �∈ [T | P ]
(S−

¬ )

¬(t ∈ T ∧ t .P)

t �∈ T ∨ ¬t .P

t �∈ T
(1)

tT ∈ T

false

t ∈ [T | ¬P ]

¬t .P
(1)

tT ∈ T

t ∈ [T | ¬P ]
(S+)

t ∈ [T | ¬P ]
(1)

and
t ∈ [T | ¬P ]

¬t .P
(S−

1 )
t ∈ [T | P ]

t .P
(S−

1 )

false

t �∈ [T | P ]

t ∈ ¬[T | P ]
(S+

¬ )

6 Precondition Logic

We considered the concept of schema preconditions in Sect. 4.9. That general
logical account can be combined with the logic of the schema calculus to
provide a logic of schema preconditions for all compound schemas.

6.1 The Precondition for Conjunction Schemas

In general, the precondition of a conjunction of operations is not the conjunc-
tion of the preconditions of the individual constituents [64]. This is a direct



510 M C Henson, M Deutsch and S Reeves

consequence of the underlying “postcondition only” approach that Z takes (in
contrast to other notations such as B [1] and the Refinement Calculus [48]).

Let i ∈ {0, 1}; the following elimination rule is then derivable for the
precondition of conjoined schemas:

Pre (U0 ∧ U1) t
Pre Ui t

(Pre−∧i
)

6.2 The Precondition for Disjunction Schemas

The analysis of the precondition of disjoined operations is more straightfor-
ward. Let i ∈ {0, 1}; the following introduction and elimination rules for the
precondition of the disjunction of schemas are then derivable:

Pre Ui t
Pre (U0 ∨ U1) t

(Pre+

∨i
)

Pre (U0 ∨ U1) t Pre U0 t � P Pre U1 t � P
P

(Pre−∨ )

With these in place, we can easily prove the full distributivity of the precon-
dition over disjunction:

Pre (U0 ∨ U1) t ⇔ Pre U0 t ∨ Pre U1 t

6.3 The Precondition for Composition

We shall deal with instances of composition where the operation schema ex-
pression U0

o
9 U1 has the type P(T0 � T ′

1) and where U0 is of type P(T0 � T ′
2)

and U1 is of type P(T2�T ′
1). The following introduction and elimination rules

for the precondition of composed operation schemas are derivable:

t0 � t ′1 ∈ U0 Pre U1 t1
Pre (U0

o

9 U1) t0
(Pre+

o

9

)

Pre (U0
o
9 U1) t0 Pre U1 y, t0 � y ′ ∈ U0 � P

P
(Pre−o

9

)

The usual side-conditions apply to the eigenvariable y.
The following additional rule is derivable for the precondition of a compo-

sition.

Lemma 1.
Pre (U0

o
9 U1) t0

Pre U0 t0

�
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6.4 The Precondition for the Existential Quantifier

In this case we consider the simultaneous hiding of an observation and its
co-observation in an operation. Let z (and z′) have the type T z. Then we can
derive the following rules:

Pre U t
Pre (∃ z, z′ : T z • U ) t

(Pre+

∃ )

Pre (∃ z, z′ : T z • U ) t Pre U y, y .
= t � P

P
(Pre−∃ )

Note that the usual side-conditions apply to the eigenvariable y. Further de-
tail, including a treatment of other schema operations, can be found in [24].

7 Operation Refinement

After introducing a conservative extension of ZC within which to undertake
our analysis, we provide four distinct notions of refinement and then compare
them. This serves to illuminate them all, particularly the notion based on
what we shall call the Woodcock completion which is the de facto standard
for Z.

7.1 The Theory Z⊥
C

The standard total correctness theory of refinement (also permitting weak-
ening of preconditions) involves the process of relational completion (see, for
example, Chapter 16 of [68]). This completion is often called the lifted totali-
sation and introduces an additional element, usually written ⊥ (see Sect. 7.4
below). Such a value must be separated from the interpretation of Z, and this
is easily achieved by introducing a simple ZC theory which we call Z⊥

C . In this
extended theory, we introduce new constants ⊥T for every type T : types thus
equipped are usually called “lifted” types. There are, additionally, a number
of axioms which ensure that all the new ⊥T values interact properly:

〈| z0� ⊥T0 · · · zn� ⊥Tn |〉 =⊥[z
T0
0 ···zTnn ]

(⊥T0 ,⊥T1) =⊥T0×T1

{zT | z =⊥T} =⊥PT

For example,

⊥[z
T0
0 ···zTnn ] .zi =⊥Ti (0 ≤ i ≤ n)

These are the only axioms concerning these terms; hence, the term-forming
constructions are non-strict with respect to the ⊥T values.
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Natural carriers for each type (sets which exclude ⊥) are then easily de-
fined by closing,

Υ =df {zΥ | z �=⊥}
under the type-forming operations. These are then used to establish the (⊥-
free) schema logic, as described in Sect. 3 above. When we are working in this
more general framework, we sometimes need the following lemma.

Lemma 2. ⊥∈ U
false

Pre U t
t �=⊥

�

Further details, including the fact that the theory Z⊥
C is conservative over ZC ,

can be found in [23].

7.2 F-Refinement

To a logician, a specification resembles a theory; so a natural question is: what
are the models of the theory? A computer scientist may ask a closely related
question: when is a program an implementation of the specification? We shall,
in this section, consider deterministic programs and model them as (total)
functions. We do this via a standard expedient of introducing a special value
⊥, which might represent some sort of unwelcome behaviour. Such behaviour
might be non-termination but it need not, and nothing we shall do with this
value commits us to that interpretation. We shall pronounce ⊥ the abortive
value. In [68] it is referred to as undefined, which is, we feel, unfortunate in
the context of partial relations; we shall have much more to say about this
in Sect. 8.6. In order to introduce this value into the analysis, the technical
development below takes place in the extended theory Z⊥

C .
From the logical perspective, we are interested in all the models of a theory,

so given a putative model g and a theory U , we would be inclined to write

g |= U

to represent the statement that g is a model of U . Within our application
area in computer science, we might prefer to read this as a relation of imple-
mentation. To signal this interpretation, we shall in fact write this judgement
as

g � U

to be pronounced “g implements (is an implementation of) U ”.
Now, an operation schema has been modelled as a partial relation (think

of each binding in the schema as being one “tuple” of the relation – it may
be that not all possible bindings for the type occur and, hence, as a relation,
the schema, a set of bindings, should be considered as partial), and so we
need to consider how an implementation behaves outside the precondition
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of the schema (the domain of the underlying relation). There are degrees
of freedom, but here we shall permit what we call chaotic models.15 More
exactly, we understand silence in the specification to be permission for an
implementation to behave in any arbitrary manner, including the abortive
behaviour ⊥. In other respects, we shall expect a model (an implementation)
to produce a result which is in the relation whenever it is supplied with an
input inside the precondition. This leads to the following definition of the
modelling (implementing) relation.

Definition 1.

g �f U =df (∀ z ∈ T in
⊥ • Pre U z ⇒ z � (g z )′ ∈ U ) ∧ g ∈ T in

⊥ → T out′
⊥

We can then prove the following.

Proposition 1. The following introduction and elimination rules are deriv-
able:

z ∈ T in
⊥ ,Pre U z � z � (g z )′ ∈ U g ∈ T in

⊥ → T out′
⊥

g �f U
(�+

f )

where z is a fresh variable, and

g �f U Pre U t t ∈ T in
⊥

t � (g t)′ ∈ U
(�−

f0
)

g �f U

g ∈ T in
⊥ → T out′

⊥
(�−

f1
)

�

This is sufficient technical development to allow us to explore refinement: when
is U0 a refinement of U1? A reasonable answer is: when any implementation
of U0 is also an implementation of U1. After all, we wish to be able to replace
any specification U1 by a refinement U0, and if all potential implementations
of the latter are implementations of the former, we are quite safe. Thus we
are led to the following definition.

Definition 2.

Û =df {z | z �f U }
We then have F-refinement (“F” for function).

Definition 3.

U0 �f U1 =df Û0 ⊆ Û1

Obvious introduction and elimination rules for F-refinement follow from this
definition.

15 There is an obvious alternative, based on abortive models or what in [28] is effec-
tively the partial model. This is a large and separate topic; there is no more on
this here.
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7.3 S-Refinement

In this section we introduce a purely proof-theoretic characterisation of re-
finement, which is closely connected to refinement as introduced by Spivey
in, for example, [56] and as discussed in [45, 52]. In those contexts we do not
so much have an alternative notion of refinement as two sufficient conditions
(essentially the premises of the introduction rule in Proposition 2 below). By
adding the two elimination rules we add necessary conditions, and thus for-
malise an independent theory. There is also a connection with Theorem 3.1.2
of [40] (page 77), although that analysis concerns the two-predicate designs
of UTP or Refinement Calculus (syntactic preconditions) rather than the
single-predicate specifications of a language such as Z (logical preconditions).

This notion is based on two basic observations regarding the properties
one expects in a refinement: first, that a refinement may involve the reduction
of non-determinism, and second, that a refinement may involve the expansion
of the domain of definition. Put another way, we have a refinement providing
that postconditions do not weaken (we do not permit an increase in non-
determinism in a refinement) and that preconditions do not strengthen (we
do not permit requirements in the domain of definition to disappear in a
refinement).

This notion can be captured by forcing the refinement relation to hold
exactly when these conditions apply. S-refinement, named for Mike Spivey,
is written U0 �s U1 and is given by the definition that leads directly to the
following rules.

Proposition 2. Let z , z0, z1 be fresh variables.

Pre U1 z � Pre U0 z Pre U1 z0, z0 � z ′
1 ∈ U0 � z0 � z ′

1 ∈ U1

U0 �s U1

(�+

s )

U0 �s U1 Pre U1 t
Pre U0 t

(�−
s0

)

U0 �s U1 Pre U1 t0 t0 � t ′1 ∈ U0

t0 � t ′1 ∈ U1

(�−
s1

)

�

This theory does not depend on, and makes no reference to, the value ⊥. It
can be formalised in the core theory ZC .

7.4 W•-Refinement

Our third notion of refinement is taken directly from the literature [68]. It is
based on a relational completion operator due to Woodcock. For notational
convenience we shall write T � for the set T in

⊥ � T out′
⊥ . The lifted totalisation

of a set of bindings (Woodcock completion) can be defined as follows.
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Definition 4.

•
U =df {z0 � z ′

1 ∈ T � | Pre U z0 ⇒ z0 � z ′
1 ∈ U }

Proposition 3. The following introduction and elimination rules are deriv-
able for lifted totalised sets:

t0 � t ′1 ∈ T � Pre U t0 � t0 � t ′1 ∈ U

t0 � t ′1 ∈ •
U

(•+)

and
t0 � t ′1 ∈ •

U Pre U t0
t0 � t ′1 ∈ U

(•−0 )
t0 � t ′1 ∈ •

U
t0 � t ′1 ∈ T � (•−1 )

�

Note that it is sometimes useful to use the following version of the rule (•−0 ),
which is based upon disjunction elimination, rather than implication elimina-
tion.

Proposition 4.

t0 � t ′1 ∈ •
U ¬ Pre U t0 � P t0 � t ′1 ∈ U � P

P
(•−0 )

�

Lemma 3. The following are derivable:

U ⊆ •
U

(i)
⊥ ∈ •

U
(ii)

¬Pre U t0 t0 ∈ T in
⊥ t ′1 ∈ T out′

⊥

t0 � t ′1 ∈ •
U

(iii)

Proof (i) is trivial. For (ii), consider the following derivation:

⊥∈ T �
Pre U ⊥ (1)

y ∈ U
(2)

y =Tin⊥ (2)

false
(2)

⊥∈ U
⊥∈ U

(2)

⊥∈ •
U

(1)

For (iii), consider the following derivation:

t0 ∈ T in
⊥ t ′

1 ∈ T out′
⊥

t0 � t ′
1 ∈ T �

¬Pre U t0 Pre U t0
(1)

false

t0 � t ′
1 ∈ U

t0 � t ′
1 ∈ •

U

(1)
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�
Lemmas 3(i), (ii) and (iii) demonstrate that Definition 4 is consistent with the
intentions described in [68] chapter 16: the underlying partial relation is con-
tained in the completion, the abortive element is present in the relation and,
more generally, each value outside the precondition maps to every value in the
co-domain of the relation. Furthermore, the following rules, which are derived
from Lemma 3(iii), embodynon-strict lifting with respect to the abortive el-
ement and the fact that everything outside the precondition is mapped onto
the abortive value (as well as everything else in the co-domain of the relation).

Corollary 1.

t ′ ∈ T out′
⊥

⊥ �t ′ ∈ •
U

(i)
¬ Pre U t t ∈ T in

⊥

t� ⊥′∈ •
U

(ii)

�

W•-refinement, written U0 �w• U1, and named for Jim Woodcock, is defined
as follows.

Definition 5.

U0 �w• U1 =df

•
U0 ⊆

•
U1

Obvious introduction and elimination rules follow from this.

7.5 WP-Refinement

Our final theory of refinement is based on a weakest precondition interpre-
tation.16 In order to formalise this, we begin by introducing a notion of a
postcondition to complement the precondition we introduced earlier.

Definition 6.

Post U z0 =df {z ′
1 | z0 � z ′

1 ∈ U }

16 A weakest precondition semantics for Z is provided in [14], a paper based on the
semantics of Z to be found in the (then) draft Z standard [13] (now superseded by
[61]). It would be very interesting to investigate the relationship between the two
approaches, but that is beyond the scope of the current work. In passing we note
that the authors provide an interpretation over the syntax of Z (atomic operation
schema expressions), whereas we opt for one over the partial relational semantics
(sets of bindings). Generality (an interpretation over all schema expressions) is
obtained in two significantly different ways: in our approach it follows because
all schema expressions denote sets of bindings through the semantics; [14], on
the other hand, relies on the fact that all schema expressions may be written in
the form of an atomic schema. That, in turn, relies on the standard equational
logic of schemas. These considerations will become even more significant when
we examine monotonicity issues in Sect. 20.
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Note that this introduces a set, rather than a predicate. With this in place we
can introduce the weakest precondition interpretation of an operation schema.
Again, the specified postcondition (C in the definition below) is expressed as
a set rather than as a predicate.

Definition 7.

wp U C =df {z | Pre U z ∧ Post U z ⊆ C}

The reason why we choose to work with sets, rather than predicates, is simply
that it casts the technical material in a style similar to that of the models we
introduced earlier for F-refinement and W•-refinement, which also construct
sets from the underlying partial relations.

Proposition 5. The following introduction and elimination rules for the
weakest precondition of U are derivable:

Pre U t z ′ ∈ Post U t � z ′ ∈ C
t ∈ wp U C

where z is a fresh variable, and

t ∈ wp U C
Pre U t

t0 ∈ wp U C t ′1 ∈ Post U t0
t ′1 ∈ C

�

We can now define WP-refinement.

Definition 8.

U0 �wp U1 =df ∀C P Tout′ • wp U1 C ⊆ wp U0 C

Proposition 6. The following introduction and elimination rules for WP-
refinement are derivable:

z ∈ wp U1 C � z ∈ wp U0 C
U0 �wp U1

(�+

wp)

where z and C are fresh variables, and

U0 �wp U1 t ∈ wp U1 C

t ∈ wp U0 C
(�−

wp)

�

Lemma 4.
Pre U t

t ∈ wp U (Post U t)
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Proof.

Pre U t z ′ ∈ Post U t
(1)

t ∈ wp U (Post U t)
(1)

�
The reverse direction always holds, and so we have established that t ∈
wp U (Post U t) and Pre U t are equivalent.
�
These interpretations will be familiar from accounts such as [48], although it
is unusual to provide a proof-theoretic presentation in terms of introduction
and elimination rules. In addition, in [48], the preconditions and postcondi-
tions of specification statements are syntactic (explicitly given), rather than
logical (implicitly given) as they are in Z. Note that our interpretation does
not involve the value ⊥, and could therefore be formalised in ZC .

7.6 Questions . . .

What is the relationship between these four notions of refinement? In partic-
ular, can an exploration of that question shed any light on why the Woodcock
completion has been defined in just the way it has? What, in particular, is
the role of the value ⊥? Why is the lifting process non-strict with respect to
the “abortive” value? We shall begin with the first of these questions.

8 Four Equivalent Theories

In this section we demonstrate that our four theories of refinement are all
equivalent. In doing this we shall see clearly the critical role that the value ⊥
plays. We shall show that all judgements of refinement in one theory among
the refinements sanctioned by another. Such results will always be established
proof-theoretically. Specifically we shall show that the refinement relation of a
theory T0 satisfies the elimination rule (or rules) for refinement of another the-
ory T1. Since the elimination rules and introduction rules of a theory possess
the usual symmetry property, this is sufficient to show that all T0-refinements
are also T1-refinements.17

17 An alternative strategy would be to show that a similar property holds for the
introduction rule. In the refinement theories that we consider, there is only ever
a single introduction rule, and this suggests that this might be a more efficient
approach. However, there are as many premises to the introduction rule as there
are distinct elimination rules, so in the end the amount of work involved is essen-
tially the same. Moreover, by considering the elimination rules separately, we can
in some cases (see for example Sects. 8.4 and 8.6) isolate particular properties
and reasons underlying equivalence (or non-equivalence in other circumstances)
which highlight particular issues of interest.
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8.1 F-Refinement and W•-Refinement are Equivalent (in Z⊥
C +

AC)

R-Refinement

We begin this analysis by defining, by way of an intermediate stage, the set
of total functions compatible with an operation schema. This forms a bridge
between F-refinement and W•-refinement.

Definition 9.

U =df {z ∈ T in
⊥ → T out′

⊥ | z ⊆ •
U }

Then we have:

Definition 10. R-refinement is:

U0 �r U1 =df U0 ⊆ U1

with the usual introduction and elimination rules. We also define

g �r U =df g ∈ U

for later use.

8.2 R-Refinement and W•-Refinement are Equivalent

We begin by showing that R-refinement satisfies the W•-refinement elimina-
tion rule.

Proposition 7. The following rule is derivable:

U0 �r U1 t ∈
•

U0

t ∈
•

U1

Proof. The proof requires the axiom of choice (see the step labelled (AC)
below).

t ∈
•

U0

∃ g ∈ T in
⊥ → T out′

⊥ • t ∈ g ∧ g ⊆
•

U0

(AC)

δ....

t ∈
•

U1

t ∈
•

U1

(1)

where δ is

U0 	r U1

y ∈ T in
⊥ → T out′

⊥
(1)

y ⊆
•

U0

(1)

y ∈ U0

y ∈ U1

y ⊆
•

U1 t ∈ y
(1)

t ∈
•

U1
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�
From this we have the following theorem.

Theorem 1.
U0 �r U1

U0 �w• U1

Proof. This follows immediately, by (�+

w•), from Proposition 7.18

�
We now show that W•-refinement satisfies the R-refinement elimination rule.

Proposition 8.

U0 �w• U1 g ∈ U0

g ∈ U1

Proof.

g ∈ U0

g ∈ T in
⊥ → T out′

⊥

U0 	w• U1

g ∈ U0

g ⊆
•

U0 t ∈ g
(1)

t ∈
•

U0

t ∈
•

U1

g ⊆
•

U1

(1)

g ∈ U1

�

Theorem 2.
U0 �w• U1

U0 �r U1

�

Theorems 1 and 2 together demonstrate that W•-refinement and R-refinement
are equivalent.

8.3 R-Refinement and F-Refinement are Equivalent

In this case we show that the notions of implementation (rather than refine-
ment) are equivalent by the same strategy involving elimination rules. We first
establish that F-implementation implies R-implementation.

Proposition 9. The following rules are derivable:

g �f U

g ⊆ •
U

g �f U

g ∈ T in
⊥ → T out′

⊥
18 The proofs of such theorems are always automatic by the structural symmetry

between introduction and elimination rules. We shall not give them in future.
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Proof.
g �f U

g ∈ T in
⊥ → T out′

⊥ z0 � z ′
1 ∈ g

(1)

z0 � z ′
1 ∈ T �

δ0....
z0 � z ′

1 ∈ U

z0 � z ′
1 ∈ •

U

(2)

g ⊆ •
U

(1)

where δ0 is

g �f U Pre U z0
(2)

Pre U z0
(2)

z0 ∈ T in
⊥

z0 � (g z0)
′ ∈ U

δ1....
z ′
1 = (g z0)

′

z0 � z ′
1 ∈ U

and δ1 is
g �f U

g ∈ T in
⊥ → T out′

⊥ z0 � z ′
1 ∈ g

(1)

z ′
1 = (g z0)

′

The second rule is immediate.
�

Theorem 3.
g �f U
g �r U

�

Now we show that R-implementation implies F-implementation.

Proposition 10.

g �r U Pre U t t ∈ T in
⊥

t � (g t)′ ∈ U

g �r U

g ∈ T in
⊥ → T out′

⊥
Proof.

g �r U

g ⊆ •
U

g �r U

g ∈ T in
⊥ → T out′

⊥ t ∈ T in
⊥

t � (g t)′ ∈ g

t � (g t)′ ∈ •
U Pre U t

t � (g t)′ ∈ U

The second rule is immediate.
�

Theorem 4.
g �r U
g �f U

�

From Theorems 3 and 4, we see that the two notions of implementation are
equivalent. Hence, so are the two notions of refinement.
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8.4 W•-Refinement and S-Refinement are Equivalent

We begin by showing that W•-refinement satisfies the two S-refinement elim-
ination rules. First, the rule for preconditions is the following.

Proposition 11. The following rule is derivable:

U0 �w• U1 Pre U1 t
Pre U0 t

Proof. Consider the following derivation:

U0 	w• U1

¬Pre U0 t
(1)

Pre U1 t

t ∈ T in
⊥

t� ⊥′∈
•

U0

(1(ii))

t� ⊥′∈
•

U1 Pre U1 t

t� ⊥′∈ U1

false
(2)

Pre U0 t
(1)

�
Turning now to the second elimination rule in S-refinement, we have the fol-
lowing.

Proposition 12. The following rule is derivable:

U0 �w• U1 Pre U1 t0 t0 � t ′1 ∈ U0

t0 � t ′1 ∈ U1

Proof.

U0 	w• U1

t0 � t ′
1 ∈ U0

t0 � t ′
1 ∈

•
U0

(3(i))

t0 � t ′
1 ∈

•
U1 Pre U1 t0

t0 � t ′
1 ∈ U1

�

Theorem 5.
U0 �w• U1

U0 �s U1

�

We now show that S-refinement satisfies the W•-elimination rule.

Proposition 13.

U0 �s U1 t0 � t ′1 ∈
•

U0

t0 � t ′1 ∈
•

U1
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Proof.

t0 � t ′
1 ∈

•
U0

t0 � t ′
1 ∈ T �

U0 	s U1 Pre U1 t0
(1)

t0 � t ′
1 ∈

•
U0

U0 	s U1 Pre U1 t0
(1)

Pre U0 t0

t0 � t ′
1 ∈ U0

t0 � t ′
1 ∈ U1

t0 � t ′
1 ∈

•
U1

(1)

�

Theorem 6.
U0 �s U1

U0 �w• U1

�

Theorems 5 and 6 together establish that the theories of S-refinement and
W•-refinement are equivalent.

8.5 WP-Refinement and S-Refinement are Equivalent

We begin by showing that WP-refinement satisfies the two S-refinement elim-
ination rules. In these results we shall often use the fact that t ′1 ∈ Post U t0
and t0 � t ′1 ∈ U are equivalent without further comment. First we have the
rule for preconditions.

Proposition 14.
U0 �wp U1 Pre U1 t

Pre U0 t

Proof. Consider the following derivation:

U0 	wp U1

Pre U1 t

t ∈ wp U1 (Post U1 t)
(4)

t ∈ wp U0 (Post U1 t)

Pre U0 t

�
Now we have the second elimination rule.

Proposition 15. The following rule is derivable:

U0 �wp U1 Pre U1 t0 t0 � t ′1 ∈ U0

t0 � t ′1 ∈ U1
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Proof. Consider the following derivation:

U0 	wp U1

Pre U1 t0
t0 ∈ wp U1 (Post U1 t0)

(4)

t0 ∈ wp U0 (Post U1 t0) t0 � t ′
1 ∈ U0

t0 � t ′
1 ∈ U1

�

Theorem 7.
U0 �wp U1

U0 �s U1

�

We now show that every S-refinement is a WP-refinement.

Proposition 16.
U0 �s U1 t ∈ wp U1 C

t ∈ wp U0 C

Proof. Consider the following derivation:

U0 	s U1

t ∈ wp U1 C

Pre U1 t

Pre U0 t

t ∈ wp U1 C

U0 	s U1

t ∈ wp U1 C

Pre U1 t t � t ′
0 ∈ U0

(1)

t � t ′
0 ∈ U1

t ′
0 ∈ C

t ∈ wp U0 C
(1)

�

Theorem 8.
U0 �s U1

U0 �wp U1

�

Theorems 7 and 8 establish that WP-refinement and S-refinement are equiv-
alent.

8.6 Review

The model of schemas introduced in W•-refinement totalises the schema as a
set of bindings and also introduces the value ⊥, extending the domains and co-
domains accordingly. The totalisation stipulates chaotic behaviour outside the
precondition and additionally for the value ⊥. Why is it necessary to include
the new values? What are the consequences of totalisation without lifting?
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In [68], these questions are explicitly discussed.19 By way of explanation the
following particular schema

κ
x, x′ : N

x′ = 0

is considered. This denotes a total constant relation in the model. The au-
thors of [68] then illustrate carefully the fact that lifting ensures that schema
composition is strict with respect to chaotic behaviour.20 On the other hand,
totalisation without lifting leads to non-strict recovery from chaos. First we
introduce the chaotic specification.

Definition 11.

Chaos =df [T | false]

Now we describe the non-lifted totalisation, by ensuring that the values are
drawn only from the natural carrier set rather than the extension including
the abortive value.

Definition 12.

�
U =df {z ∈ T | Pre U z ⇒ z ∈ U }

Proposition 17 (due to Woodcock and Davies).

(i)
•

Chaos o

9

•
κ =df

•
Chaos

(ii)
�

Chaos o
9

�
κ =df κ

Proof. See [68], page 238.
�
It should be noted that the second of these results is contingent on the partic-
ular choice κ: it is not true in general. But this observation notwithstanding,
the interpretation of the results requires care. Chaos is described as represent-
ing undefinedness, or a run-time error being encountered whatever the initial
value. This is odd, since, in particular, Chaos permits the input ⊥ to result
in a well-defined output (lifting is non-strict with respect to ⊥). Chaos , as is
indicated by our nomenclature, is a relation that permits a chaotic relation-
ship between input and output. It is the relation {z0 � z ′

1 ∈ T � | z1 =⊥} that
would be closer to what the authors of [68] have in mind (since they refer to
⊥ as the undefined value).

19 The authors of [68] call the value ⊥ “undefined”, which is perhaps unfortunate
since this is also used with reference to values outside the domain of definition of
particular schemas. We shall continue to call it the “abortive” value for the time
being.

20 Note that this is strictness with respect to chaos, not the abortive value.
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W•-refinement is defined as the subset on the Woodcock completion; since
Chaos is the whole of T �, every schema refines it. In particular the identity
relation refines it, and this is the identity for composition. Hence we have21

κ = Identity o

9
κ � Chaos o

9
κ

for any κ, and this would appear not to be recovery from a run-time error,
but a natural consequence of the general permissiveness inherent in Chaos ,
indeed, a natural consequence of the fact that the Woodcock completion is
non-strict with respect to the abortive value.

Our analysis has, on the other hand, provided a very clear mathematical
explanation for lifting: with non-lifted totalisation it is not possible to prove
Proposition 11 (which requires explicit use of the value ⊥). Indeed, we can do
better: the following is an explicit counterexample.

Definition 13.

True =df [T | true]

Proposition 18.
�

True =
�

Chaos

�

It is an immediate consequence that the more permissive notion of refinement
does not, for example, insist that preconditions do not strengthen.

We have, however, only begun to provide answers to the natural questions
that arise. For example, although lifting appears to be necessary, why does it
have to be non-strict with respect to ⊥? Proposition 18 also raises a question:
why is there a distinction between implicit (Chaos) and explicit (True) per-

mission to behave? Note that in the Woodcock completion,
•

True �=
•

Chaos .

9 The Non-lifted Totalisation

In the previous section, we noted the asymmetry between implicit and explicit
chaos. Implicit chaos is more extensive; it permits abortive behaviour that
explicit chaos does not allow. This asymmetry seems inevitable if one is to
obtain a reasonable theory of refinement.22 This is, as we have shown, indeed
the case, unless we re-examine the nature of preconditions.

It seemed only natural to identify the notion of the precondition of a
schema with the domain of definition of the underlying relation. There is,
however, an alternative approach. Instead of taking a value to be in the pre-
condition when it is related to at least one element of the co-domain of the

21 At least when κ is, for example, total, and so when composition can be guaranteed
to be monotonic.

22 One might take S-refinement to establish minimal conditions.
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underlying relation, we could take the condition to be that a value is not
related to at least one element of the co-domain of the completed relation.
This anticipates the idea that a value which is not in the domain of definition
of the underlying relation will be related to all values in the co-domain af-
ter the relation is completed: it excludes from the precondition values in the
underlying relation which are already related to all values in the co-domain.

Surprisingly, this leads to a theory which can be formalised entirely in ZC
(it does not require lifting at all) and which is equivalent to the theories of
the previous section. In this way we show that, for operation refinement at
least, lifting of relations is not necessary if one wishes to establish a relational
completion semantics for refinement.

9.1 Preconditions Revisited

In this section we refer to the standard definition of a precondition as Pre0 in
order to contrast it clearly with a new definition.

Definition 14. Let T in 	 V .

Pre1 U zV =df ∃ x ′
0, x

′
1 ∈ T out′ • z � T in � x ′

0 �∈ U ∧ z � T in � x ′
1 ∈ U

There is a similarity to (but not quite an equivalence with) the total model
described in [28] (page 45). The interpretation of specifications as predicates in
that model makes use of a concept of a precondition similar to Pre1, although
this is not made explicit.

Proposition 19. The following introduction and elimination rules are deriv-
able for preconditions:

t � t ′0 �∈ U t � t ′1 ∈ U t ′0 ∈ T out′

Pre1 U t
(Pre+

1 )

Pre1 U t t � T in � y ′
0 �∈ U , t � T in � y ′

1 ∈ U , y ′
0 ∈ T out′ � P

P
(Pre−1 )

where y0 and y1 are eigenvariables.
�

The new notion of preconditions implies the old one.

Lemma 5. The following rule is derivable:

Pre1 U t
Pre0 U t

�
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9.2 W�-Refinement

The totalisation (non-lifted) of a set of bindings can be defined as follows.

Definition 15.

�
U =df {z0 � z ′

1 ∈ T | Pre1 U z0 ⇒ z0 � z ′
1 ∈ U }

Proposition 20. The following rules are derivable:

t0 � t ′1 ∈ T Pre1 U t0 � t0 � t ′1 ∈ U

t0 � t ′1 ∈ �
U

(�+)

t0 � t ′1 ∈ �
U Pre1 U t0

t0 � t ′1 ∈ U
(�−0 )

t0 � t ′1 ∈ �
U

t0 � t ′1 ∈ T
(�−1 )

�

Notice that the values in this completion range over the natural carrier set of
the type T .

Lemma 6.

U ⊆ �
U

(i) �
U ⊆ •

U
(ii)

¬ Pre0 U t0 t0 ∈ T in t ′1 ∈ T out′

t0 � t ′1 ∈ �
U

(iii)

Proof. For (ii), consider the following derivation:

t0 � t ′
1 ∈ �

U

t0 � t ′
1 ∈ T

t0 � t ′
1 ∈ T �

t0 � t ′
1 �∈ U

(2)
t0 � t ′

1 ∈ �
U

δ....
Pre1 U t0

t0 � t ′
1 ∈ U

false

t0 � t ′
1 ∈ U

(2)

t0 � t ′
1 ∈ •

U

(1)

where δ is

Pre0 U t0
(1)

t0 � t ′
1 �∈ U

(2)
t0 � y ′ ∈ U

(3)

t0 � t ′
1 ∈ �

U

t0 � t ′
1 ∈ T

t ′
1 ∈ T out′

Pre1 U t0
Pre1 U t0

(3)

�
W�-refinement is then defined as follows.

Definition 16.

U0 �w� U1 =df

�
U0 ⊆

�
U1

Obvious introduction and elimination rules are derivable.
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9.3 W�-Refinement and S1-Refinement are Equivalent

As we have seen, the abortive value was critical in showing that W•-refinement
and S-refinement are equivalent. Naturally, we need to assure ourselves that
W�-refinement and a modified version of S-refinement are equivalent. Let S1-
refinement be S-refinement in which all instances of Pre0 are replaced by
Pre1. We shall content ourselves with showing that W�-refinement satisfies
the S1-refinement elimination rule concerning preconditions. The remaining
elimination rule, and indeed the other direction of the equivalence proof, is
not significantly different from the proofs we provided earlier in Sect. 8.4.

Proposition 21. The following rule is derivable:

U0 �w� U1 Pre1 U1 t
Pre1 U0 t

Proof. Consider the following derivation:

Pre1 U1 t

δ....
t � y ′

0 ∈ U1 t � y ′
0 �∈ U1

(2)

false

t � y ′
1 �∈ U1 t � y ′

1 ∈ U1

(2)

false

false
(2)

Pre1 U0 t
(1)

where δ is

U0 	w� U1

¬ Pre1 U0 t
(1)

Pre1 U1 t

t ∈ T in y ′
0 ∈ T out′

(2)

t � y ′
0 ∈

�
U0

(6(iii))

t � y ′
0 ∈

�
U1 Pre1 U1 t

t � y ′
0 ∈ U1

�

9.4 W�-Refinement and W•-Refinement are Equivalent (in ZC)

We begin by showing that W�-refinement satisfies the W•-refinement elimi-
nation rule, for bindings that range over the natural carrier set.

Proposition 22. Let t0 � t ′1 be a binding with the property that

t0 � t ′1 ∈ T

The following rule is then derivable:
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U0 �w� U1 t0 � t ′1 ∈
•

U0

t0 � t ′1 ∈
•

U1

Proof. Consider the following derivation:

U0 	w� U1

t0 � t ′
1 ∈ T

t0 � t ′
1 ∈

•
U0

Pre1 U0 t0
(1)

Pre0 U0 t0
(5)

t0 � t ′
1 ∈ U0

t0 � t ′
1 ∈

�
U0

(1)

t0 � t ′
1 ∈

�
U1

t0 � t ′
1 ∈

•
U1

(6(ii))

�

Theorem 9. When W•-refinement is understood to range over the natural
carriers, we have

U0 �w� U1

U0 �w• U1

�

Likewise, we can show that W•-refinement satisfies the W�-refinement elimi-
nation rule.

Proposition 23. The following rule is derivable:

U0 �w• U1 t0 � t ′1 ∈
�

U0

t0 � t ′1 ∈
�

U1

Proof. Consider the following derivation:

t0 � t ′
1 ∈

�
U0

t0 � t ′
1 ∈ T

U0 	w• U1

t0 � t ′
1 ∈

�
U0

t0 � t ′
1 ∈

•
U0

(6(ii))

t0 � t ′
1 ∈

•
U1

Pre1 U1 t0
(1)

Pre0 U1 t0
(5)

t0 � t ′
1 ∈ U1

t0 � t ′
1 ∈

�
U1

(1)

�

In this case, a term cannot satisfy the premise t0 � t ′1 ∈
�

U0 without belonging
to the natural carrier, so no extra condition is necessary in this direction.
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Theorem 10.
U0 �w• U1

U0 �w� U1

�

For terms ranging over the natural carriers, then, the non-lifted and lifted
models are equivalent. Since W�-refinement can be formalised in ZC , and
since the carrier sets of ZC are the natural carriers of Z⊥

C , we may conclude
that we can formalise a form of W-refinement in ZC without moving to an
extended theory and introducing lifting. The penalty for this is the need for
a novel notion of a precondition.

10 The Strictly-Lifted Totalisation

A second question arising from our review was this: why is it necessary to
permit recovery from the abortive value in completing the relation? In order to
investigate this, we consider a final relational completion in which the relation
is lifted and totalised, but is strict with respect to abortive behaviour: ⊥ maps
only to ⊥.

Definition 17.

�

U =df {z0 � z ′
1 ∈ T � | Pre U z0 ⇒ z0 � z ′

1 ∈ U ∧ z0 =⊥⇒ z ′
1 =⊥′}

We obtain obvious introduction and elimination rules, which in this case we
shall not state explicitly. In addition, we have what are by now fairly standard
properties, as follows.

Lemma 7.

U ⊆ �

U
(i)

�

U ⊆ •
U

(ii)
⊥∈ �

U
(iii)

¬ Pre U t t ∈ T in
⊥

t� ⊥′∈ �

U
(iv)

¬Pre U t0 t0 ∈ T in t ′1 ∈ T out′
⊥

t0 � t ′1 ∈ �

U
(v)

Notice that in (v), t0 ranges over the natural carrier set, rather than the
extended carrier.
�

We now introduce W�-refinement.

Definition 18.

U0 �w�
U1 =df

�

U0 ⊆
�

U1

Again, we shall not state the obvious rules.
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10.1 W�-Refinement and W•-Refinement are Equivalent

In the usual manner, we shall show that W�-refinement satisfies the elimina-
tion rule of W•-refinement.

Proposition 24. The following rule is derivable:

U0 �w�
U1 t0 � t ′1 ∈

•
U0

t0 � t ′1 ∈
•

U1

Proof. Consider the following derivation:

t0 � t ′
1 ∈

•
U0

t0 � t ′
1 ∈ T �

U0 	w�
U1

δ0....

t0 � t ′
1 ∈

�

U0

t0 � t ′
1 ∈

�

U1 Pre U1 t0
(1)

t0 � t ′
1 ∈ U1

t0 � t ′
1 ∈

•
U1

(1)

where δ0 is

t0 � t ′
1 ∈

•
U0

U0 	w�
U1

δ1....

t0� ⊥′∈
�

U0

t0� ⊥′∈
�

U1 Pre U1 t0
(1)

t0� ⊥′∈ U1

false
(2)

t0 � t ′
1 ∈

�

U0

t0 � t ′
1 ∈ U0

(2)

t0 � t ′
1 ∈

�

U0

(7(i))

t0 � t ′
1 ∈

�

U0

(2) (4)

and where δ1 is

¬ Pre U0 t0
(2)

t0 � t ′
1 ∈

•
U0

t0 � t ′
1 ∈ T �

t0 ∈ T in
⊥

t0� ⊥′∈
�

U0

(7(iv))

Notice the use of the second version of the rule (•−0 ) (Proposition 4) in δ0.
�

Theorem 11.
U0 �w�

U1

U0 �w• U1

�
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Likewise, we prove that W•-refinement implies W�-refinement by proving
that W•-refinement satisfies the elimination rule of W�-refinement.

Proposition 25. The following rule is derivable:

U0 �w• U1 t0 � t ′1 ∈
�

U0

t0 � t ′1 ∈
�

U1

Proof. Consider the following derivation:

t0 � t ′
1 ∈

�

U0

t0 � t ′
1 ∈ T �

δ....

t0 � t ′
1 ∈

•
U1 Pre U1 t0

(1)

t0 � t ′
1 ∈ U1

t0 � t ′
1 ∈

�

U0 t0 =⊥ (1)

t ′
1 =⊥′

t0 � t ′
1 ∈

�

U1

(1)

where δ is

U0 	w• U1

t0 � t ′
1 ∈

�

U0

U0 	w• U1 Pre U1 t0
(1)

Pre U0 t0
(11)

t0 � t ′
1 ∈ U0

t0 � t ′
1 ∈

•
U0

(3(i))

t0 � t ′
1 ∈

•
U1

�

Theorem 12.
U0 �w• U1

U0 �w�
U1

�

11 Data Refinement (Forward)

The methods of data refinement in state-based systems are well established.
The conditions under which a transformation is a correct refinement step
can be summarised by two simulation-based refinement techniques: forward
simulation and backward simulation [17]. In this section, we revise these and
introduce some essential material underlying our investigation.
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Aop

Cop

S S

Forward Simulation

Aop

Cop

S S

Backward Simulation

Fig. 1: Forward-simulation and backward-simulation refinement techniques. Aop

and Cop represent the abstract and concrete operations, respectively, whereas S

represents the simulation. Note that a forward simulation is oriented (by composi-

tion) from the abstract to the concrete data space, and a backward simulation is

oriented in the opposite direction

A data simulation [68, 70] is a relation between an abstract data space
and a concrete counterpart. Data simulations23 underlie two refinement tech-
niques which enable us to verify data refinement, as shown by the two
semi-commuting diagrams in Fig. 1. Both the forward- and the backward-
simulation24 refinement techniques are known to be sound, but neither of
them is singly complete. However, they are known to be jointly complete [69].

In what follows, U0 will always be concrete and U1 abstract. We adopt
the approach taken in [16]: our concrete type is P(T0 � T ′

0) and the abstract
type is P(T1 � T ′

1). A forward simulation (abstract to concrete) is of type
P(T1 �T ′

0). In this way, a simulation is modelled as a set of bindings like any
other operation schema.

We shall need to incorporate the value ⊥ into a simulation used with
lifted-totalised operations (see Sect. 7.1 and [23, 25]). Naturally, Woodcock’s
chaotic totalisation [68] is unacceptable here, as this might enforce a link
between abstract and concrete states that are not supposed to be linked. The

23 The notion of simulation is overloaded in the literature. Various authors use it to
denote a certain refinement technique, whereas others use it to denote the retrieve
relation used in a certain refinement technique. In this chapter we use the word
“simulation” to specifically denote a retrieve relation. It will be explicitly stated
when it is used in other contexts.

24 Forward and backward simulations are also respectively known as downward and
upward simulations [17, 18, 30] owing to to their directions in the commuting
diagrams in Fig. 1.
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conventional approach [18,68] is to (non-strictly) lift25 ⊥ in the input set of the
simulation, thus retaining its partiality. This leads to the following definition.

Definition 19 (Non-Strictly Lifted Forward Simulation).

◦
SP(T1�T ′

0
) =df {z1 � z ′

0 ∈ T1⊥ � T ′
0⊥ | z1 �=⊥⇒ z1 � z ′

0 ∈ S}
The following introduction and elimination rules are then derivable.

Proposition 26.

t1 � t ′0 ∈ T1⊥ � T ′
0⊥ t1 �=⊥ � t1 � t ′0 ∈ S

t1 � t ′0 ∈ ◦
S

(◦+) t1 � t ′0 ∈ ◦
S t1 �=⊥

t1 � t ′0 ∈ S
(◦−0 )

t1 � t ′0 ∈ ◦
S

t1 � t ′0 ∈ T1⊥ � T ′
0⊥

(◦−1 )

�

Lemma 8. The following additional rules are derivable for non-strictly lifted
simulations:

S ⊆ ◦
S

(i)
⊥∈ ◦

S
(ii)

t ′ ∈ T ′
0⊥

⊥ �t ′ ∈ ◦
S

(iii) t1� ⊥′∈ ◦
S

t1 =⊥ (iv)

�

Lemmas 8(i—iv) demonstrate that Definition 19 is consistent with the in-
tentions described in [18, 68]: the underlying partial relation is contained in
the lifting, the value ⊥ is present in the relation and is mapped onto every
after-state, and no other initial state is so. This raises an immediate question:
why does the lifting of the simulation have to be non-strict with respect to
⊥? This issue was not explored in [18, 68], where the non-strict lifting of the
simulation is taken as self-evident. We shall gradually provide an answer to
this question in the remainder of this chapter. To do this, we shall need a
definition of a strictly-lifted forward simulation.

Definition 20 (Strictly-lifted Forward Simulation).

➞

SP(T1�T ′
0
) =df {z1 � z ′

0 ∈ T1⊥ � T ′
0⊥ | (z1 �=⊥⇒ z1 � z ′

0 ∈ S ) ∧
(z1 =⊥⇒ z ′

0 =⊥′)}
25 Lifting signifies mapping the value ⊥ of the input set of the relation onto all the

states of its output set. In general, the notion of strictness discussed here is with
respect to ⊥; therefore, strict lifting denotes mapping ⊥ onto only its output
counterpart.
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Obvious introduction and elimination rules follow from this.

Lemma 9. The following additional rules are derivable for strictly-lifted sim-
ulations:

S ⊆ ➞

S
(i)

➞

S ⊆ ◦
S

(ii)
⊥∈ ➞

S
(iii)

t1� ⊥′∈ ➞

S
t1 =⊥ (iv)

t1 � t ′0 ∈ ➞

S t ′0 �=⊥′

t1 � t ′0 ∈ S
(v)

�

Lemmas 9(iv) and (v) embody the strictness captured by definition 20: if the
after-state is ⊥ then the initial state must also be ⊥, and if the after-state is
not ⊥ then the initial state is not either.

12 Four (Forward) Theories

In Sect. 7 (see also [23, 25]) we investigated operation refinement (that is
the degenerate case of data refinement in which simulations are identity func-
tions) for specifications whose semantics is given by partial-relation semantics.
We compared three characterisations of operation refinement : S-refinement, a
proof-theoretic characterisation closely connected to refinement as introduced
by Spivey [56]; W•-refinement, based on Woodcock’s relational completion
operator [68]; and W�-refinement, based on a strict relational completion op-
erator (see Sect. 10). We proved that all these refinement theories are equiv-
alent. The investigation also illuminated the crucial role of ⊥ in the topic of
total-correctness operation refinement.

In this section, we provide four distinct notions of data refinement, based
on the notions of operation refinement described above and generalised to
forward-simulation data refinement. We shall then go on to compare them,
thus providing an investigation complementary to that given in Sect. 7 (see
also [23, 25]).

12.1 SF-Refinement

In this section, we introduce a purely proof-theoretic characterisation of
forward-simulation refinement, which is closely connected to the sufficient re-
finement conditions introduced by, for example, Josephs [43], King [45], Wood-
cock [68, p. 260] (referred to there as “F-corr”) and Derrick and Boiten [18, p.
90]. These conditions correspond to the premises of our introduction rule for
SF-refinement.

This generalisation of S-refinement (Sect. 7.3) is based on two properties
expected in a refinement: that postconditions do not weaken (we do not permit
an increase in non-determinism in a refinement) and that preconditions do
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not strengthen (we do not permit requirements in the domain of definition to
disappear in a refinement). In this case these two properties must hold in the
presence of a simulation.

This notion can be captured by forcing the refinement relation to hold

exactly when these conditions apply. SF-refinement is written U0

s

�sf U1 (U0

SF-refines U1 with respect to the simulation S )26 and is given by the following
ZC definition.

Definition 21.

U0

s

�sf U1 =df (∀ z0, z1 • z1 � z ′
0 ∈ S ∧ Pre U1 z1 ⇒ Pre U0 z0) ∧

(∀ z2, x0, x1 • Pre U1 x1 ∧ x0 � z ′
2 ∈ U0 ∧ x1 � x ′

0 ∈ S
⇒ ∃ y • x1 � y ′ ∈ U1 ∧ y � z ′

2 ∈ S )

This leads directly to the following rules.

Proposition 27. Let x0, x1, z0, z1, z2 be fresh variables.

z1 � z ′
0 ∈ S ,Pre U1 z1 � Pre U0 z0

Pre U1 x1, x0 � z ′
2 ∈ U0, x1 � x ′

0 ∈ S � x1 � t ′ ∈ U1

Pre U1 x1, x0 � z ′
2 ∈ U0, x1 � x ′

0 ∈ S � t � z ′
2 ∈ S

U0 �sf U1

(�+

sf )

U0 �sf U1 Pre U1 t1 t1 � t ′0 ∈ S

Pre U0 t0
(�−

sf0
)

U0 �sf U1

Pre U1 t1
t0 � t ′2 ∈ U0

t1 � t ′0 ∈ S
t1 � y ′ ∈ U1, y � t ′2 ∈ S � P

P
(�−

sf1
)

The usual side-conditions apply to the eigenvariable y.
�

This theory does not depend on, and makes no reference to, the value ⊥; it is
formalised in the theory ZC . We take SF-refinement as normative: this is our
prescription for data refinement, and another theory is acceptable providing
it is at least sound with respect to it.

26 We shall omit the superscript S from now on, in this and other notions of refine-
ment that depend upon a simulation, although we shall keep it in definitions in
order that these will be well formed.
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12.2 Relational Completion-based Refinement

We now introduce three forward-simulation refinement theories in the ex-
tended framework Z⊥

C . These are based on the two distinct notions of lifted
totalisation set out in Sects 7.4 and 10. Each of them captures, schematically,
the forward-simulation commuting diagram in Fig. 1 and is based on schema
or, more generally, relational composition (see Sect. 4.8).

WF•-Refinement

This notion of refinement is also discussed in [68, p. 246] and [17]. It is written

U0

s

�wf• U1 and is defined as follows.

Definition 22.

U0

s

�wf• U1 =df

◦
S o

9

•
U0 ⊆

•
U1

o

9

◦
S

The following introduction and elimination rules are then immediately deriv-
able for WF•-refinement.

Proposition 28. Let z0, z1 be fresh.

z1 � z ′
0 ∈ ◦

S o
9

•
U0 
 z1 � z ′

0 ∈
•

U1
o
9

◦
S

U0 	wf• U1

(	+

wf•
)

U0 	wf• U1 t1 � t ′
0 ∈ ◦

S o
9

•
U0

t1 � t ′
0 ∈

•
U1

o
9

◦
S

(	−
wf•

)

�

WF�-Refinement

The natural generalisation of W�-refinement (see Sect. 10 and [23]), at least in
the light of the standard literature, is to use strictly-lifted totalised operations,
yet a non-strictly lifted simulation. We name this WF�-refinement; it is defined
as follows.

Definition 23.

U0

s

�wf�
U1 =df

◦
S o

9

�

U0 ⊆
�

U1
o
9

◦
S

Obvious introduction and elimination rules follow from this.
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WF�-Refinement

Our third characterisation of refinement is motivated by the query raised
in Sect. 11. Establishing a refinement theory in which both the operations
and the simulation are strictly lifted provides a point of reference which will
aid us in investigating two important matters: first, whether the strict and
non-strict relational completion operators are still interchangeable underlying
generalisations of data refinement; and second, whether the non-strict lifting of
the simulation is an essential property. We name this theory WF�-refinement;
it is defined as follows.

Definition 24.

U0

s

�wf�
U1 =df

➞

S o

9

�

U0 ⊆
�

U1
o

9

➞

S

Obvious introduction and elimination rules follow from this definition.

13 Three Equivalent Theories

In this section, we demonstrate that three of the refinement theories are equiv-
alent, whereas the fourth theory, WF�-refinement, is sound (but not complete)
with respect to the others. We shall clearly see the critical role that the value
⊥ plays in model-theoretic refinement, in general, and the consequences of
strict lifting, in particular.

13.1 WF•-Refinement and SF-Refinement are Equivalent

We begin by showing that WF•-refinement implies SF-refinement by proving
that WF•-refinement satisfies both of the SF-refinement elimination rules.
First, we consider the rule for preconditions.

Proposition 29. The following rule is derivable:

U0 �wf• U1 Pre U1 t1 t1 � t ′0 ∈ S

Pre U0 t0

Proof.

δ....

t1� ⊥′∈
•

U1
o
9

◦
S

t1 � y ′ ∈
•

U1

(2) y� ⊥′∈ ◦
S

(2)

y =⊥ (L. 8(iv))

t1� ⊥′∈
•

U1 Pre U1 t1

t1� ⊥′∈ U1

false
(L. 2)

false
(2)

Pre U0 t0
(1)
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where δ is

U0 	wf• U1

t1 � t ′
0 ∈ S

t1 � t ′
0 ∈ ◦

S

(L. 8(i))
¬Pre U0 t0

(1)

t1 � t ′
0 ∈ S

t0 ∈ T0

t0 ∈ T0⊥

t0� ⊥′∈
•

U0

(C. 1(ii))

t1� ⊥′∈ ◦
S o

9

•
U0

t1� ⊥′∈
•

U1
o
9

◦
S

�
Notice the explicit use of ⊥ in the proof. This is reminiscent of our earlier
investigation of operation refinement, in which the explicit use of ⊥ is critical
for proving that W•-refinement satisfies the precondition elimination rule for
S-refinement (proposition 11). Much the same observation can be made here,
the only difference being that the use of Lemmas 3(iii) and 8(iv) in the proof
suggests that both the lifted totalisation of the operations and the lifting of
the simulation are essential for showing that WF•-refinement guarantees that
preconditions do not strengthen in the presence of the simulation. Turning
now to the second elimination rule in SF-refinement, we have the following.

Proposition 30. The following rule is derivable:

U0 �wf• U1 Pre U1 t1 t0 � t ′2 ∈ U0 t1 � t ′0 ∈ S t1 � y ′ ∈ U1, y � t ′2 ∈ S � P

P

where the usual conditions apply to the eigenvariable y.

Proof.

U0 	wf• U1

t1 � t ′
0 ∈ S

t1 � t ′
0 ∈ ◦

S

(L. 8(i))
t0 � t ′

2 ∈ U0

t0 � t ′
2 ∈

•
U0

(L. 3(i))

t1 � t ′
2 ∈ ◦

S o
9

•
U0

t1 � t ′
2 ∈

•
U1

o
9

◦
S

δ....
P

P
(1)

where δ is

t1 � y ′ ∈
•

U1

(1)

Pre U1 t1

t1 � y ′ ∈ U1

y � t ′
2 ∈ ◦

S

(1)

t1 � y ′ ∈
•

U1

(1)

Pre U1 t1

t1 � y ′ ∈ U1

y �=⊥ (L. 2)

y � t ′
2 ∈ S

t1 � y ′ ∈ U1 ∧ y � t ′
2 ∈ S

....
P

�
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Theorem 13.

U0 �wf• U1 ⇒ U0 �sf U1

Proof. This follows immediately, by (�+

sf ), from Propositions 29 and 30.
�
We now show that SF-refinement satisfies the WF•-elimination rule.

Proposition 31. The following rule is derivable:

U0 �sf U1 t1 � t ′0 ∈ ◦
S o

9

•
U0

t1 � t ′0 ∈
•

U1
o

9

◦
S

Proof.

t1 � t ′
0 ∈ ◦

S o
9

•
U0

Pre U1 t1 ∨ ¬ Pre U1 t1
(LEM)

δ0, δ1....

t1 � t ′
0 ∈

•
U1

o
9

◦
S

t1 � t ′
0 ∈

•
U1

o
9

◦
S

(2)

t1 � t ′
0 ∈

•
U1

o
9

◦
S

(1)

where δ0 is

U0 	sf U1 Pre U1 t1
(2)

β0....
y � t ′

0 ∈ U0

t1 � y ′ ∈ ◦
S

(1) Pre U1 t1
(2)

t1 �=⊥
t1 � y ′ ∈ S

β1....

t1 � t ′
0 ∈

•
U1

o
9

◦
S

(3)

Here, β0 stands for the following branch:

y � t ′
0 ∈

•
U0

(1) U0 	sf U1 Pre U1 t1
(2)

t1 � y ′ ∈ ◦
S

(1) Pre U1 t1
(2)

t1 �=⊥ (L. 2)

t1 � y ′ ∈ S

Pre U0 y

y � t ′
0 ∈ U0

β1 is

t1 � w ′ ∈ U1

(3)

t1 � w ′ ∈
•

U1

(L. 3(i))
w � t ′

0 ∈ S
(3)

w � t ′
0 ∈ ◦

S

(L. 8(i))

t1 � t ′
0 ∈

•
U1

o
9

◦
S

and δ1 is
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¬ Pre U1 t1
(2)

t1 � y ′ ∈ ◦
S

(1)

t1 � y ′ ∈ T1⊥ � T ′
0⊥

t1 ∈ T1⊥

t1� ⊥′∈
•

U1

(C. 1(ii))

y � t ′
0 ∈

•
U0

(1)

y � t ′
0 ∈ T0⊥ � T ′

0⊥

t ′
0 ∈ T ′

0⊥

⊥ �t ′
0 ∈ ◦

S

♠ (L. 8(iii))

t1 � t ′
0 ∈

•
U1

o
9

◦
S

�
Notice that this proof depends on the use of the law of the excluded middle
(see, for example, [60]). We suspect that this result is strictly classical, and
there appear to be many other examples of this in refinement theory; so aban-
doning the constructive approach that was taken in [36] may be inevitable.

Theorem 14.

U0 �sf U1 ⇒ U0 �wf• U1

�

Theorems 13 and 14 together establish that the theories of SF-refinement and
WF•-refinement are equivalent.

13.2 WF�-Refinement and SF-Refinement are Equivalent

We now show that WF�-refinement and SF-refinement are equivalent. Proving
that WF�-refinement satisfies both of the SF-elimination rules leads to proofs
identical to those of Propositions 29 and 30, modulo substitution of �wf�

for �wf•,
�

U for
•
U, applications of (�−

0 ) for (•−0 ), and Lemmas 7(iv) and
7(i) in place of Lemmas 1(ii) and 3(i), respectively. Likewise, proving that
SF-refinement satisfies the WF�-elimination rule is very similar to the proof
of Proposition 31. In this case, we require the same general substitutions as
above, in addition to applications of (�−

1 ) for (•−1 ). From this we immediately
obtain implication in both directions.

Theorem 15.

U0 �wf�
U1 ⇔ U0 �sf U1

�

Despite their superficial dissimilarity, SF-, WF•- and WF�-refinement are
each equivalent to one another. This reinforces the results from Sect. 7 (see
also [23,25]) showing clearly the significance of ⊥ (Proposition 29). In addition,
we have shown that strict lifting of the operations is sufficient for introducing
a model-based refinement theory that preserves the very natural properties of
SF-refinement.

The fact that, given the appropriate substitutions, the proofs in this section
are identical to the ones in Sect. 13.1 suggests that the minimal mathemati-
cal properties of the lifted-totalised models that are essential for establishing
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Theorems 13 and 14 are those of
�

U. To be more specific, the use of Lemma
1(ii) (Propositions 29 and 31) indicates that everything outside the precon-
dition of the underlying operation, including ⊥, should be mapped onto the
value ⊥ of the output state space. This observation is precisely the property
of strictly-lifted totalised relations within a non-strict framework, as there is
no evidence requiring a property which expresses the non-strict lifting of the
operations.

13.3 WF�-Refinement is Sound with Respect to SF-Refinement

Section 13.2 and [23] demonstrate that the strict and non-strict relational
completion operators are interchangeable. In order to examine whether a sim-
ilar observation can be made for strict and non-strict lifting of the simula-
tion, we need to investigate the relationship between WF�-refinement and
SF-refinement.
In order to show that WF�-refinement implies SF-refinement, we need to make
use of the same substitutions in and amendments to the proofs of Propositions
29 and 30 as we made use of in Theorem 15, except that �wf�

replaces �wf•,
➞

S replaces
◦
S and we apply Lemmas 9(i) and 9(iv) in place of Lemmas 8(i)

and 8(iv), respectively. Moreover, applications of (➞−
0 ) replace (◦−0 ). From this

we have the following theorem.

Theorem 16.

U0 �wf�
U1 ⇒ U0 �sf U1

�

The other direction of implication (completeness) fails. In fact, given the above
substitutions in the proof of proposition 31, we can see exactly why: it fails
in the proof step labelled ♠ (δ1 branch): the application of Lemma 8(iii) does
not have a counterpart substitution in a strict framework, because it involves
the non-strict lifting of the simulation. This unsuccessful proof attempt aids
us in devising the representative counterexample shown in Fig. 2. This com-
plements the mathematical analysis and clearly illustrates the failure. Each
of the diagrams in Fig. 2 constitutes an extension of the forward-simulation
commuting diagram in Fig. 1, showing the (lifted-totalised) operations and
the (lifted) simulation. Since a model-theoretic refinement can be captured
diagrammatically, WF•-refinement represents SF-refinement (to which it is
equivalent: see Theorems 13 and 14 in Sect. 13.1). Both diagrams capture the
data that we have in the δ1 branch of Proposition 31. In the case of WF•-

refinement, we have three pieces of information: t1 �y ′ ∈ ◦
S, y � t ′0 ∈

•
U0 (which

denotes a path from t1 to t ′0 through the simulation via an intermediate state
y) and ¬ Pre U1 t1, from which we need to establish a commuting path in the
other direction. As shown in the proof, and illustrated in the diagram on the
left, the fact that t1 (being outside the precondition of U1) is (also) mapped
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Fig. 2: A counterexample: WF�-refinement is not complete with respect to SF-

refinement

onto ⊥ and that the simulation is non-strictly lifted allows a commuting path

from t1 through ⊥ in
•

U1 and then, via the simulation, to t ′0. This is not the
case with WF�-refinement, because the highlighted path is not associated
with a path in the other direction: the subset relation fails.

Abstractly, we can observe that both diagrams illustrate a classic case of
weakening the precondition in the presence of forward simulation: t1 is outside
the precondition of the abstract operation, yet its concrete counterpart y is
in the precondition of the concrete operation, and they are both linked by
the simulation. This is, naturally, a valid case of WF•-refinement, but not
of WF�-refinement, precisely because of the strict lifting of the simulation,
as we can see in the diagram on the right. This illuminates the significance
of ⊥ in sanctioning preconditions to weaken as well as in preventing them
from strengthening (Proposition 29) throughout forward-simulation refine-
ment (we shall reinforce this observation in Sect. 14). Furthermore, we can
easily see, from both the mathematical analysis and the counterexample, that
the strictly-lifted totalisation of the operations has nothing to do with the
fact that SF-refinement fails to imply WF�-refinement.

In conclusion, WF�-refinement is an acceptable theory of refinement be-
cause it is sound with respect to SF-refinement (Theorem 16). However, it is
not complete, because the strict lifting of forward simulation has a restric-
tive effect: under certain circumstances WF�-refinement prevents weakening
of preconditions and hence narrows the diversity of possible design decisions.
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14 The Non-lifted Totalisation underlying Data

Refinement

In Sect. 9.1 (see also [23]) we presented Pre1 as a distinct semantics for
the notion of the precondition of an operation. This notion underlies W�-
refinement, a model-theoretic operation refinement theory based on non-lifted
totalisation (denoted

�
U) of the underlying operations. We demonstrated that

W�-refinement is equivalent to S1-refinement, a normative characterisation of
refinement which is identical to S-refinement (Sect. 7.3) with all occurrences
of Pre0 substituted by Pre1. This allows us to obtain an acceptable model-
theoretic characterisation of operation refinement, without having to use the
value ⊥.

In this section we shall show that this is not the case under the generali-
sation to data refinement, highlighting the inevitability of using the value ⊥
in both the lifting (of the simulation) and the relational completion models
(of the operations) underlying forward-simulation refinement.

We begin by introducing WF�-refinement as a generalisation of W�-
refinement (Sect. 9.2) with forward simulation. Since the totalisation of the
operations is not lifted, we neither lift the simulation nor do we totalise it, for
reasons discussed in Sect. 11. Therefore, WF�-refinement is defined as follows.

Definition 25.

U0

s

�wf� U1 =df S o

9

�
U0 ⊆

�
U1

o

9 S

Obvious introduction and elimination rules for WF�-refinement follow from
this definition.

In Sect. 9.4 (see also [23]) we proved that W�-refinement and W•-
refinement are equivalent for bindings that range over the natural carrier
set.27 We can make a similar observation for forward refinement because the
following proposition is provable using the same side-condition.

Proposition 32. Let t1 � t ′0 be a binding with the property that t1 � t ′0 ∈ T.
The following rule is then derivable:

U0 �wf� U1 t1 � t ′0 ∈ ◦
S o

9

•
U0

t1 � t ′0 ∈
•

U1
o
9

◦
S

�

From this we can easily establish the soundness of WF�-refinement with re-
spect to WF•-refinement for all bindings that range over the natural carrier
set, and therefore conclude that WF�-refinement is an acceptable refinement

27 Natural carrier sets in Z⊥
C explicitly exclude bindings that contain at least one

observation bound to ⊥.
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theory. But it would be inappropriate to base our judgement on the obser-
vation above, because at this stage we do not know what exactly the side-
condition in Proposition 32 means. In Sect. 9.4 (see also [23]) we concluded
that a similar side-condition means that the (chaotic) lifted totalisation and
the non-lifted totalisation coincide in a “⊥-less” framework, under the inter-
pretation of Pre1. However, that followed noting that W�-refinement is an
acceptable refinement theory: it is sound (as well as complete) with respect
to the normative theory of S1-refinement. Clearly we need to take the same
approach here: SF1-refinement (that is, SF-refinement with all instances of
Pre0 substituted by Pre1) would be our normative characterisation, guaran-
teeing the two properties expected in a forward-simulation refinement (Sect.
12.1), under the interpretation of Pre1. Notice that we can prove that SF-
refinement satisfies both of the SF1-refinement elimination rules. This is a
straightforward consequence of Lemma 5. From this we immediately obtain
the following theorem.

Theorem 17.

U0 �sf U1 ⇒ U0 �sf1
U1

�

We start with completeness: WF�-refinement is not complete with respect
to SF1-refinement, since SF1-refinement fails to satisfy the WF�-elimination
rule. The proof attempt is essentially very similar to the one that leads to the
counterexample in Fig. 2; thus it fails for similar reasons. This induces the
counterexample shown in Fig. 3.

Fig. 3: A counterexample: WF�-refinement is not complete with respect to SF1-

refinement
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Notice that the refinement case presented in Fig. 328 is very similar to the one
in Fig. 2 because it depicts a similar observation: under certain circumstances,
WF�-refinement prevents weakening of preconditions.

A more severe phenomenon is that WF�-refinement is not sound with
respect to SF1-refinement. Employing the same proof strategy involving elim-
ination rules, we start by proving that WF�-refinement satisfies the SF1-
elimination rule for postconditions.

Proposition 33. The following rule is derivable:

U0 �wf� U1

Pre1 U1 t1
t0 � t ′2 ∈ U0

t1 � t ′0 ∈ S
t1 � y ′ ∈ U1, y � t ′2 ∈ S � P

P

where the usual conditions apply to the eigenvariable y.
�

The structure of the proof is very similar to that of proposition 30. From
this we can deduce that WF�-refinement guarantees that postconditions do
not weaken. Nevertheless, it cannot guarantee that preconditions do not
strengthen, because it fails to satisfy the SF1-elimination rule for precondi-
tions. If we attempt to prove Proposition 29 with �wf� replacing �wf• and
Pre1 in place of Pre0, we immediately learn that, unlike the proof of Proposi-
tion 29, we cannot derive a contradiction from the assumption that t0 is not
in the precondition of U0. This is precisely because the non-lifted totalisation
does not involve the value ⊥ which, ultimately, leads to the contradiction
in Proposition 29. We exhibit a counterexample in Fig. 4, which manifests
this observation. This is a classic case of strengthening the precondition in
the presence of forward simulation, something that is naturally prohibited by
WF•-refinement (again, representing the normative theory) owing to a path
(highlighted in the diagram on the right) linking t1 to ⊥ via t0, which is not
associated with a path in the other direction, because t1 is in the precondi-
tion of U1 and thus is not mapped onto ⊥. As we can see in the diagram on
the left, this is not the case in WF�-refinement, which allows requirements to
disappear from the domain of specification.

In conclusion, the fact that WF�-refinement is not sound with respect to
SF1-refinement is a sufficient argument for stipulating that it is an unaccept-
able refinement theory.

We would like to highlight the significance of using a normative charac-
terisation of refinement as a common foundation for such investigations: it

28 We can use WF•-refinement to represent an SF1-refinement in the counterexam-
ple, because we have Theorem 17 and we know that SF-refinement and WF•-
refinement are equivalent.
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Fig. 4: A counterexample: WF�-refinement is not sound with respect to SF1-

refinement

enables us to pinpoint the source of the problem in terms of the two basic
properties concerning preconditions and postconditions (for example Fig. 4),
and it also overrules excessively strong results (for example, Proposition 32)
that, in contrast to Sect. 9.4 (and [23]), constitute a very partial picture when
a generalisation to forward-simulation data refinement is involved. Moreover,
it is interesting to observe that, since WF�-refinement is also incomplete with
respect to the normative theory, Figs. 3 and 4 jointly demonstrate that under
certain circumstances WF�-refinement guarantees that preconditions do not
weaken. This is, of course, the converse of the basic property permitted in a
refinement.

15 Data Refinement (Backward)

We turn now to backward-simulation data refinement. We begin with the
completion for simulations.

Definition 26 (Non-Strictly Lifted Backward Simulation).

◦
S =df {z0 � z ′

1 ∈ T0⊥ � T ′
1⊥ | z0 �=⊥⇒ z0 � z ′

1 ∈ S}

The following introduction and elimination rules are then derivable.

Proposition 34.
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t0 � t ′1 ∈ T0⊥ � T ′
1⊥ t0 �=⊥ � t0 � t ′1 ∈ S

t0 � t ′1 ∈ ◦
S

(◦+)

t0 � t ′1 ∈ ◦
S t0 �=⊥

t0 � t ′1 ∈ S
(◦−0 )

t0 � t ′1 ∈ ◦
S

t0 � t ′1 ∈ T0⊥ � T ′
1⊥

(◦−1 )

�

Lemma 10. The following additional rules are derivable for non-strictly lifted
simulations:

S ⊆ ◦
S

(i)
⊥∈ ◦

S
(ii)

t ∈ T1⊥

⊥ �t ′ ∈ ◦
S

(iii)

t0� ⊥′∈ ◦
S

t0 =⊥ (iv)

�

Lemmas 10(i—iv) demonstrate that Definition 26 is consistent with the inten-
tions described in [18, 68]: the underlying partial relation is contained in the
lifting, the value ⊥ is mapped onto every after state, and no other initial state
is so. This raises an immediate question: why does the lifting of the simulation
have to be non-strict with respect to ⊥? This issue was not explored in [18,68],
where the non-strict lifting of the simulation is taken as self-evident. We shall
gradually provide an answer to this question in the remainder of this chapter.
To do this, we need the definition of a strictly-lifted backward simulation.

Definition 27 (Strictly-Lifted Backward Simulation).

➞

S =df {z0 � z ′
1 ∈ T0⊥ � T ′

1⊥ | (z0 �=⊥⇒ z0 � z ′
1 ∈ S ) ∧

(z0 =⊥⇒ z1 =⊥)}
Obvious introduction and elimination rules follow from this.

Lemma 11. The following additional rules are derivable for strictly lifted sim-
ulations:

S ⊆ ➞

S
(i)

➞

S ⊆ ◦
S

(ii)
⊥∈ ➞

S
(iii)

t0 � t ′1 ∈ ➞

S t1 =⊥
t0 =⊥ (iv)

t0 � t ′1 ∈ ➞

S t1 �=⊥
t0 � t ′1 ∈ S

(v)

�

Lemmas 11(iv) and (v) embody the strictness captured by Definition 20: if
the after-state is ⊥ then the initial state must also be ⊥, and if it is not ⊥,
then the initial state was not either.
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16 Four (Backward) Theories

In this section, we provide four distinct notions of data refinement, generalising
operation refinement, based on backward simulation. We shall then compare
them, providing a an investigation complementary to that in Sect. 7 et seq.
(see also [22, 25]) in the more general setting of data refinement and partial
relation semantics.

16.1 SB-Refinement

In this section, we introduce a purely proof-theoretic characterisation of
backward-simulation refinement, which is closely connected to the sufficient
refinement conditions introduced by Woodcock [68, p. 270] (referred to there
as “B-corr”) and by Derrick and Boiten [18, p. 93]. These conditions corre-
spond to the premises of our introduction rule for SB-refinement.

This generalisation of S-refinement (Sect. 7.3) is based on two properties
expected in a refinement: that postconditions do not weaken (we do not permit
an increase in non-determinism in a refinement) and that preconditions do
not strengthen (we do not permit requirements in the domain of definition to
disappear in a refinement). In this case, these two properties must hold in the
presence of a simulation.

This notion can be captured by forcing the refinement relation to hold

exactly when these conditions apply. SB-refinement is written U0

s

�sb U1 and
is given by a definition that leads directly to the following rules.

Proposition 35. Let x , x0, x1, z , z0 be fresh variables.

x � z ′ ∈ S ⇒ Pre U1 z � Pre U0 x
z0 � z ′ ∈ S ⇒ Pre U1 z , x0 � x ′

1 ∈ S , z0 � x ′
0 ∈ U0 �

z0 � t ′ ∈ S
z0 � z ′ ∈ S ⇒ Pre U1 z , x0 � x ′

1 ∈ S , z0 � x ′
0 ∈ U0 �

t � x ′
1 ∈ U1

U0 �sb U1

(�+

sb)

U0 �sb U1 t � z ′ ∈ S � Pre U1 z
Pre U0 t

(�−
sb0

)

t0 � z ′ ∈ S � Pre U1 z
t1 � t ′2 ∈ S t0 � t ′1 ∈ U0

U0 �sb U1 t0 � y ′ ∈ S , y � t ′2 ∈ U1 � P
P

(�+

sb1
)

The usual side-conditions apply to the eigenvariable y.
�

This theory does not depend on, and makes no reference to, the value ⊥. We
take SB-refinement as normative: this is our prescription for data refinement,
and another theory is acceptable providing it is at least sound with respect
to it.
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16.2 Relational Completion-based Refinement

We now introduce three backward-simulation refinement theories. These are
based on the two distinct notions of the lifted totalisation. Each of them
captures, schematically, the backward simulation commuting diagram in Fig. 1
and is based on relational composition.

WB•-Refinement

This notion of refinement is also discussed in [68, p. 247] and [17]. It is defined
as follows.

Definition 28.

U0

s

�wb• U1 =df

•
U0

o

9

◦
S ⊆ ◦

S o

9

•
U1

The following rules are then derivable for WB•-refinement.

Proposition 36. Let z0, z1 be fresh.

z0 � z ′
1 ∈

•
U0

o

9

◦
S � z0 � z ′

1 ∈ ◦
S o

9

•
U1

U0 �wb• U1

(�+

wb•)

U0 �wb• U1 t0 � t ′1 ∈
•

U0
o

9

◦
S

t0 � t ′1 ∈ ◦
S o

9

•
U1

(�−
wb•)

�

WB�-Refinement

The natural generalisation of W�-refinement (Sect. 9.2 and [22]), at least in
the light of the standard literature, is to use strictly-lifted totalised operations,
but a non-strictly-lifted simulation. We name this WB�-refinement and define
it as follows.

Definition 29.

U0

s

�wb�
U1 =df

�

U0
o

9

◦
S ⊆ ◦

S o

9

�

U1

Obvious introduction and elimination rules follow from this.
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WB�-Refinement

Our third characterisation of refinement is motivated by some issues raised
in Sect. 11. Establishing a refinement theory in which both the operations
and the simulation are strictly lifted provides a point of reference which will
aid us in investigating two important matters: first, whether the strict and
non-strict relational completion operators are still interchangeable underlying
generalisations of data refinement; second, whether the non-strict lifting of
the simulation is an essential property. We name this theory WB�-refinement,

written U0

s

�wb�
U1; it is defined as follows.

Definition 30.

U0

s

�wb�
U1 =df

�

U0
o
9

➞

S ⊆ ➞

S o
9

�

U1

Obvious introduction and elimination rules follow from this definition.

17 Four Equivalent Theories

In this section, we demonstrate that all four of these theories of refinement
are equivalent, and we shall clearly see the critical role that the value ⊥ plays
in the three model-theoretic approaches.

17.1 WB•-Refinement and SB-Refinement are Equivalent

We begin by showing that WB•-refinement implies SB-refinement, by proving
that WB•-refinement satisfies both of the SB-refinement elimination rules.
First we consider the rule for preconditions.

Proposition 37. The following rule is derivable:

U0 �wb• U1 t � z ′ ∈ S � Pre U1 z

Pre U0 t

Proof.
δ0....

t� ⊥′∈ ◦
S o

9

•
U1

δ1....
false

false
(2)

Pre U0 t
(1)

where δ0 is

U0 	wb• U1

¬ Pre U0 t
(1)

t ∈ T0

t ∈ T0⊥
(T )

t� ⊥′∈
•

U0

(C. 1(ii))

⊥∈ ◦
S

t� ⊥′∈
•

U0
o
9

◦
S

t� ⊥′∈ ◦
S o

9

•
U1
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and δ1 is

y� ⊥′∈
•

U1

(2)

t � y ′ ∈ ◦
S

(2) t ∈ T0

t �=⊥ (T )

t � y ′ ∈ S
....

Pre U1 y

y� ⊥′∈ U1

false

�
There are two observations that we can make from this proof. First, note
that the ability to distinguish between ZC and Z⊥

C types is a crucial factor:
the proof steps labelled (T ) denote the use of Proposition 2.3 of [35] (see
also Sect. 3.3). This is an admissible axiom for ZC , in which every term of
type T is a member of the corresponding carrier set29. It is not admissible
for Z⊥

C , as terms may involve the value ⊥. Hence, this proof step is valid
because SB-refinement is defined in ZC (Sect. 7.3). Second, notice the ex-
plicit use of ⊥ in the proof. This is reminiscent of our earlier investigation
of operation refinement, in which the explicit use of ⊥ is critical for proving
that W•-refinement satisfies the precondition elimination rule for S-refinement
(Proposition 11). Much the same observation can be made here, the only dif-
ference being that the use of Lemmas 1(ii) and 10(ii) in the proof suggests that
both the lifted totalisation of the operations and the lifting of the simulation
are essential for showing that WB•-refinement guarantees that preconditions
do not strengthen in the presence of the simulation.

We turn now to the second elimination rule in SB-refinement.

Proposition 38. The following rule is derivable:

t0 � z ′ ∈ S � Pre U1 z
t1 � t ′2 ∈ S t0 � t ′1 ∈ U0

U0 �wb• U1 t0 � y ′ ∈ S , y � t ′2 ∈ U1 � P
P

where the usual conditions apply to the eigenvariable y.

Proof.

U0 	wb• U1

t0 � t ′
1 ∈ U0

t0 � t ′
1 ∈

•
U0

(L. 3(i))
t1 � t ′

2 ∈ S

t1 � t ′
2 ∈ ◦

S

(L. 10(i))

t0 � t ′
2 ∈

•
U0

o
9

◦
S

t0 � t ′
2 ∈ ◦

S o
9

•
U1

δ0....
P

P
(1)

29 In Z⊥
C these natural carrier sets explicitly exclude bindings that contain at least

one observation bound to ⊥ (see Sect. 7.1 for further detail).
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Here, δ0 is:

t0 � y ′ ∈ ◦
S

(1) t0 � t ′
1 ∈ U0

t0 �=⊥ (L. 2)

t0 � y ′ ∈ S

δ1....
y � t ′

2 ∈ U1

t0 � y ′ ∈ S ∧ y � t ′
2 ∈ U1....

P

where δ1 is

y � t ′
2 ∈

•
U1

(1)

t0 � y ′ ∈ ◦
S

(1) t0 � t ′
1 ∈ U0

t0 �=⊥ (L. 2)

t0 � y ′ ∈ S
....

Pre U1 y

y � t ′
2 ∈ U1

�

Theorem 18. U0 �wb• U1 ⇒ U0 �sb U1

Proof. This follows immediately, by (�+

sb), from Propositions 37 and 38.
�
We now show that SB-refinement satisfies the WB•-elimination rule.

Proposition 39.

U0 �sb U1 t0 � t ′1 ∈
•

U0
o

9

◦
S

t0 � t ′1 ∈ ◦
S o

9

•
U1

Proof. Let φ be ∀ z • t0 � z ′ ∈ S ⇒ Pre U1 z ∨ ∃ z • t0 � z ′ ∈ S ∧ ¬ Pre U1 z
We then have

t0 � t ′1 ∈
•

U0
o

9

◦
S

φ
(LEM)

δ0....

t0 � t ′1 ∈ ◦
S o

9

•
U1

δ1....

t0 � t ′1 ∈ ◦
S o

9

•
U1

t0 � t ′1 ∈ ◦
S o

9

•
U1

(2)

t0 � t ′1 ∈ ◦
S o

9

•
U1

(1)

where δ0 is

U0 	sb U1 ∀ z • t0 � z ′ ∈ S ⇒ Pre U1 z
(2)

β0....

β1....

β2....

t0 � t ′
1 ∈ ◦

S o
9

•
U1

(3)

and where β0, β1 and β2 are, respectively
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t0 � y ′ ∈
•

U0

(1) U0 	sb U1 ∀ z • t0 � z ′ ∈ S ⇒ Pre U1 z
(2)

Pre U0 t0

t0 � y ′ ∈ U0

and

y � t ′
1 ∈ ◦

S

(1)

β0....
t0 � y ′ ∈ U0

y �=⊥ (L. 2)

y � t ′
1 ∈ S

and

t0 � w ′
0 ∈ S

(3)

t0 � w ′
0 ∈ ◦

S

(L. 10(i))
w0 � t ′

1 ∈ U1

(3)

w0 � t ′
1 ∈

•
U1

(L. 3(i))

t0 � t ′
1 ∈ ◦

S o
9

•
U1

δ1 is

∃ z • t0 � z ′ ∈ S ∧ ¬ Pre U1 z
(2)

α0....

t0 � t ′
1 ∈ ◦

S o
9

•
U1

t0 � t ′
1 ∈ ◦

S o
9

•
U1

(4)

where α0 is

t0 � w ′
1 ∈ S ∧ ¬ Pre U1 w1

(4)

t0 � w ′
1 ∈ S

t0 � w ′
1 ∈ ◦

S

(L. 10(i))

α1....

w1 � t ′
1 ∈

•
U1

t0 � t ′
1 ∈ ◦

S o
9

•
U1

α1 is

t0 � w ′
1 ∈ S ∧ ¬ Pre U1 w1

(4)

¬ Pre U1 w1

α3....
w1 ∈ T1⊥

y � t ′
1 ∈ ◦

S

(1)

y � t ′
1 ∈ T0⊥ � T ′

1⊥
t1 ∈ T1⊥

w1 � t ′
1 ∈

•
U1

(L. 3(iii))

and α3 is

t0 � w ′
1 ∈ S ∧ ¬ Pre U1 w1

(4)

t0 � w ′
1 ∈ S

w1 ∈ T1

w1 ∈ T1⊥
(♣)

�
Notice that this proof depends on use of the law of the excluded middle (see,
for example, [60, p. 47] and [54, p. 105]). We suspect that this result is strictly
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classical, and there appear to be many other examples of this in refinement
theory.

Theorem 19.

U0 �sb U1 ⇒ U0 �wb• U1

�

Theorems 18 and 19 together establish that the theories of SB-refinement and
WB•-refinement are equivalent.

17.2 WB�-, WB�- and SB-Refinement are Equivalent

We now show that WB�-refinement and WB�-refinement are both equivalent
to SB-refinement. Proving that WB�-refinement satisfies both SB-elimination
rules leads to proofs identical to Propositions 37 and 38, modulo substitution

of �wb�
for �wb•,

�

U for
•
U, applications of (�−

0 ) for (•−0 ), and Lemmas 7(iv)

and 7(i) in place of Lemmas 3(iii) and 3(i), respectively. Likewise, proving that
SB-refinement satisfies the WB�-elimination rule is very similar to the proof
of Proposition 39. In this case, we require the same general substitutions as
above, in addition to a modification in the proof branch labelled α: applying
Lemma 7(iv) in place of Lemma 3(iii) requires the variable w1 to range over
a ⊥-free set; hence, the proof step labelled (♣) is redundant here. From this
we have the following theorem.

Theorem 20.

U0 �wb�
U1 ⇔ U0 �sb U1

�

A similar situation arises when we consider WB�-refinement. SB-refinement
constitutes our common ground, and again we need to make use of the sub-
stitutions in and amendments to the proofs of Propositions 37, 38 and 39

as we did for Theorem 20, except that �wb�
replaces �wb•,

➞

S replaces
◦
S ,

and we apply Lemmas 11(i) and 11(iii) in place of Lemmas 10(i) and 10(ii),
respectively. Moreover, applications of (➞−

0 ) and (➞−
1 ) replace (◦−0 ) and (◦−1 ),

respectively. From this we immediately obtain implication in both directions.

Theorem 21.

U0 �wb�
U1 ⇔ U0 �sb U1

�

Despite their superficial dissimilarity, all four theories are equivalent. In es-
tablishing this, we reinforce the results of Sect. 7 et seq. (see also [22, 25])
showing clearly the significance of ⊥ (Proposition 37). Additionally we have
shown that strict lifting of both the operations and the simulation is sufficient
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for introducing a model-based refinement theory that preserves the natural
properties of SB-refinement.

The fact that, given the appropriate substitutions, the proofs in this section
are identical to those of Sect. 17.1 suggests that the minimal mathematical
properties of the models that are essential for establishing theorems 18 and

19 are those
�

U and
➞

S. To be more specific, the use of Lemma 1(ii) (Proposi-
tion 37) indicates that everything outside the preconditions of the underlying
operation, including ⊥, should be mapped onto the value ⊥ of the output set;
and the use of the proof step labelled (♣) in conjunction with Lemma 3(iii)
(Proposition 39) indicates that everything outside the preconditions that is
not ⊥ should be mapped onto everything in the output set. These observa-
tions are precisely the properties of strictly-lifted totalised relations within a
non-strict framework. A similar observation can be made for the simulation:
the only lemma concerning the lifting of the simulation used in the proofs
is Lemma 10(ii) (Proposition 37); there is no evidence for requiring Lemma
10(iii), which expresses the non-strict lifting.

18 The Non-lifted Totalisation underlying Data

Refinement

In Sect. 9 (see also [22]), we presented Pre1 as a distinct semantics for the no-
tion of the precondition of an operation. This notion underlies W�-refinement,
a model-theoretic operation refinement theory based on non-lifted totalisa-
tion30 (denoted

�
U) of the underlying operations. We demonstrated that W�-

refinement is equivalent to S1-refinement, a normative characterisation of re-
finement which is identical to S-refinement (Sect. 7.3) with all occurrences
of Pre0 substituted by Pre1. This allows us to obtain an acceptable model-
theoretic characterisation of operation refinement, without having to use the
value ⊥.

In this section, we shall show that this is not the case under the generali-
sation to data refinement, highlighting the inevitability of using the value ⊥
in both the lifting (of the simulation) and the relational completion models
(of the operations) underlying backward-simulation refinement.

We begin by introducing WB�-refinement as a generalisation of W�-
refinement (Sect. 9.2 and [22]) with backward simulation. Since the totali-
sation of the operations is not lifted, we do not lift the simulation either; nor
do we totalise it, for reasons discussed in Sect. 11. Therefore, WB�-refinement
is defined as follows.

Definition 31.

30 The definitions of Pre1 and of non-lifted totalisation can be found in Sect. 9. More-
over, in this section, we shall refer to the standard definition of the precondition
as Pre0 in order to distinguish it from the new notion.
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U0

s

�wb� U1 =df

�
U0

o

9
S ⊆ S o

9

�
U1

Obvious introduction and elimination rules for WB�-refinement follow. This
definition raises an immediate question: is WB�-refinement an acceptable the-
ory of refinement? If not, what are the reasons for that? In Sect. 9 (and in [22])
we concluded that the (chaotic) lifted totalisation and the non-lifted total-
isation coincide in a “⊥-less” framework, under the interpretation of Pre1.
However, that followed noting that W�-refinement is an acceptable refine-
ment theory: it is sound (as well as complete) with respect to the normative
theory of S1-refinement. Clearly, we need to take the same approach here:
SB1-refinement (that is, SB-refinement with all instances of Pre0 substituted
by Pre1) would be our normative characterisation, guaranteeing the two prop-
erties expected in a backward-simulation refinement (Sect. 16.1), under the
interpretation of Pre1. Notice that we can prove that SB-refinement satisfies
both of the SB1-refinement elimination rules. This is a straightforward conse-
quence of Lemma 5 (Sect. 9). From this, we immediately obtain the following
theorem.

Theorem 22.

U0 �sb U1 ⇒ U0 �sb1
U1

�

We start with completeness: WB�-refinement is complete with respect to
SB1-refinement since SB1-refinement satisfies the elimination rule for WB�-
refinement.

Proposition 40. The following rule is derivable:

U0 �sb1
U1 t0 � t ′1 ∈

�
U0

o

9
S

t0 � t ′1 ∈ S o

9

�
U1

The structure of the proof is very similar to that of Proposition 39.
�

The following theorem is then immediate.

Theorem 23.

U0 �sb1
U1 ⇒ U0 �wb� U1

�

An example of this is given in Fig. 5, where each of the diagrams constitutes
an extension of the backward-simulation commuting diagram in Fig. 1, show-
ing the (completed) operations and the (lifted in the case of WB•-refinement)
simulation. We can use WB•-refinement to represent an SB1-refinement in
such examples, because we have theorem 22 and we know that SB-refinement
and WB•-refinement are equivalent (Theorems 18, 19). We can observe that
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Fig. 5: An example: WB�-refinement is complete with respect to SB1-refinement

both diagrams illustrate a classic case of weakening the precondition in the
presence of backward simulation: t1 is outside the precondition of the abstract
operation, yet its concrete counterpart t0 is in the precondition of the con-
crete operation, and they are both linked by the simulation. This property
is, naturally, sanctioned by SB1-refinement and, owing to Theorem 23, also
by WB�-refinement. However, does WB�-refinement guarantee that precon-
ditions do not strengthen? In order to answer this, we need to investigate
whether WB�-refinement is sound with respect to SB1-refinement.

Employing the same proof strategy involving elimination rules, we start
by proving that WB�-refinement satisfies the SB1-elimination rule for post-
conditions.

Proposition 41. The following rule is derivable:

t0 � z ′ ∈ S � Pre1 U1 z
t1 � t ′2 ∈ S t0 � t ′1 ∈ U0

U0 �wb� U1 t0 � y ′ ∈ S , y � t ′2 ∈ U1 � P
P

where the usual side-conditions apply to the eigenvariable y.

Proof.
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U0 	wb� U1

t0 � t ′
1 ∈ U0

t0 � t ′
1 ∈

�
U0

(L. 6(i))

t1 � t ′
2 ∈ S

t0 � t ′
2 ∈

�
U0

o
9
S

t0 � t ′
2 ∈ S o

9

�
U1

δ....
P

P
(1)

where δ is

t0 � y ′ ∈ S
(1)

y � t ′
2 ∈

�
U1

(1)

t0 � y ′ ∈ S
(1)

....
Pre1 U1 y

y � t ′
2 ∈ U1

t0 � y ′ ∈ S ∧ y � t ′
2 ∈ U1....

P

�
From this we can deduce that WB�-refinement guarantees that postconditions
do not weaken. Nevertheless, it cannot guarantee that preconditions do not
strengthen, because it fails to satisfy the SB1-elimination rule for precondi-
tions. If we attempt to prove Proposition 37 with �wb� replacing �wb• and
Pre1 in place of Pre0, we immediately learn that, unlike the proof of Propo-
sition 37, we cannot derive a contradiction from the assumption that t is not
in the precondition of U0. This is precisely because the non-lifted totalisa-
tion does not involve the value ⊥ which, ultimately, leads to the contradic-
tion required in the proof of Proposition 37. We exhibit a counterexample
in Fig. 6, which manifests this observation. Both diagrams capture the data
that we have in the proof of Proposition 37. In the case of WB•-refinement
(again, representing the normative theory), we have two pieces of informa-

tion: ¬ Pre U0 t and ⊥∈ ◦
S. These denote a path (highlighted in the diagram

on the right) from t to ⊥ through the simulation via an intermediate state ⊥.
But this path is not associated with a path in the other direction: the subset
relation fails. This is a classic case of strengthening the precondition in the
presence of backward simulation, something that is naturally prohibited by
WB•-refinement. As we can see in the diagram on the left, this is not the case
in WB�-refinement, which allows requirements to disappear from the domain
of specification, in the presence of the simulation.

In conclusion, the fact that WB�-refinement is not sound with respect to
SB1-refinement makes it an unacceptable refinement theory.

We would again like to highlight the significance of using a normative char-
acterisation of refinement as a common foundation for such investigations: it
enables us to pinpoint the source of the problem in terms of the two basic
properties concerning preconditions and postconditions and to construct rep-
resentative counterexamples that illustrate the problem (for example, Fig. 6).
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Fig. 6: A counterexample: WB�-refinement is not sound with respect to SB1-

refinement

19 Discussion

The non-lifted totalisation underlying refinement introduces a variety of prob-
lems. Woodcock [68, p. 237–238] provides a motivation for an explanation, to
some extent. We discussed this matter thoroughly in Sect. 8.6 (see also [22]
(section 4.4)), where, at the end, we raised a question: why is there a distinc-
tion between implicit (Chaos) and explicit (True) permission to behave in a
lifted totalised framework and not in a non-lifted totalised one? In this section
we shall gradually answer this question, and secure the observations that we
made in Sect. 18.

A useful way to examine the essence of a relational completion model
is by scrutinising it under extreme specifications (see, for example, chapter
3 of [28]). This enables us to observe and explain phenomena that might
not emerge otherwise. In this spirit, we revisit two such specifications which
respectively denote explicit and implicit “permission to behave”.

Definition 32.

(i) True =df {z ∈ T � T ′ | true}
(ii) Chaos =df {z ∈ T � T ′ | false}

By applying the (chaotic) lifted totalisation and the non-lifted totalisation to
these specifications we immediately obtain the following.

Lemma 12.
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(i)
�

True =
�

Chaos (ii)
•

True �=
•

Chaos

�

Lemma 12(i) represents a counterexample, in which augmentation of unde-
finedness is possible in a refinement based on non-lifted totalisation, under
the standard interpretation of preconditions (Sect. 4.9). This is remedied by
W•-refinement (Sect. 7.4) because the Woodcock-completion [68] imposes a
distinction between implicit and explicit permission to behave (Lemma 12(ii)).
The alternative Pre1 interpretation of preconditions (Sect. 9), under which
the distinction between implicit and explicit permission to behave collapses,
leads to a Woodcock-like operation refinement theory, W�-refinement (Sect.
9.2 and [22]), in which the relations need not be lifted. This theory is simply
defined as a subset relation of the (non-lifted) totalised relations, where the
subset prevents augmentation of non-determinism and the non-lifted totalisa-
tion, in conjunction with the subset, plays the same role as its lifted counter-
part in preventing augmentation of undefinedness. Therefore, W�-refinement
is an acceptable refinement theory that guarantees these two elementary prop-
erties without utilising the value ⊥. So, why does the non-lifted totalisation
have no future underlying model-theoretic refinement? More specifically, we
are asking: why does it not work for data refinement?

The answer concerns data simulations and the properties of composition.
Consider the example in Fig. 7, where we present the specification True31 as
a refinement of a certain specification U1, under both WB�-refinement and
WB•-refinement. This is not a case of weakening the postcondition, because
the simulation links the first output state in U1 with all the output states in
True32; thus, it is a sensible case of data refinement. Yet in a non-lifted to-
talised operation, it is impossible to indicate whether an input state is mapped
onto all output states as a result of not being mapped onto anything, or be-
ing mapped onto everything in the underlying operation. For this reason, the
specifications True and Chaos are indistinguishable in this model and there-
fore the WB�-refinement case in Fig. 7 also holds for Chaos , as we can see in
Fig. 8. Naturally, it is unacceptable that a chaotic specification refines some
other specification that is not chaotic. This means that undefinedness has been
augmented, as a result of a strengthening of preconditions. Indeed, as we have
seen in Sect. 18, WB�-refinement sanctions this feature and is therefore unac-
ceptable as a refinement theory. This case is prohibited by WB•-refinement,
precisely because the lifted totalisation maps input states outside the precon-
dition of the underlying operation onto ⊥, as well as everything else in the
output set. Thus, WB•-refinement fails in Fig. 8, since none of the highlighted
paths leading to ⊥ are associated with paths in the other direction. Notice

31 Here, as usual, True belongs to P(T0 � T ′
0) and U1 to P(T1 � T ′

1).
32 Recall that, although WB�-refinement is unacceptable as a refinement theory,

it still guarantees that postconditions do not weaken (Proposition 41). This is
certainly the case for WB•-refinement, as it is equivalent to SB-refinement.
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Fig. 7: An example: the specification True refines the specification U1

Fig. 8: A counterexample: the specification Chaos constitutes a valid WB�-

refinement case of the specification U1

that the only way to establish these paths is through a link between t and ⊥
in

•
U1: this does not exist, because t is in the precondition of U1.
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What we have discussed here also follows from consideration of forward-
simulation data refinement. If one reverses the direction of the simulation
relation in Figs. 7 and 8, one obtains illustrations of similar examples similar
based on WF�-refinement and its relation to WF•-refinement (or, equivalently,
SF-refinement).

In conclusion, ⊥ underlies the distinction between True and Chaos in
the lifted totalised framework. This prevents imprudent cases of refinement
such as that in Fig. 8 by prohibiting a strengthening of preconditions in the
presence of a simulation. For this reason we prefer to refer to ⊥ simply as the
“distinguished” value, rather than as “undefined” [68] or “non-termination”
[14,28,31,47], or even our own previous suggestion, the “abortive” value (see
Sect. 7.6 and [22]).

20 Operation Refinement and Monotonicity in the

Schema Calculus

The major advantage of Z, in contrast to other paradigms such as Refinement
Calculus and even B [1], is its potential for expressing modular specifications
using schema operators. However, in order to properly exploit modularity and
in particular to undertake specification refinement, it is vital that the various
schema operators of the language are monotonic. When monotonicity holds,
the components of a composite specification can be refined independently of
the remainder of the specification (see [27] which also contains analyses similar
to some of the material developed in this section); refinement can then be
performed in a modular manner. Unfortunately, it is well-known folklore that
the Z schema calculus operators have very poor monotonicity properties; this
has a major effect on their usefulness, for example, in the context of program
development from Z specifications.

In this section, we analyse the monotonicity properties of four of the
most interesting schema calculus operators (conjunction, disjunction, exis-
tential hiding and composition) with respect to S-refinement and two mod-
ifications which we now describe. We provide examples of monotonicity (or
non-monotonicity) and establish side-conditions, as “healthiness conditions”
on specifications, in order to attain monotonicity. We also discuss the useful-
ness of these side-conditions in the context of the various refinement theories
that we consider.

20.1 SP-Refinement

This is an alternative proof-theoretic characterisation of refinement, which is
closely connected to refinement in the behavioural [18] or firing condition [59]
approach. This special case of S-refinement may involve reduction of non-
determinism but insists on the stability of the precondition. SP-refinement
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is written U0 �sp U1 and is given by a definition that leads directly to the
following rules.

Proposition 42. Let z , z0, z1 be fresh variables.

Pre U1 z � Pre U0 z z0 � z ′
1 ∈ U0 � z0 � z ′

1 ∈ U1

U0 �sp U1

(�+

sp)

U0 �sp U1 Pre U1 t

Pre U0 t
(�−

sp0
)

U0 �sp U1 t0 � t ′1 ∈ U0

t0 � t ′1 ∈ U1

(�−
sp1

)

�

We showed in [25] that SP-refinement is equivalent to several other charac-
terisations of refinement, for example W�-refinement, which is based on the
abortive relational completion model discussed in [10, 18].

20.2 SC-Refinement

SC-refinement is our third alternative proof-theoretic characterisation of re-
finement. It is written U0 �sc U1 and is given by a definition that leads directly
to the following rules.

Proposition 43. Let z0, z1 be fresh variables.

z0 � z ′
1 ∈ U1 � z0 � z ′

1 ∈ U0 Pre U1 z0, z0 � z ′
1 ∈ U0 � z0 � z ′

1 ∈ U1

U0 �sc U1

(�+

sc)

U0 �sc U1 t0 � t ′1 ∈ U1

t0 � t ′1 ∈ U0

(�−
sc0

)

U0 �sc U1 Pre U1 t0 t0 � t ′1 ∈ U0

t0 � t ′1 ∈ U1

(�−
sc1

)

�

Lemma 13. The following extra rule is derivable for SC-refinement:

U0 �sc U1 Pre U1 t
Pre U0 t

�

SC-refinement is introduced for technical reasons which inform the analysis
to follow. This notion, in which the precondition may weaken, but in which
the postcondition is stable, is not otherwise of much pragmatic interest.
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20.3 Refinement for Conjunction

We do not have an introduction rule for the precondition of conjoined op-
erations (see Sect. 6.1). Consequently, schema conjunction is not monotonic
with respect to S-refinement. Here is a simple counterexample. Consider the
following schemas:

U0 =̂ [ x, x′ : N | x′ = 8 ] U1 =̂ [ x, x′ : N | x′ < 10 ] U2 =̂ [ x, x′ : N | x′ = 2 ]

We note that U1 is a non-deterministic operation that can be refined by
strengthening its postcondition, for example to U0. However, when conjoining
the operations, we have the following schemas:

U0 ∧ U2 = [ x, x′ : N | false ] U1 ∧ U2 = [ x, x′ : N | x′ = 2 ]

In Sect. 7.6 (see also [23, 25]), we define the chaotic specification Chaos =df

[T | false]. A chaotic specification cannot constitute a refinement of any other
specification, because this would signify augmentation of undefinedness and
would therefore violate any sensible notion of refinement.33 Thus, U0 ∧ U2 ��s

U1 ∧ U2.
The counterexample also shows the reason for the failure: strengthening

the postcondition might create a chaotic specification, owing to both the
“postcondition only” (single predicate) approach that Z takes [49,63,65] and
the definition of schema conjunction. This motivates us to add the following
side-condition. It is perhaps not surprising that this is precisely the missing
introduction rule for the precondition of conjoined operations.

Proposition 44. Let z be a fresh variable and let U0, U1, U2 be operation
schemas with the property that

Pre U0 z ∧ Pre U2 z ⇒ Pre (U0 ∧ U2) z

The following rule is then derivable:

U0 �s U1

U0 ∧ U2 �s U1 ∧ U2

Proof.

U0 	s U1

Pre (U1 ∧ U2) z
(1)

Pre U1 z

Pre U0 z

Pre (U1 ∧ U2) z
(1)

Pre U2 z

Pre U0 z ∧ Pre U2 z
....

Pre (U0 ∧ U2) z

δ....
z0 � z ′

1 ∈ U1 ∧ U2

U0 ∧ U2 	s U1 ∧ U2

(1)

33 See [23, Sect. 4.4] for further details.
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where δ is

U0 	s U1

Pre (U1 ∧ U2) z0
(1)

Pre U1 z0

z0 � z ′
1 ∈ U0 ∧ U2

(1)

z0 � z ′
1

.∈ U0

z0 � z ′
1

.∈ U1

z0 � z ′
1 ∈ U0 ∧ U2

(1)

z0 � z ′
1

.∈ U2

z0 � z ′
1 ∈ U1 ∧ U2

�
Much the same observation can be made for SP-refinement: since non-
monotonicity follows by the reduction of non-determinism, SP-refinement and
S-refinement coincide. Proposition 44 with �s substituted by �sp , holds for
SP-refinement; the proof is similar.

SC-refinement guarantees that no reduction of non-determinism is pos-
sible, thus ensuring that schema conjunction is monotonic with respect to
SC-refinement.

Proposition 45. The following rule is derivable:

U0 �sc U1

U0 ∧ U2 �sc U1 ∧ U2

Proof.

U0 	sc U1

z0 � z ′
1 ∈ U1 ∧ U2

(1)

z0 � z ′
1

.∈ U1

z0 � z ′
1

.∈ U0

z0 � z ′
1 ∈ U1 ∧ U2

(1)

z0 � z ′
1

.∈ U2

z0 � z ′
1 ∈ U0 ∧ U2

δ....
z0 � z ′

1 ∈ U1 ∧ U2

U0 ∧ U2 	sc U1 ∧ U2

(1)

where δ is the branch δ of the proof of Proposition 44 (with �s substituted
by �sc).
�
Note that, although the non-monotonicity of conjunction with respect to
S-refinement and SP-refinement is a direct consequence of the ability to
strengthen the postcondition, the side-condition used in Proposition 44 is
applied in the proof branch concerning the precondition. This is not surpris-
ing, because if one attempts to prove the refinement of the conjoined schemas
given in the counterexample, one discovers that the branch for the postcondi-
tion is provable, owing to the false antecedent of the implication, whereas the
branch for the precondition fails for the opposite reason (a false consequent).
Thus, one can expect an application of the side-condition in this branch of
the proof at some point.

We would like to highlight the value of insights gained from both coun-
terexamples and formal proofs. One of the benefits of a precise investigation
is the ability to deduce or suggest various results as a direct consequence of
these. The side-condition above can be calculated through a direct attempt
to prove Proposition 44.
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0

1

2

3

0

1

2

3

Fig. 9: The solid lines represent the partial relation denoted by the schema U1 ∨
U2, and the dotted lines represent the additional behaviours in the schema U0 ∨
U2. Note the point (marked with a right arrow) which represents weakening of the

postcondition with respect to U1 ∨ U2. Hence U0 ∨ U2 �	s U1 ∨ U2

20.4 Refinement for Disjunction

Schema disjunction is not monotonic with respect to S-refinement. In con-
trast to the analysis of schema conjunction in Sect. 20.3, the reason for non-
monotonicity in this case is the fact that S-refinement enables us to weaken the
precondition. Weakening the precondition of (at least) one component speci-
fication might extend the domain of the disjunction of the two components,
leading to an increase in non-determinism and thus a failure of refinement.
For example, consider the following schemas:

U0 =̂ [ x, x′ : N | x′ = 2 ] U1 =̂ [ x, x′ : N | x = 0 ∧ x′ = 2 ]

U2 =̂ [ x, x′ : N | x = 1 ∧ x′ = 3 ]

The specification U1 is partial and, therefore, can be refined to U0 by weak-
ening its precondition. However, disjoining the schemas above yields the fol-
lowing specifications:

U0 ∨ U2 = [ x, x′ : N | x′ = 2 ∨ x = 1 ∧ x′ = 3 ]

U1 ∨ U2 = [ x, x′ : N | x = 0 ∧ x′ = 2 ∨ x = 1 ∧ x′ = 3 ]

Clearly U0 ∨ U2 ��s U1 ∨ U2. This is because the schema U0 ∨ U2 permits
the behaviour 〈| x�1, x′�2 |〉, which is prohibited by U1 ∨ U2. This is a
representative example: the only reason why S-refinement can fail in such a
case is as a result of an augmentation of non-determinism with respect to
the abstract disjunction; this is shown in Fig. 9. The analysis above suggests
that the side-condition will be required in the proof branch concerning the
postcondition; as we shall now see, this is the case.

Proposition 46. Let z be fresh and let U0, U1, U2 be operation schemas with
the property that
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Pre U0 z ∧ Pre U2 z ⇒ Pre U1 z

The following rule is then derivable:

U0 �s U1

U0 ∨ U2 �s U1 ∨ U2

Proof.
δ0....

Pre (U0 ∨ U2) z

δ1....
z0 � z ′

1 ∈ U1 ∨ U2

U0 ∨ U2 	s U1 ∨ U2

(1)

Here, δ0 stands for the following branch:

Pre (U1 ∨ U2) z
(1)

U0 	s U1 Pre U1 z
(2)

Pre U0 z

Pre (U0 ∨ U2) z

Pre U2 z
(2)

Pre (U0 ∨ U2) z

Pre (U0 ∨ U2) z
(2)

δ1 is

z0 � z ′
1 ∈ U0 ∨ U2

(1)

U0 	s U1

α....
Pre U1 z0 z0 � z ′

1

.∈ U0

(3)

z0 � z ′
1

.∈ U1

ψ

z0 � z ′
1

.∈ U2

(3)

ψ

ψ
(3)

where we have written ψ for z0 � z ′
1 ∈ U1 ∨ U2, and α is

Pre (U1 ∨ U2) z0
(1)

Pre U1 z0
(4)

z0 � z ′
1

.∈ U0

(3)

Pre U0 z0 Pre U2 z0
(4)

Pre U0 z0 ∧ Pre U2 z0....
Pre U1 z0

Pre U1 z0
(4)

�
Once again, the side-condition is determined by the proof: it is precisely the
entailment of an otherwise unprovable proposition (Pre U1 z0) from the avail-
able assumptions (Pre U0 z0 and Pre U2 z0).

The situation with SC-refinement is very similar since, as the counterex-
ample illustrates, the critical factor leading to non-monotonicity in this case
is the weakening of the precondition. SC-refinement sanctions this and, there-
fore, Proposition 46 holds with �s substituted by �sc. The proof, given this
substitution, is similar.

Schema disjunction is monotonic with respect to SP-refinement because
weakening of the precondition is prohibited. The following rule is derivable.



570 M C Henson, M Deutsch and S Reeves

Proposition 47.
U0 �sp U1

U0 ∨ U2 �sp U1 ∨ U2

Proof.
δ0....

Pre (U0 ∨ U2) z

δ1....
z0 � z ′

1 ∈ U1 ∨ U2

U0 ∨ U2 	sp U1 ∨ U2

(1)

where δ0 is identical to the precondition branch in the proof of Proposition
46 (with �s substituted by �sp) and δ1 stands for the following branch:

z0 � z ′
1 ∈ U0 ∨ U2

(1)

U0 	sp U1 z0 � z ′
1

.∈ U0

(3)

z0 � z ′
1

.∈ U1

z0 � z ′
1 ∈ U1 ∨ U2

z0 � z ′
1

.∈ U2

(3)

z0 � z ′
1 ∈ U1 ∨ U2

z0 � z ′
1 ∈ U1 ∨ U2

(3)

�

20.5 Refinement for Existential Quantification

There is, of course, an intimate relationship between disjunction and existen-
tial quantification. We might expect the monotonicity properties of schema
existential quantification to be similar to those for schema disjunction. In-
deed, schema existential quantification is not monotonic with respect to S-
refinement, because weakening of the precondition might admit behaviours in
the concrete operation that are unacceptable in the abstract operation. The
reason is that schema existential quantification can hide an arbitrary obser-
vation and, in particular, observations that can lead to an augmentation of
non-determinism. This is shown by the counterexample in Fig. 10.
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Fig. 10: A counterexample: schema existential quantification is not monotonic with

respect to S-refinement

We now present the specifications U0 and U1, whose alphabets comprise
the Boolean observations x, x′, y and y′. The specifications ∃ x, x′ : B • U0

and ∃ x, x′ : B • U1 hide the pair of observations x and x′ from U0 and
U1. Note that the schema U1 denotes a partial operation and U0 S-refines it
by weakening the precondition. Nevertheless, hiding those observations intro-
duces a weakening of the postcondition (marked with an arrow in Fig. 10) of
∃ x, x′ : B • U0 with respect to ∃ x, x′ : B • U1. Hence, S-refinement fails.

Like the case of schema disjunction, the above counterexample also sug-
gests that, in order to prove monotonicity of existential hiding, a side-condition
is required in the proof branch concerning the postcondition. The side-
condition here is stronger than the one used for disjunction because, unlike in
the case of schema disjunction, we do not have an additional disjoined schema.

Proposition 48. Let z be fresh and let U0, U1 be operation schemas with the
property that

Pre U0 z ⇒ Pre U1 z

The following rule is then derivable:

U0 �s U1

∃ z : T z • U0 �s ∃ z : T z • U1

Proof.
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δ0....
Pre (∃ z : T z • U0) z

z0 � z ′
1 ∈ ∃ z : T z • U0

(1)

δ1....
z0 � z ′

1 ∈ ∃ z : T z • U1

z0 � z ′
1 ∈ ∃ z : T z • U1

(3)

∃ z : T z • U0 	s ∃ z : T z • U1

(1)

where δ0 is

Pre (∃ z : T z • U1) z
(1)

U0 	s U1 Pre U1 y
(2)

Pre U0 y

Pre (∃ z : T z • U0) y y
.
= z

(2)

Pre (∃ z : T z • U0) z

Pre (∃ z : T z • U0) z
(2)

and δ1 is

U0 	s U1

w ∈ U0

(3)

Pre U0 w....
Pre U1 w w ∈ U0

(3)

w ∈ U1

w
.∈ ∃ z : T z • U1 w

.
= z0 � z ′

1

(3)

z0 � z ′
1 ∈ ∃ z : T z • U1

�
Note that the above side-condition forces a “fixed-precondition” refinement,
which is precisely SP-refinement. So it is an immediate consequence that ex-
istential hiding is monotonic with respect to SP-refinement.

Proposition 49. The following rule is derivable:

U0 �sp U1

∃ z : T z • U0 �sp ∃ z : T z • U1

�

The proof is essentially identical to Proposition 48.
One might expect that the monotonicity properties of existential hid-

ing with respect to S-refinement and SC-refinement would coincide. Indeed,
the side-condition of Proposition 48 is required for proving monotonicity of
schema existential hiding with respect to SC-refinement. However, since the
side-condition guarantees stability of the precondition, and SC-refinement the
stability of the postcondition, the result holds only when the abstract and con-
crete operations are equivalent, which is, of course, far from useful.

20.6 Refinement for Composition

It is not surprising that schema composition is not monotonic with respect
to S-refinement, because composition in Z can be expressed in terms of con-
junction and existential quantification. Consideration of the results of Sects.
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z
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w
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Fig. 11: A counterexample: schema composition is not monotonic with respect to

refinement

20.3 and 20.5 suggests that both weakening the precondition and strengthen-
ing the postcondition of the component specifications will cause a problem.
This is fairly intuitive, since reduction of non-determinism is demonic with
respect to schema composition (since strengthening the postcondition on the
left of the composition might demonically choose those after-states that do
not connect with the precondition of the operation to the right of the compo-
sition). This results in losing requirements from the domain of the composed
specifications. In addition, weakening the precondition on the right of the
composition might demonically extend the specification domain in such a way
that the composition will introduce unacceptable behaviours mapped from
the original precondition.

The following counterexample illustrates the problems and suggests a so-
lution by suggesting a side-condition. Consider the specifications in Fig. 11.
We introduce two abstract specifications U1 and U3, and their respective S-
refinements U0 and U2. We now show that the composition of the underlying
concrete specifications does not constitute a refinement of the composition of
their abstract counterparts. We label the before-states of each specification
using the labels x, y, z and w (from the top).

The specification U1 has two instances of non-determinism, and U0 S-
refines it by reducing both of these. However, this is demonic, so that the
after-state mapped from w in U0 does not compose with anything in the
precondition of U2; we therefore lose the before-state w from the domain of
U0

o

9 U2, whereas it still exists in the domain of U1
o

9 U3. This is one of the
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reasons for non-refinement.34 U2 S-refines U3 by weakening its precondition,
so, in conjunction with the demonic reduction of non-determinism by U0, the
after-state mapped from x in U0 is composed with the before-state y in U2.
This introduces a binding mapping from x in U0

o
9 U2 which does not exist

in U1
o

9 U3, yet x is in the precondition of U1
o

9 U3. This is the second reason
for non-refinement. The fact that (�+

s ) fails for reasons concerning both the
precondition and the postcondition suggests that neither the SP- nor the
SC-refinement theory will support this monotonicity result. Furthermore, it
suggests that a side-condition which is sufficient for proving monotonicity
with respect to S-refinement will be needed in both the precondition and the
postcondition branches of the proof; as we shall see, this is indeed the case.

The counterexample above and [28, p. 39–40],35 suggest a remedy: if we in-
sist that every after-state in the range of U1 is mapped onto at least one value
in the precondition of U3, then, not only can strengthening of the postcondi-
tion (on the left) by U0 never be demonic (as, in the presence of refinement,
the precondition of U2 is at least as large as that of U3), but also weakening
of the precondition (on the right) by U2 can never introduce an after-state in
U0

o

9 U2 that is connected via an intermediate value that was not in the pre-
condition of U3.

36 This property is called strong connectivity and it is defined
as follows.

Definition 33 (Strong Connectivity).

Sc U0 U1 =df ∀ z0, z1 • z0 � z ′
1 ∈ U0 ⇒ Pre U1 z1

We can prove that schema composition is monotonic with respect to all three
refinement theories, providing Sc U1 U3 holds; but we can do better than
that. Although strong connectivity is a very intuitive side-condition, there
is a weaker condition which is also sufficient. We can be led to this condi-
tion by considering further counterexamples. We call it forking connectivity.
Two specifications comply with this property if, for every non-deterministic
before-state (forking point) in the first specification, either all the after-states
mapped from it connect with some before-state in the precondition of the
second specification, or none of them does.

Definition 34 (Forking Connectivity).

Fc U0 U1 =df ∀ z0, z1, z2 • (z0�z ′
1 ∈ U0 ∧ z0�z ′

2 ∈ U0 ∧ Pre U1 z1) ⇒ Pre U1 z2
34 Note that had the precondition of U3 not been weakened by U2, we would have

also lost the before-state x from the precondition of U0
o
9
U2. This would have

induced a chaotic specification U0
o
9
U2.

35 The author of [28] proposes a modified definition of composition, in which strong
connectivity is embedded.

36 Unless, of course, this is as a result of composing an after-state in U0 that con-
stitutes a new behaviour (as a consequence of weakening the precondition of U1)
with a before-state that is outside the precondition of U3 but is inside the pre-
condition of U2. Such a case is not relevant in the present context.
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Obvious introduction and elimination rules follow from this.
With this in place, we can now prove the monotonicity result. We shall

provide only the proof for S-refinement.

Proposition 50. Let U0, U1, U2 and U3 be operation schemas with the prop-
erty that

Fc U1 U3

The following rule is then derivable:

U0 �s U1 U2 �s U3

U0
o
9 U2 �s U1

o
9 U3

Proof.
δ0....

Pre (U0
o
9
U2) z

δ1....
z0 � z ′

1 ∈ U1
o
9
U3

U0
o
9
U2 	s U1

o
9
U3

(1)

Here, δ0 is

U0 	s U1

Pre (U1
o
9
U3) z

(1)

Pre U1 z

Pre U0 z

z � y ′
0 ∈ U0

(2)
U2 	s U3

α0....
Pre U3 y0

Pre U2 y0

Pre (U0
o
9
U2) z

Pre (U0
o
9
U2) z

(2)

where α0 is

Pre (U1
o
9
U3) z

(1)
Fc U1 U3

γ0....
z � y ′

0 ∈ U1 z � w ′
0 ∈ U1

(3)
Pre U3 w0

(3)

Pre U3 y0

Pre U3 y0

(3)

whereγ0 is

U0 	s U1 z � y ′
0 ∈ U0

(2)
Pre (U1

o
9
U3) z

(1)

Pre U1 z

z � y ′
0 ∈ U1

and δ1 is

z0 � z ′
1 ∈ U0

o
9
U2

(1)

U0 	s U1

Pre (U1
o
9
U3) z0

(1)

Pre U1 z0 z0 � y ′
1 ∈ U0

(4)

z0 � y ′
1 ∈ U1

α1....

z0 � z ′
1 ∈ U1

o
9
U3

z0 � z ′
1 ∈ U1

o
9
U3

(4)
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where α1 is

U2 	s U3

Pre (U1
o
9
U3) z0

(1)

β1....
Pre U3 y1

Pre U3 y1

(5)
y1 � z ′

1 ∈ U2

(4)

y1 � z ′
1 ∈ U3

where β1 is

Fc U1 U3

γ1....
z0 � y ′

1 ∈ U1 z0 � w ′
1 ∈ U1

(5)
Pre U3 w1

(5)

Pre U3 y1

and where γ1 is

U0 	s U1

Pre (U1
o
9
U3) z0

(1)

Pre U1 z0 z0 � y ′
1 ∈ U0

(4)

z0 � y ′
1 ∈ U1

�
Finally, it is interesting to note that, since weakening the precondition causes
a problem on the right and strengthening the postcondition causes a problem
on the left, it is an immediate consequence that schema composition is mono-
tonic on the right with respect to SP-refinement (because the precondition is
fixed), and monotonic on the left with respect to SC-refinement (because the
postcondition is fixed). Hence, the following rules are derivable.

Proposition 51.

U0 �sp U1

U2
o

9 U0 �sp U2
o

9 U1

U0 �sc U1

U0
o

9 U2 �sc U1
o

9 U2

Proof. We provide only the proof for SP-refinement.

Pre (U2
o
9
U1) z

(1)
z � y ′ ∈ U2

(2)
U0 	sp U1 Pre U1 y

(2)

Pre U0 y

Pre (U2
o
9
U0) z

Pre (U2
o
9
U0) z

(2)
δ....

U2
o
9
U0 	sp U2

o
9
U1

(1)

where δ is

z0 � z ′
1 ∈ U2

o
9
U0

(1)
z0 � y ′ ∈ U2

(3)
U0 	sp U1 y � z ′

1 ∈ U0

(3)

y � z ′
1 ∈ U1

z0 � z ′
1 ∈ U2

o
9
U1

z0 � z ′
1 ∈ U2

o
9
U1

(3)

�
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21 Distributivity Properties of the Chaotic Completion

The standard interpretation of refinement for Z in the literature (for exam-
ple, [18, 68]) is what we have called W•-refinement (Sect. 7.4 and [23, 25]). It
is important to note that the definition concerns the partial-relation interpre-
tation of schema expressions. That is, the interpretation of schemas, and of
all the operations for building modular specifications, are logically prior to
the theory of refinement.

W•-refinement is, as we have already remarked, equivalent to S-refinement,
the theory we used in the previous section. So everything we have established
so far also applies to W•-refinement. It is, however, often illuminating to
consider matters through distinct though equivalent formulations; this section
is devoted to that, mainly through a consideration of lifted totalisation as an
operator in its own right.

One way of illustrating the failure of monotonicity, as it arises in the
W•-refinement framework, is to take a look at how the lifted totalisation
interacts directly with the schema operators. For example, if the following
full distributivity property held,

•
(U0 ∧ U1) =

•
U0 ∧

•
U1 ✘

then schema conjunction would be fully monotonic with respect to refinement.
That is, we would have

U0 �w• U2 U1 �w• U3

U0 ∧ U1 �w• U2 ∧ U3

✘

with a proof:

U0 	w• U2

z ∈
•

(U0 ∧ U1)

(1)

z ∈
•

U0 ∧
•

U1

✘

z
.∈

•
U0

z
.∈

•
U2

U1 	w• U3

z ∈
•

(U0 ∧ U1)

(1)

z ∈
•

U0 ∧
•

U1

✘

z
.∈

•
U1

z
.∈

•
U3

z ∈
•

U2 ∧
•

U3

z ∈
•

(U2 ∧ U3)
✔

U0 ∧ U1 	w• U2 ∧ U3

(1)

Here, the annotations of the proof indicate the problem: only half of the full
distributivity equation holds. Put another way, for full (unconditioned) mono-
tonicity, we needed the equation at the level of the total-relation semantics, but
in Z we have it only at the level of the partial-relation semantics (this is the
usual equational logic to be found in textbooks).
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w w

Fig. 12: Lifted totalisation does not fully distribute over schema conjunction

The situation is similar for every schema operator. In this section we shall
analyse in detail the reasons why full distributivity of the lifted totalisation
operator fails with respect to each of the schema calculus operators inves-
tigated in Sect. 20. We shall introduce side-conditions that are sufficient to
attain full-distributivity equations and then analyse their usefulness and their
relationship to the side-conditions introduced in Sect. 20.

21.1 Distributivity for Conjunction

The problem with distributing the lifted totalisation operator over schema
conjunction arises when identical before-states of the two component specifi-
cations do not agree on their after-states. This leads only to a distributivity
in-equation and not to full equivalence. This case is illustrated in Fig. 12. The
figure illustrates two specifications, U0 and U1, which share the before-state
w, but map it to distinct after-states. Conjoining these two specifications re-
moves w from the domain, and the completion operator interprets partiality as
chaos : anything is possible (marked with an arrow in Fig. 12). This contrasts
with the result of conjoining the completions of the specifications, which in-
troduces partiality at the level of the refinement theory. Here the partiality
looks more like infeasibility. General infeasibility is often known (for example,
in two-predicate frameworks such as Refinement Calculus and VDM [41,42])
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as magic:37 an extreme specification whose precondition is true and whose
postcondition is false (it is guaranteed to terminate, yet must establish an
impossible outcome). In the figure, the infeasibility is localised: we shall refer
to this as local magical behaviour.

As we can see in Fig. 12, distributing the relational completion operator
over schema conjunction may cause local magical behaviour whenever distinct
after-states are mapped from the same before-state (w in this case) in the two
component specifications, prior to the lifted totalisation. This behaviour re-
sults in partiality, in a similar fashion to the two-predicate-based frameworks
(including the approach taken in [34, 37]). Note that Z, a single-predicate
framework, is capable of modelling only two of the extreme specifications:
chance and chaos, in which the preconditions and postconditions are simulta-
neously true and false, respectively. For this reason, we have a distributivity
in-equation.

Proposition 52. The following rule is derivable:

t0 � t ′1 ∈
•

U0 ∧
•

U1

t0 � t ′1 ∈
•

(U0 ∧ U1)

�

The only way to ensure that distributivity holds in the other direction is
by preventing such contentious states in the component specifications: that
is, preventing local magical behaviour. This is achieved by insisting that the
conjunction of the two specifications will, at least, retain the precondition of
their disjunction:

Definition 35 (Properly Conjoined Operation Schemas).

Pc U0 U1 =df ∀ z • Pre (U0 ∨ U1) z ⇒ Pre (U0 ∧ U1) z

Proposition 53. Let U0 and U1 be operation schemas with the property that

Pc U0 U1

The following rule is then derivable:

t0 � t ′1 ∈
•

(U0 ∧ U1)

t0 � t ′1 ∈
•

U0 ∧
•

U1

�

37 For a complete account of extreme specifications see, for example, [28,48,65,66].



580 M C Henson, M Deutsch and S Reeves

21.2 Distributivity for Disjunction

The lifted totalisation operator does not distribute fully over schema disjunc-
tion because completing component specifications that have different precon-
ditions may induce chaotic behaviour in their disjunction, but non-chaotic be-
haviour when the component specifications are disjoined and then completed.
Fig. 13 illustrates this.

x

y

x

y

x

y y

x

Fig. 13: Lifted totalisation does not fully distribute over schema disjunction

The specification U0 has just one after-state mapped from x, and the speci-
fication U1 has just one after-state mapped from y. Disjoining these partial
relations, prior to completion, results in those two after-states (mapped from
x and y in U0 ∨ U1) and chaotic behaviour everywhere else. However, apply-
ing the lifted totalisation to U0 and U1 (individually), gives rise to chaotic

behaviour mapped from y in
•

U0 and similarly for x in
•

U1. Thus,
•

U0 ∨
•

U1 is
chaotic from these two before-states (marked with arrows); hence, we have an
in-equation rather than a full equivalence.

Proposition 54. The following rule is derivable:

t0 � t ′1 ∈
•

(U0 ∨ U1)

t0 � t ′1 ∈
•

U0 ∨
•

U1

�
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We observed, in Fig. 13, that full distributivity fails because of distinctions
in the preconditions of the specifications U0 and U1. Therefore, insisting that
the component specifications have identical preconditions guarantees full dis-
tributivity.

Definition 36 (Stable Preconditions).

Sp U0 U1 =df ∀ z • Pre U0 z ⇔ Pre U1 z

Proposition 55. Let U0 and U1 be operation schemas with the property that

Sp U0 U1

The following rule is then derivable:

t0 � t ′1 ∈
•

U0 ∨
•

U1

t0 � t ′1 ∈
•

(U0 ∨ U1)

�

21.3 Distributivity for Existential Quantification

Full distribution of the relational completion operator over schema existen-
tial hiding fails. This follows because hiding observations after applying lifted
totalisation can introduce chaotic behaviour that will not always arise when
observations are hidden before lifted totalisation. This is shown in Fig. 14. We
present a specification U whose alphabet comprises the Boolean observations
x, x′, y and y′. Hiding the observations x and x′ yields a total specification
∃ x, x′ : B • U. The only effect of lifted totalisation on this will be the mapping
of ⊥ onto all after-states. Yet, hiding the same observations after lifted to-
talisation introduces chaotic behaviour from the before-state T (marked with

an arrow) in the specification ∃ x, x′ : B • •
U . This is a consequence of map-

ping the before-state FT (which is outside the precondition of U ) onto all the

after-states in
•
U (including ⊥). As a result, hiding the observations x and x′

in
•
U leaves the remainder of this state sanctioning every possible outcome.

For this reason, we have only a distributivity in-equation.

Proposition 56. The following rule is derivable:

t ∈
•

(∃ z : T z • U )

t ∈ ∃ z : T z • •
U

�
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Fig. 14: Lifted totalisation does not fully distribute over schema existential quan-

tification

Since existential quantification is a generalisation of disjunction, it is not sur-
prising that the failure of the converse in-equation is reminiscent of the case
for schema disjunction (Sect. 21.2), although here we have one specification
rather than two: the difference described by Fig. 14 arises because distinct
before-states, which involve the same hidden observation in the specification,
have a different precondition status.38

Naturally, the remedy is very similar to “stable preconditions” (Definition
36), though here we have only a single specification: we need to ensure that
any before-state in the precondition of ∃ z : T z • U is equivalently in the
precondition of U . One direction is merely (Pre+

∃ ) (see Sect. 6.4); thus all we

need is the following property.

Definition 37 (Weak Binding).

Wb U =df ∀ x • Pre (∃ z : T z • U ) x ⇒ Pre U x

Proposition 57. Let U be operation schema with the property that

Wb U

The following rule is then derivable:
38 One before-state is in the precondition and one is outside the precondition of the

specification.
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t ∈ ∃ z : T z • •
U

t ∈
•

(∃ z : T z • U )
�

21.4 Distributivity for Composition

The lifted totalisation operator distributes over schema composition (but not
conversely) because composing a non-deterministic specification (on the left)
with a partial specification (on the right) may give rise to local chaos in the
composition of their (individual) completions, but this might not arise in the
completion of their composition. This is illustrated in Fig. 15.

x

w

z

y

x

y

k

x

y

Fig. 15: Lifted totalisation does not fully distribute over schema composition

An observation, such as w, outside the precondition of U1 plays no part in
linking before-states of U0 and after-states of U1 in the composition U0

o
9 U1

(nor in its lifted totalisation). Thus x, in U0
o

9 U1, is associated with the two
after-states, mapped from z in U1. However, applying the relational comple-
tion operator to U0 and U1 separately results in chaotic behaviour mapped

from w in
•

U1 and, consequently, chaotic behaviour (marked with an arrow)

from x in
•

U0
o

9

•
U1 . Therefore, we have only the following in-equation. We

provide the proofs in this case.
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Proposition 58. The following rule is derivable:

t0 � t ′1 ∈
•

(U0
o
9 U1)

t0 � t ′1 ∈
•

U0
o
9

•
U1

Proof.

t0 � t ′
1 ∈

•
(U0

o
9
U1)

δ0....

t0 � t ′
1 ∈

•
U0

o
9

•
U1

γ
....

t0 � t ′
1 ∈

•
U0

o
9

•
U1

t0 � t ′
1 ∈

•
U0

o
9

•
U1

♥ (1)

where δ0 is

¬ Pre (U0
o
9
U1) t0

(1)

¬ Pre U0 t0 ∨ (∀ z • t0 � z ′ ∈ U0 ⇒ ¬ Pre U1 z)

δ1, δ2....

t0 � t ′
1 ∈

•
U0

o
9

•
U1

t0 � t ′
1 ∈

•
U0

o
9

•
U1

(2)

and δ1 is

¬ Pre U0 t0
(2)

t0 � t ′
1 ∈

•
(U0

o
9
U1)

t0 � t ′
1 ∈ T in

0⊥ � T out′
1⊥

t0 ∈ T in
0⊥

t0� ⊥′∈
•

U0

(C. 1(ii))

t0 � t ′
1 ∈

•
(U0

o
9
U1)

t0 � t ′
1 ∈ T in

0⊥ � T out′
1⊥

t ′
1 ∈ T out′

1⊥

⊥ �t ′
1 ∈

•
U1

(C. 1(i))

t0 � t ′
1 ∈

•
U0

o
9

•
U1

and δ2 is

Pre U0 t0 ∨ ¬ Pre U0 t0
(LEM)

α0, β1....

t0 � t ′
1 ∈

•
U0

o
9

•
U1

t0 � t ′
1 ∈

•
U0

o
9

•
U1

(3)

and α0 is

Pre U0 t0
(3)

t0 � w ′ ∈ U0

(4)

t0 � w ′ ∈
•

U0

(L. 3(i))

β0....

w � t ′
1 ∈

•
U1

t0 � t ′
1 ∈

•
U0

o
9

•
U1

t0 � t ′
1 ∈

•
U0

o
9

•
U1

(4)

and β0 is
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α1....
¬ Pre U1 w

t0 � w ′ ∈ U0

(4)

t0 � w ′ ∈ T in
0 � T in′

1

w ∈ T in
1

w ∈ T in
1⊥

t0 � t ′
1 ∈

•
(U0

o
9
U1)

t0 � t ′
1 ∈ T in

0⊥ � T out′
1⊥

t ′
1 ∈ T out′

1⊥

w � t ′
1 ∈

•
U1

(L. 3(iii))

and α1 is

∀ z • t0 � z ′ ∈ U0 ⇒ ¬ Pre U1 z
(2)

t0 � w ′ ∈ U0 ⇒ ¬ Pre U1 w t0 � w ′ ∈ U0

(4)

¬ Pre U1 w

and β1 is identical to δ1 modulo substitution of the label (3) for the label (2).
Finally, γ is

t0 � t ′
1 ∈ U0

o
9
U1

(1)

t0 � y ′ ∈ U0

(5)

t0 � y ′ ∈
•

U0

(L. 3(i))
y � t ′

1 ∈ U1

(5)

y � t ′
1 ∈

•
U1

(L. 3(i))

t0 � t ′
1 ∈

•
U0

o
9

•
U1

t0 � t ′
1 ∈

•
U0

o
9

•
U1

(5)

�
There are two observations we can make about this proof. First, note that
the proof step labelled ♥ denotes an application of (•−) but where Definition
7.4 is expressed using disjunction (in the obvious way) in place of implication,
leading to a single disjunctive elimination rule. This rule is also used in the
proofs of Propositions 54 and 56. Second, the proof depends on use of the
law of the excluded middle. Once again, we suspect that the result is strictly
classical, as are many others in refinement theory (for example, [19–21]).

Fig. 15 demonstrates that distributivity fails in the other direction pre-
cisely because the two after-states mapped from x in U0 coincide with two
before-states in U1 with a different precondition status. We can see that the
forking point y in U0 does not constitute a problem, since w and k are both
outside the precondition of U1; thus y is associated with chaotic behaviour in

both
•

(U0
o

9 U1) and
•

U0
o

9

•
U1 . Furthermore, had we had w in the precondition

of U1, we would have obtained the same (non-chaotic) behaviour associated
with x in both cases. This suggests that a side-condition guaranteeing full
distributivity would insist on associating all the after-states, mapped from a
certain non-deterministic before-state in U0, with some before-states in U1

– all of which have the same precondition status. This is, indeed, the fork-
ing connectivity property used to ensure monotonicity of schema composition
with respect to S-refinement (Sect. 20.6).

Proposition 59. Let U0 and U1 be operation schemas, with the property that

Fc U0 U1
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The following rule is then derivable:

t0 � t ′1 ∈
•

U0
o

9

•
U1

t0 � t ′1 ∈
•

(U0
o

9 U1)

Proof.

ψ

β
....

t0 � y ′ ∈ U0

y � t ′
1 ∈

•
U1

(1)

δ....
Pre U1 y

y � t ′
1 ∈ U1

t0 � t ′
1 ∈ U0

o
9
U1

t0 � t ′
1 ∈

•
U0

o
9

•
U1

t0 � t ′
1 ∈ T in

0⊥ � T out′
1⊥

t0 � t ′
1 ∈

•
(U0

o
9
U1)

(2)

t0 � t ′
1 ∈

•
(U0

o
9
U1)

(1)

where we have written ψ for t0 � t ′1 ∈
•

U0
o

9

•
U1 , and δ is

Pre (U0
o
9
U1) t0

(2)
Fc U0 U1

β
....

t0 � y ′ ∈ U0 Pre U1 w
(3)

t0 � w ′ ∈ U0

(3)

Pre U1 y

Pre U1 y
(3)

and β is

t0 � y ′ ∈
•

U0

(1) Pre (U0
o
9
U1) t0

(2)

Pre U0 t0
(L.1)

t0 � y ′ ∈ U0

�

21.5 Discussion

The side-conditions that we have isolated, either for ensuring full distributivity
or for establishing monotonicity directly, are not similar to the syntactic side-
conditions routinely associated with logical rules, such as ∃-elimination. Syn-
tactic side-conditions are decidable, so it can always be determined when a rule
applies. The side-conditions that we have formulated are proof-theoretically
more complex and, in fact, only semi-decidable. From a practical point of
view, this is not very satisfactory. Moreover, most make mention of the con-
crete specification in addition to the abstract specification. This is unfortunate
because it reduces the practical use of the refinement rules when used calcu-
lationally, to construct the concrete specification. The exceptions to this are
the two connectivity principles used in the case of composition. And one could
in fact avoid mention of the concrete specification, in the case of disjunction,
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by omitting one of the antecedent propositions, thereby obtaining a condition
which is purely abstract, but which is, of course, somewhat less applicable. It
could be argued that these side-conditions are reasonable only if they refer ex-
clusively to either the abstract or the concrete specifications [62]. In this way
the true spirit of abstraction (in which the internal structure of the abstract
specification is not to be disclosed) is upheld. Overall, the lack of monotonic-
ity is a distinct drawback which such proof-theoretic side-conditions do not
address satisfactorily from a practical perspective.

Our analysis has of course concentrated on only two (equivalent) notions
of refinement: S-refinement and W•-refinement. Possibly there are other for-
mulations of refinement which would be better behaved. And, as we know,
there are several alternative approaches:

• Weakest-precondition refinement – it is possible to reinterpret the partial
relations in terms of a weakest-precondition semantics and to characterise
refinement in the standard way in that regime.

• Sets of implementation – in the spirit of constructive theories of program
development, for example Martin-Löf type theory [46] (though in the set-
ting of classical logic) it is possible to reinterpret specifications as sets of
permissible implementations. Refinement in this case is simply set inclu-
sion.

• strictly-lifted totalisation – it is possible to modify the lifted totalisation
so that the lifting is strict (abortive) rather then non-strict (chaotic).

• Non-lifted totalisation – it is possible to totalise the partial relations with-
out lifting if one is prepared to exclude fully chaotic behaviour from the
notion of a precondition.

We demonstrated in Sect. 7 et seq. (see also [23]) that all of these theories
of refinement are equivalent to the standard lifted-totalised account. As a
consequence, all suffer from the same weaknesses in terms of their (lack of)
monotonicity properties. Naturally, one could ask: are there still others which
have yet to be discovered? In addressing this question, we would need to find
some principles which distinguish a relation worthy of the name “refinement”
from any arbitrary binary relation on specifications. After all, the schema
operators are all fully monotonic with respect to equality, but equality is
evidently not a notion of refinement. In capturing the general principles, one
would be led to the properties described by S-refinement or SP-refinement. A
notion of refinement ought to be at least sound with respect to one or other of
those. Our analysis has already demonstrated the limits of modular reasoning
with respect to these notions.

Our analysis of distributivity does provide an interesting clue that moti-
vates us to make some final remarks. This is the observation that we have an
equational logic at the level of the underlying partial relations, but not at the
level of the total relations involved in refinement, suggesting an alternative ap-
proach: instead of developing a schema calculus at the level of partial relations
and only then introducing total relational refinement, we could introduce that
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calculus afterwards. This would naturally lead to a fully monotonic schema
calculus, because refinement would then simply become the subset relation on
the modified relational model. Of course, it would obviously lead to a distinct
schema calculus with quite different properties. Such a trajectory has led to
a new specification language νZ, in the Z tradition but offering a very inter-
esting and distinct mathematical, pragmatic and methodological approach.
Early research on this has been reported in [33].

22 Conclusions

The current work addresses two aims: first, to provide an accessible intro-
duction to the Z logic based on ZC , and second, to survey a range of more
advanced applications of this logic with references to the relevant literature.

The reader will have noticed one or two occasions on which some concepts
here differ from vernacular Z (and indeed ISO Z). It is worth reflecting a little
on the reasons for these differences. Z was originally introduced not as a theory,
but rather as a notation or language. The early formal work on Z concentrated
on semantics (see [57] in particular). This emphasis did not naturally lead to
an increase in the level of formality for future investigations: a logic permits
direct reasoning in the language, whereas reasoning in the semantics is hardly
a practical (nor even a desirable) matter. It should not be too surprising,
therefore, to discover opportunities and difficulties when a language, which has
to a great extent developed independently of its mathematical foundations, is
considered in a logical context. These tensions are very much a part of some
previous work to which we have already referred: whilst [35] is largely devoted
to vernacular Z, [38,39] explicitly ask questions about vernacular Z which arise
as a consequence of a logical analysis. In this chapter, the deviations (apart
from trivial notational differences) are modest but present: priming considered
as a bijective operation between observations and co-observations (Sect. 3.1)
and a hint in the direction of novelty in connection with θ-terms of the form
θS ′ (Sect. 2.2). The papers [38,39] are more revisionary, as their titles suggest.

A second theme that we wish to highlight concerns our survey of more
advanced areas: the fact that the logic permits the formalisation of associated
conceptual apparatus alongside the specification language itself. Of particu-
lar note is the wide variety of refinement theories that we have presented.
In addition to the material discussed here, it is also possible to formalise
programming notations within the logic, and relationships between programs
and specifications. This is covered in [34, 37]; again, all the formalisation and
analysis takes place within a single framework.
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F-implements: �f , 513
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equality: =, 501
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stable preconditions: Sp, 581
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refinement
F-refines: �f , 513
R-refines: �r , 519
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�wb�
, 551

WB•-refines:
s
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•
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�
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non-strict lifting:
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strictly-lifted totalisation:
�
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schema
chaos: Chaos , 525
composition: o
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conjunction: ∧, 506
delta schema: ∆, 494
disjunction: ∨, 506
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negation: ¬, 506
postcondition: Post , 516
precondition: Pre, 508
precondition: Pre0, 527
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abortive model, 565
abstract state, 534
alphabet, 494, 499, 504
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axiom of choice, 519

B, 510, 564
backward simulation, 533, 534, 558
backward simulation refinement, 558
backward-simulation refinement, 548
behavioural approach, 564

binding concatenation, 507
binding selection, 491, 501
bindings, 491, 499, 516, 524
bottom, 511, 516, 535

carrier set, 492
carrier sets, 531, 553
chance, 579
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chaotic behaviour, 513, 524, 534, 546,
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commuting path, 543, 547, 560, 562
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data refinement, 490, 533, 548
data refinement techniques, 534
data simulation, 534, 548, 562
demonic non-determinism, 573
distributivity, 577, 587
distributivity for composition, 583
distributivity for conjunction, 578
distributivity for disjunction, 580
distributivity for existential quantifi-

cation, 581
distributivity in-equation, 578–581,

583
downward simulation, 534

elimination rules, 514, 518
equality, 509
equational logic, 509, 577, 587
equivalence of theories, 518
explicit chaos, 526, 561
extended carrier, 531
extreme specifications, 561, 579

F-implementation, 513, 521
F-refinement, 512, 513, 519, 520
failure (of monotonicity), 577
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failure (of proof), 543, 546, 547, 560
fifted totalisation, 558
filtering, 493, 500
firing conditions, 564
forking connectivity, 574, 585
forward simulation, 533, 534, 544
forward simulation refinement, 536
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free types, 498, 500, 502
full distributivity, 578, 580, 581, 583,

585
full monotonicity, 577, 587
functional refinement, 512

healthiness conditions, 564, 566, 586

implementation relation, 513
implicit chaos, 526, 561
infeasibility, 578
introduction rules, 514, 518
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law of the excluded middle, 542, 555,
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lifted totalisation, 511, 514, 531, 534,
538, 551, 553, 562, 577, 580,
581, 583, 587
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R-implementation, 519, 521
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Summary. In this chapter we present short commentaries of the specification lan-
guages whose logics are presented in this book. The brief “essays” are written by
people closely related to the development and research of the individual languages.

1 Yuri Gurevich: ASM

We share our experience of using abstract state machines for teaching com-
putation theory at the University of Michigan.

1.1 Introduction

Dines Bjørner asked me to write a short non-technical essay “taking its depar-
ture” in the chapter Abstract State Machines for the Classroom by Wolfgang
Reisig. Well, I like Wolfgang’s chapter very much. Let me use this opportunity
to share some of my experience of teaching with ASMs at the University of
Michigan. I was at Michigan from 1982 till 1998, most of the time (from 1984
on) with the Department of Electrical Engineering and Computer Science
(EECS). The last few of those Michigan years I used ASMs in my teaching.
To keep this essay short, let me restrict attention to the course on computation
theory.

I taught the course often. At the Mathematics Department of Israel’s Ben
Gurion University, where I taught before coming to Michigan, undergraduate
courses were up for grabs, and I enjoyed teaching and learning new courses.
In EECS, the undergraduate curriculum was partitioned into feudal domains,
and the small computer theory group owned few courses. Kevin Compton, my
fellow theorist in EECS, said once: “I’ve taught that course so many times
that I could do it in my sleep . . . and often have.” In this connection, I tried
each time a new angle in teaching the course, which partially explains why
my frequent teaching of the course did not result in a book. Since 1998, I am
with Microsoft Research. The engineering culture of Microsoft has rubbed off
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on me, and today my teaching would be different. But I would continue to
use ASMs in my teaching; my confidence in ASMs has only grown.

The computation theory course was a part of the official curriculum of the
Association for Computing Machinery (ACM), and it served as a prerequisite
for some other courses. It was supported by the venerable 1979 “Introduction
to Automata Theory, Languages, and Computation” by John Hopcroft and
Jeffrey Ullman [3], and new excellent textbooks kept appearing. Nevertheless
in the 1990s the course on finite state machines, pushdown automata and
Turing machines seemed antiquated. Computing became so much broader:
graphical user interfaces, parallel and distributed computing, networks, Web
based computing and searching, communication and security protocols, and
other forms of computing that didn’t exist or weren’t yet important in 1979.
And computer science attracted more students than ever before, many of
them mathematically challenged. Students (and their parents!) complained
that they don’t see much use for Turing machine programming. ASMs could
describe arbitrary computations naturally and without lowering the abstrac-
tion level. That gave me an idea of using ASMs for teaching. But I had to be
careful in fiddling with the computation theory course; it was a traditional
undergraduate course, a part of the ACM curriculum and a prerequisite for
other courses.

1.2 Finite State Machines and Context-Free Languages

The computation theory course consisted of three parts: (i) finite automata
and regular languages, (ii) context-free languages and pushdown automata,
and (iii) Turing machines, undecidability and complexity. The first two parts
were similar from the point of view of the use of ASMs. They included numer-
ous algorithmic constructions, for example the subset construction that turns
a nondeterministic finite automaton into an equivalent deterministic one. The
constructions would typically involve parallelism. You can write prose describ-
ing such a construction or give pseudocode for the construction. I programmed
the constructions as ASMs and required the students to do the same. The ASM
programs looked like pseudocode of a particular style to the students. But we
were using of course a precise ASM computation model which allowed us to
use strings as well as finite sets and sequences of arbitrary entities. A cou-
ple of ASM programs from that computation theory course appear, slightly
modified, in [2 (Section 3)].

Typically the students would adapt to the “pseudocode” style rather
quickly. One difficulty was related to the default parallelism of ASMs. In
conventional programming languages, like C, commands listed in some order
are executed in that order. In the ASM world, the default is parallel execu-
tion. If you want that commands be executed sequentially, you have to say so
explicitly [2]. The students had programming experience in conventional lan-
guages and found default parallelism strange. I could circumvent the difficulty
by making parallelism explicit and writing “do in parallel” in the appropriate
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places but I didn’t want to clog the ASM code. More importantly, I wanted
to break the sequential-by-default thinking and thus elevate the abstraction
level of programming.

The primary beneficiaries of the ASM use in parts one and two of the
computation theory course were mathematically challenged students scared of
proofs. Programming was a different story. It was often their strong suit. ASMs
allowed me to present proof assignments as largely programming assignments
without lowering the abstraction level and with no unnecessary details.

Today I would use AsmL, the high-level specification/programming lan-
guage developed in Microsoft Research [1], so that the students could execute
their programs. (I would also show the students finite and pushdown au-
tomata that do something useful, e.g. the scanner of a lexical analyzer and a
mini parser, respectively.)

1.3 Universal Computation Models

It is in the third part of the computation theory course that we really took
advantage of ASMs. I would tell the students that they are already familiar
with a universal computation model. The dramatic effect was lost on some as
they had read about Turing machines or realized where I was going. But there
were always some students who looked perplexed and were about to protest.
At this point, I would explain that ASMs constitute a universal model, and
we had been using the ASM computation model all along. I never dwelt on
the greater universality of ASMs. That aspect of ASMs was beyond the scope
of the course.

Of course Turing machines (TMs) were introduced as well. They are indis-
pensable for undecidability proofs. So both ASMs and Turing machines were
used. And there was a price to pay: to show that TMs can simulate ASMs.
(The other way round is obvious.) This was done via random-access machines
(RAMs). First show that TMs can simulate RAMs, and then show that RAMs
can simulate ASMs. There are elegant forms of the first simulation in the liter-
ature, see [4] for example. The second simulation was recently simplified and
made elegant in [5].

The price was worth paying. ASMs allowed us to avoid Turing program-
ming. Consider for example the theorem that, for every nondeterministic TM
that computes a function, there is a deterministic TM that computes the
same function. The idea is simple — interleave all possible computations of
the given nondeterministic TM, but the TM programming of the interleaving
is a tedious task on a low abstraction level. Instead program the interleaving
in the ASM language and then refer to the fact that TMs can simulate ASMs;
the ASM programming of the interleaving is a programming exercise that can
be assigned as a part of homework. Even proving an initial undecidability
result is made easier by the use of ASMs.

Another advantage of using ASMs was that, contrary to Turing machines,
ASMs could be actually used for various purposes. In fact, throughout the
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course, we used ASMs to program algorithms, many of them highly parallel.
The reader may ask why not use a conventional programming language instead
of ASMs for programming algorithms. The reason is that ASMs allow you to
program algorithms without lowering the abstraction level.
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2 Jean-Raymond Abrial: On B and event-B

The chapter on B and event-B written by Dominique Cansell and Dominique
Méry in this book is certainly a tour de force, which I could not have written
myself. I particularly appreciate the variety of examples they develop: B thus
appears as what it is intended to be, namely nothing other than the use
of ordinary discrete mathematics organized in a framework which makes it
possible to use a refining and proving intellectual — as well as practical —
tool at the disposal of the “formal engineer”.

As mentioned in that chapter, B has been used in academic circles where
regular B conferences are organized: it is certainly fundamental to develop a
lively community that makes formal methods an active research area.

But B has been used in industry as well (this is also mentioned in the
chapter) to develop the safety-critical parts of “real” train systems: line 14 of
the Parisian Metro (driverless), Charles de Gaulle airport shuttle (driverless),
the New York City Metro, the Barcelona Metro, the new project of Paris
Metro line 1 (driverless), and so on. What is interesting here is not so much

3 Proceedings of the 12th International Workshop on Abstract State Machines
(ASM 2005), March 8-11, 2005, Paris, France, pages 377–386, www.univ-pa-
ris12.fr/lacl/dima/asm05/asm05-contents.html.



Reviews 603

the use of B itself, but rather the fact that formal methods with refinement
and proofs have entered the culture of certain industrial domains.

In these areas, the concerned industrialists have reached the conclusion
that using a formal method with refinement and proofs can be mastered, does
not require special skills beyond the ones that “normal” engineers have, and is
clearly far more efficient financially (needless to say, technically) than classical
methods using testing as their main verification process. Readers who do not
believe me can contact the Parisian Metro Authority (RATP)!

For the sake of completeness, it is worth mentioning that other industrial-
ists have said that they will never use B because it is totally useless! Needless
to say, I did not try to convince them: this is a waste of time.

In fact, using this formal approach corresponds to a clear mental revolu-
tion on the part of the managers and technical people in charge of such real
projects. It means that one can envisage developing complex embedded systems
in such a way that they will be proved to be eventually correct by construc-
tion. Clearly, engineers in other, more mature, disciplines than ours would be
very surprised that we, the computer people, have just discovered what they
have been doing for many decades, but they do not remember probably their
status while they were in their infancy!

Yes, it is possible to develop systems whose software parts interact with a
dangerous environment in a satisfactory fashion. Notice, that I have not writ-
ten in a ‘correct’ fashion nor in a ‘zero-fault’ fashion; this was done on purpose.
The notion of correctness and thus the expression ‘correct by construction’
has to be manipulated with great care. It is a relative notion, relative to the
assumptions which must have been clearly put forward to begin with. Outside
such assumptions, nothing is guaranteed, of course.

But this raises now another problem concerning the consistency and com-
pleteness of such initially defined assumptions. Completeness will be imme-
diately discarded as no formal (I mean “mathematical”) approach can verify
completeness: it depends on the professional skills of the engineers. Consis-
tency is another matter. It is quite possible that the initial informal specifi-
cations prepared by the system engineers be inadequate or even inconsistent.
Nothing prevents this happening presently except the usually extremely high
professional caliber of system engineers.

It is my belief that formal methods with refinement and proofs can be
used at this level with great profit: this is precisely the aim of Event-B, which
consists at the same time in a drastic simplification with regard to “classical B”
(as presented in the B-Book [1]) but also provides means to develop distributed
systems as a whole (not only their software parts).

Dear reader, read carefully and slowly the chapter written by Dominique
Cansell and Dominique Méry: if you encounter such material for the first time,
it is certainly not something you can swallow in one afternoon. But once you
feel comfortable, you can use the tool “click′n′Prove”, it’s fun. But you might
be a bit frustrated by the emacs interface. Wait! We are preparing a new set
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of tools (sponsored by the European project Rodin), it works under Eclipse, it
is completely free, and it will be stable within a few months.

1. J.-R. Abrial: The B Book: Assigning Programs to Meanings (Cambridge
University Press, UK 1996)

3 Kokichi Futatsugi: Formal Methods and CafeOBJ

Formal methods are not “silver bullets”, but are still expected to improve prac-
tices of constructions, analyses, and/or verifications of domain, requirement,
and/or design specifications. Formal methods are based on formal specifica-
tions of realities, and a formal specification language plays an important role
in any formal method. CafeOBJ is a formal specification language which is
designed to be used in constructions/analyses/verifications of specifications.

3.1 Verification of High-Level Specifications

To create domain/requirement/design specifications and analyze/verify them
as early phase as possible is one of the most important and challenging topics
in the current software engineering. It is important because quite a few critical
bugs are caused at the level of domains/requirements/designs. It is also im-
portant for the cases where no program codes are generated and specifications
are analyzed/verified only for justifying models of realities. It is challenging
because modeling of realities and its validation against the realities is the most
challenging topic of formal methods (or of any science/technology).

For analyzing and/or verifying specifications, a balanced use of informal
and formal specifications is inevitable. In the current practices of system de-
velopment, informal specifications are dominating and formal specifications
are not necessarily accepted or used in a proper way. This implies that only
very limited analyses/verifications can be done in the phase of high-level spec-
ification development.

3.2 Interactive Modeling/Verification

The term ‘verify’ is used in a sentence like “verify a program against a specifi-
cation”. The term “validate” is used in a sentence like “validate specifications
against the realities”. This suggests that verification means showing by formal
proof that some property holds against already established formal descrip-
tions, and validation means showing by empirical/experimental means that
some property hold against realities. This almost implies that only validation
is possible for domain or requirement specifications, for there are no formal
specifications for domains/requirements a priori.

One critical issue here is that the traditional theory/technology of validat-
ing informal specifications against reality by means of empirical/experimental
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ways does not meet the recent requirements of realizing more safe and secure
systems. One of the main purposes of verification of high-level specifications is
to overcome this situation by improving traditional verification technology to
cope with “validation of domain/requirement specifications against realities”.

To make verification meaningful as validation, it should be interactive, for
validation against realities is better to be done by human stakeholders through
interactions. The proof score approach with CafeOBJ [1,2] is a possible solution
for more effective and usable verification/validation of high-level (i.e., domain,
requirement, and/or design) specifications.

3.3 The Proof Score Approach

The goal of verification in software engineering is to increase confidence in the
correctness of systems. For verification to be genuinely useful in software engi-
neering, careful account must be taken of the context of actual use, including
the capabilities and culture of users, and the available technology. Absolute
certainty is not achievable in real applications.

Fully automatic theorem provers often fail to convey an understanding of
their proofs, and they are generally unhelpful when they fail because of user
errors in specifications or goals, or due to the lack of a necessary lemma or
case split. It follows that one should seek to make optimal use of the respective
abilities of humans and computers, so that computers do the tedious formal
calculations, and humans do the high-level planning; the trade off between
detail and comprehension should also be carefully balanced.

Proof score is a central concept in the CafeOBJ approach for meeting
these goals; proof scores are instructions to a proof engine, such that when
they are executed (or “played”), if everything evaluates as expected, then a
desired theorem is proved. Proof scores hide the detailed calculations done by
machines, while revealing the proof plan created by humans.

There is an important distinction between “system specifications” versus
“property specifications”. System specifications are specifications of systems
which are supposed to be modeled and/or developed. Property specifications
are specifications of properties which are supposed to be satisfied by systems.
In the current proof score method in CafeOBJ, both system and property
specifications are written in equational specifications.

CafeOBJ adopts the principle of executable specifications. System spec-
ifications are executable by interpreting equations as rewriting rules. This
helps a lot in achieving clear and transparant constructions and verifications
of high-level specifications.

3.4 CafeOBJ Logic and Methodology

Dr. Răzvan Diaconescu gives a beautiful introduction to CafeOBJ logic in
his “A Methodological Guide to CafeOBJ Logic” (abbreviated as MGcafe in
the following). He explains fundamental language constructs, methodologies,
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and semantics (or logic) of CafeOBJ in a mixture of informal narrative and
formal mathematical styles. Mathematical definitions of important concepts
are given in a course of narrative descriptions. Executable CafeOBJ codes are
also given for helping to understand these definitions/descriptions. By doing
this, he has succeeded in giving a clear and precise description of the CafeOBJ

logic and language.
MGcafe also gives clear explanations of the following important and unique

contributions of CafeOBJ to research on designs of formal specification lan-
guages.

• Behavioral Specification: CafeOBJ is the first formal specification lan-
guage which adopts behavioral specification. By introducing behavioral
specification, it has become possible to specify dynamic process types and
static data types in a uniform way. Introduction of behavioral specification
opens up many new application areas, and is the most important feature
of CafeOBJ.

• Rewriting Logic Specification: Rewriting logic is a logic for state tran-
sitions. CafeOBJ’s rewriting logic is a simplified version of the original one,
but can provide succinct specifications and verifications of declarative en-
coding of algorithms as well as ordinary transition systems. A transition
system can be a model for dynamic systems, and rewriting logic specifica-
tion provides a secondary way for modeling dynamic systems in CafeOBJ.

• Institutional Semantics: Institutions provide a framework for giving
unified semantics for a multilogic algebraic specification language like
CafeOBJ. Serious adoption of institutional semantics is an important
unique contribution of CafeOBJ to the semantics of algebraic specifica-
tion languages.

As a result, MGcafe amounts to an excellent introduction to CafeOBJ from
the standpoint of its underlining logic or semantics, even if some parts include
heavily condensed explanations of semantics based on institutional/categorical
concepts.

MGcafe says many things about CafeOBJ methodologies, but does not say
much about recently developed methodologies for proof score writings like
“systematic case splitting and lemma discovery” [2]. The theoretical frame-
works of CafeOBJ which are explained in MGcafehave potential to give clear
and precise semantics for the advance proof score methodology for high-level
specifications, and it is desirable to see such research developments in the near
future.

1. Kokichi Futatsugi. Verifying specifications with proof scores in CafeOBJ.
In ASE, pages 3–10. IEEE Computer Society, 2006.

2. Kazuhiro Ogata and Kokichi Futatsugi. Some tips on writing proof
scores in the OTS/CafeOBJ method. In Kokichi Futatsugi, Jean-Pierre
Jouannaud, and José Meseguer, editors, Essays Dedicated to Joseph A.
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Goguen, volume 4060 of Lecture Notes in Computer Science, pages 596–
615. Springer, 2006.

4 Peter D. Mosses: A View of the CASL

Castles in the air – they are so easy to take refuge in.
And so easy to build, too.4

4.1 Background

Casl is the youngest of the specification languages whose logics are presented
in this book. It was designed and constructed by members of CoFI,5 the
common framework initiative for algebraic specification and development of
software. CoFI was originally conceived as a joint task of IFIP WG 1.3 (on
Foundations of System Specification) and the ESPRIT Basic Research WG
Compass. During the meeting of the 10th WADT with the 5th Compass

workshop at S. Margherita, Italy, in 1994, I had asked, rather impertinently:

Why do we need so many different algebraic specification languages?

The languages that had been developed for algebraic specification of software
included Act One/Act Two, ASF, ASL, Clear, Extended ML, Larch,
Obj3, Pluss, and Spectrum (there were more than 25 of them altogether).
Although many of them shared various features and had similar foundations,
they lacked uniformity of notation, libraries of standard specifications, and
a generally accepted textbook. Various useful tools had been developed for
particular languages, but these were not interoperable.

No satisfactory answer to my question was forthcoming, and I was asked
to coordinate an investigation into the possibility of establishing a ‘unifying
framework’ for algebraic specification. The topic was discussed further at a
Compass satellite meeting at TAPSOFT’95 in Aarhus, and CoFI itself was
born in 1995, at an IFIP WG 1.3 meeting held at Soria Moria, Norway, later
the same year. Despite considerable general scepticism about the chances of
success, it was encouraging to see how many leaders of research groups in
algebraic specification joined the initiative. Although CoFI was sponsored by
IFIP WG 1.3 and the Compass WG, participation was open to all, with the
aim of reaching a broad consensus.

CoFI started by cataloguing the features of 12 existing languages. The aim
was to base the intended unifying framework on a critical selection of the best
features (rather than trying to combine all the features). Task groups were
established for language design, semantics, tools, methodology, and specifi-
cation of reactive systems. Mailing lists were set up, and many participants

4 Henrik Ibsen, The Master Builder, 1892, act 3.
5 http://www.cofi.info. CoFI is pronounced like ‘coffee’.
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wrote study notes regarding design choices for particular features of algebraic
specifications. The collective experience and expertise of the participants pro-
vided a unique opportunity to achieve the aims of CoFI within a reasonably
short time-span.

The main specification language of the unifying framework was given the
name Casl: the Common Algebraic Specification Language. Combining the
selected features together in a single language was however not at all straight-
forward. There was also the highly debated question of how rich to make
Casl. Quite surprisingly, it was easy to reach agreement on the issue of par-
tiality, which had previously been regarded as particularly contentious. Allow-
ing full first-order logic for axioms was somewhat controversial, but familiar
from Larch. Other language design issues, such as those concerning subsort-
ing and architectural specification, were considerably more troublesome, and
their resolution involved research into novel variants of the features of existing
specification languages – something which had not been foreseen when CoFI
started.

4.2 Status

Apart from a few details, the Casl design was completed in 1998, and ver-
sion 1.0 was released. The same year, CoFI obtained funding as an ESPRIT
working group, and Don Sannella took over as overall coordinator. IFIP
WG 1.3 approved the final design in April 2001. The current version (1.0.2)
was adopted in October 2003, and no further revisions of the Casl design
are anticipated. The Casl User Manual and Reference Manual were pub-
lished in 2004 [1,3]. Various sub-languages of Casl were defined (inheriting
their semantics from Casl), and several new languages have been approved as
extensions of Casl: higher-order (HasCasl), co-algebraic (CoCasl), reac-
tive (Casl-LTL, CSP-Casl), and structural (HetCasl). The original CoFI
task groups have terminated, although there is still coordination of activities
concerning tool development.

The editors of this book have kindly invited me to reflect here on the
current state of Casl. What has been achieved by the development of this
new family of algebraic specification languages by CoFI? Has the initiative to
provide a ‘unifying framework’ succeeded in its main aim?

It has to be admitted that the design of Casl is somewhat more innova-
tive than CoFI had originally envisaged, and Casl itself does not correspond
directly to any previous language – even at the level of basic specifications.
Thus one might claim that by developing Casl, CoFI has simply added to
the proliferation of different languages. . . However, it has been shown [2] that
some of the major languages that preceded Casl (Act One, ASF, Larch,
Obj3, and the functional part of CafeOBJ) do correspond closely to sub-
languages of Casl regarding their features and foundations. Moreover, some
novel languages have been developed as extensions of Casl, instead of as
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completely different languages. Thus the Casl family of languages can in-
deed be seen as providing a unifying framework. The fragmentation of work
on algebraic specification has also been reduced by the developers of some
previous languages dropping them in favour of Casl.

Some remaining languages (e.g. Asf+Sdf, CafeOBJ, Maude) are strong-
ly linked to well-developed rewriting engines that support execution and anal-
ysis of specifications. One of the aims of CoFI was to support tool interop-
erability through the Casl family of languages. The Heterogeneous Tool Set
Hets provides much tool support for the Casl languages themselves, together
with interfaces to theorem provers, but a system providing Casl-based in-
terfaces to the various rewriting engines is currently lacking. Although the
design of the Casl languages themselves has been successful, further efforts
are needed to fully realise the remaining the aims of CoFI – new participants
are always welcome!

1. M. Bidoit and P.D. Mosses. Casl User Manual – Introduction to Using
the Common Algebraic Specification Language, volume 2900 of Lecture
Notes in Computer Science. Springer, 2004.

2. T. Mossakowski. Relating Casl with other specification languages: The
institution level. Theor. Comput. Sci., 286(2):367–475, 2002.

3. P.D. Mosses, editor. Casl Reference Manual – The Complete Documen-
tation of the Common Algebraic Specification Language, volume 2960 of
Lecture Notes in Computer Science. Springer, 2004.

5 Zhou Chaochen: Duration Calculus

I thank the editors for including Duration Calculus (DC) in this book and
for asking me to write a non-technical but still academic essay about DC in
addition to the excellent chapter written by Michael R. Hansen.

DC was introduced by Tony Hoare, Anders Ravn and myself in 1991 [1] for
the ProCoS project, when we conducted a case study on a gas burner system.
Since then, research on DC has covered the development of DC variants, their
applications and tools. In 2004, Michael Hansen and I published a book [2] on
DC and tried to present the existing research in a systematic way. Recently,
the ongoing project AVACS (Automatic Verification and Analysis of Complex
Systems) [3] aroused my interest in DC again. It combines CSP, OZ and DC
into a uniform language with an ambition to specify and verify the European
Train Control System. I wish the project great success in applying DC to
real-world problems.

It is my understanding that from the logical point of view the main con-
tribution of DC to formal specification of real-time systems, in particular
real-time hybrid systems, is to

• adopt Interval Logic as a logical base, and
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• introduce into specification languages a notion of the integral from contin-
uous mathematics.

Interval Logic is a branch of Modal Logic. Given the Phase Transition System
[4] as the computational model of a hybrid system, the choice of Interval
Logic for hybrid systems can be well justified. Interval Logic has also been
used by J.F. Allen, J. Halpern et al. in the areas of artificial intelligence,
circuit design, etc. [5,6]. Moreover, in a personal communication, Tony Hoare
drew my attention to the possible correspondence between the chop operator
in Interval Logic and the separating (spatial) conjunction in Separation Logic
[7]. I believe that Interval Logic deserves an important role in computing
science.

DC includes an inference system for integration of Boolean-valued func-
tions. Inclusion of more continuous mathematics such as differential and in-
tegral equations strengthens various specification languages to describe be-
haviour of hybrid systems [8,9]. Recent achievement of research on computa-
tional properties of hybrid systems (e.g. decidability of reachability of linear
hybrid systems [10,11]) shows great promise in this respect. Not only do hy-
brid systems require continuous mathematics, a program element can also
be specified using continuous mathematics if its variables are typed as reals.
Along this line people reduce termination analysis, invariant generation and
other problems to solutions of algebraic systems and then use computer alge-
bra to verify programs [12,13,14]. This demonstrates support from continuous
mathematics for formal verification of computing systems.

1. C. Zhou, C.A.R. Hoare, A.P. Ravn AP (1991) A Calculus of Durations.
Information Processing Letters 40(5):269-276

2. C. Zhou, M.R. Hansen (2004) Duration Calculus: A Formal Approach to
Real-Time Systems. Springer

3. The AVACS project page (2006) Transregional Collaborative Research
Center 14 AVACS: http://www.avacs.org

4. Z. Manna, A. Pnueli (1993) Verifying Hybrid Systems. LNCS 736:4-35,
Springer

5. J.F. Allen (1984) Towards a General Theory of Action and Time. Artificial
Intelligence 23:123-154

6. J. Halpern, B. Moskowski, Z. Manna (1983) A Hardware Semantics Based
on Temporal Intervals. LNCS 154:278-291, Springer

7. J.C. Reynolds (2002) Separation Logic: A Logic for Shared Mutable Data-
structures. In Proceedings of IEEE Symposium, LICS

8. R. Alur, C. Courcoubetis, T. Henzinger, P.H. Ho (1993) Hybrid Automata:
An Algorithmic Approach to the Specification and Verification of Hybrid
Systems. LNCS 736:209-229, Springer

9. C. Zhou, J. Wang, A.P. Ravn (1996) A Formal Description of Hybrid
Systems. LNCS 1066:511-530, Springer
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6 Klaus Havelund: RAISE in Perspective

6.1 The Contribution of RAISE

The RAISE [6] Specification Language, RSL, originated as a derivation of
VDM [9] during a five-year effort involving several researchers. The purpose
was to improve VDM by augmenting it with a module system, a process de-
scription language, a formal semantics standard, and tool support. A goal was
to keep the language a wide spectrum language including high-level specifica-
tion constructs as well as low-level programming constructs, allowing specifi-
cation and program fragments to be mixed arbitrarily with each other without
imposing a linguistically layered language. The effort resulted in a language
inspired by, but in many ways different from VDM. A main deviation from
VDM is the emphasis on an algebraic specification-style logic where a module
consists of a signature and a set of axioms over the names introduced in the
signature. Derived forms exist which reflect the classical VDM definitional
style. Correspondingly, types can be abstract sorts as in algebraic specifica-
tions or they can be defined through type definitions as in VDM using what
is normally referred to as a model-oriented style. The pure model-oriented
style usually uses such explicit type definitions and a definitional style for
functions. The pure algebraic style uses sorts and more liberal equations with
arbitrary terms on the left-hand side as well as on the right-hand side. In the
axiomatic style emphasis is on operations and how they relate to each other.
In the model-oriented style the emphasis is on data types. When modeling
a problem in VDM, the problem is usually first understood by writing down
a set of type definitions. The same style is possible in RSL, although the
added module system suggests the association of operations with types in a
compartmentalized manner.

Although the language is completely uniform, RSL is often for pedagogi-
cal purposes presented as supporting three paradigms: functional, procedural
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with side effects on a state, and process algebraic. In addition each paradigm
can be presented in an axiomatic style or in a model oriented definitional
style, conceptually forming a 3-by-2 matrix. However, there is only one no-
tion of function, which potentially can have side effects or communicate on
channels, and which can be defined axiomatically, with a special case being
a model-oriented definitional style. Considering this 3-by-2 matrix, the theo-
retical contribution of RSL was the algebraic specification of functions with
side effects on state variables and channels, and the linguistic and semantic
unification of all these concepts.

6.2 Relationship to Programming Languages

However, in spite of the axiomatic capabilities of RSL, the model-oriented
definitional style seems more often used. For example the case study in the
paper is mostly written in a such a style (first functional and then procedural,
but both model-oriented). In essence, many specifications have the flavor of
high-level programs. This observation might lead us to question what the rela-
tionship between specification languages and programming languages should
be. Traditionally specification languages are seen as existing separately from
programming languages, only connected with a translator from the specifica-
tion language to the programming language in case the specification language
contains an executable subset. This separation has some advantages and some
disadvantages. A main advantage is clearly that the specification language can
be used to describe systems independently of the final choice of programming
language. The implementation can even be programmed in different program-
ming languages, which is in fact typically the case. Another advantage is that
the specification language is liberated from issues of executability. Specifica-
tions can be as abstract as required.

Amongst the disadvantages is the fact that a software project has to ad-
minister artifacts written in a specification language as well as in a program-
ming language. One can imagine that some parts of the system have been
implemented already in a programming language, while other parts have been
captured in a specification language, resulting in a multilanguage situation.
This problem seems even less necessary when considering that specification
language and programming language often have many constructs in common.
It is not always possible to rely on a translator from the specification language
to the programming language. Typically such a translator will not yield code
that is efficient enough. The programmer will not trust the complicated trans-
lation process and would be more comfortable with a real one-step compiler.
Finally, the link between specification and program cannot in practice be for-
mal. In theory it can be formalized, but it would require a formal semantics of
the programming language and a proof that every specification is translated
to a semantically equivalent program.

Whether one will argue for or against a separation between specification
language and programming language, it is clear that there are advantages of
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combining specification and programming into one language. An interesting
example is the now widely used scripting and programming language Python
[5]. Python has built-in succinct notation for sets, lists and maps, and iterators
over these, exactly the core data types of VDM and RSL. These concepts also
exist in Java [3], although as libraries. Some programming language extensions
incorporate specifications in a layered manner, where specifications are sep-
arated from the actual code, as axioms [2] or as pre-/post-conditions [1,4,7].
It is desirable that more ideas from formal specification languages “make it”
into programming languages and that there is a more elaborate exchange of
ideas between the two communities. The formal methods community has a
lot to offer the programming language community, and vice versa.

RSL is not object oriented. For example, RSL objects are not values. Ob-
ject orientation was yet not as fashionable when RSL was designed as it is
today. Object orientation has, however, shown itself to be a useful way of en-
capsulating state. As an example, an object-oriented presentation of the case
study without explicitly mentioning the state variable might be more succinct
than the functional style where the state is passed as argument to all functions.
In general, certain concepts have shown themselves to be useful in specifica-
tion as well as programming, and hence could be considered candidates for
integration into a programming language. These include object orientation,
functional programming, algebraic data types generated with constructors
and pattern matching over these, as well as succinct notation for operating
sets, lists and maps, as well as logic-inspired constructs such as existential and
universal quantification over finite sets. There is no reason why the concepts
that have shown themselves most useful to express problems could not exist
in one language. It is even conceivable that equational rewriting rules could be
merged with traditional programming constructs in a programming language.
Notation-wise this is allowed in RSL, however it is currently not supported by
a computational model. The main point of the above discussion has been to
emphasize that specification languages and programming languages overlap
and that the gap between the two universes is not as big as one could believe.
This observation should be utilized to design programming languages inspired
by specification languages.

6.3 Verification Versus Testing

As a final point, it is worth mentioning the use of formal methods for testing.
RAISE stands for “Rigorous Approach to Industrial Software Engineering”.
By “Rigorous” is meant that the correctness of a software artifact developed
using the RAISE technology can be justified by a proof, relating formal ar-
tifacts. Rigor is an important and essential element of a formal method like
RAISE. However, rigor comes with a price: generating proofs is hard. Testing
still seems to be the most practical approach for large specifications. The test-
ing method referred to in the paper resembles various unit testing methods
found in programming. The user writes a set of tests, each of which performs
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a sequence of function calls, and then observes the result. A useful augmen-
tation of this approach would consist of prefixing these tests with universal
quantifications over data referred to in the tests, and then use random selec-
tion of data from the types quantified over for automated testing. Selection
of data from the types could even be guided by additional strategies. A more
uniform view would be to regard any equational axiom as a test case, hence
avoiding introducing new concepts into the language. A specification should
be directly usable for generating test cases. A special view on testing is run
time verification [10], where a specification is used to monitor the execution
of the final program. If specifications become part of the programmer’s test
arsenal, there is a bigger chance that specification technology will be adopted
by practitioners.

1. Eiffel www.eiffel.com

2. Extended ML homepages.inf.ed.ac.uk/dts/eml

3. Java java.sun.com

4. JML www.cs.iastate.edu/~leavens/JML

5. Python www.python.org

6. RAISE www2.imm.dtu.dk/~db/raise

7. Spec# research.microsoft.com/specsharp

8. Standard ML en.wikipedia.org/wiki/Standard_ML

9. VDM www.vdmportal.org

10. Runtime Verification Workshops www.runtime-verification.org

7 Cliff B. Jones: VDM “Postludium”

This volume focuses on the logics used in well-known specification languages.
John Fitzgerald’s chapter addresses the use of “LPF” (the Logic of Partial
Functions) which is used in many of the writings on VDM.

Let me first discuss some aspects of VDM itself. (I do not reproduce ci-
tations here where the VDM chapter has already set them in context.) As
observed in Fitzgerald’s chapter, there are various “schools” even within the
VDM community; [4] was written in honour of Peter Lucas’ retirement from
the Technical University of Graz and traces some of the changes that occurred
in the transition from the operational semantics (VDL) work on programming
language semantics to VDM itself (as, for example, described in the first book
on VDM [1]). The books cited in Fitzgerald’s chapter trace the development
of the VDM ideas as they apply to the specification and development of pro-
grams other than compilers.

One of the things that is extremely gratifying to the original VDM team
is the influence that VDM has had on other specification languages. Clear
acknowledgements of this influence are recorded by the authors of works on
Larch, VVSL, RAISE, VDM++ and B (and thus Event-B). At a BCS-FACS
(British Computer Society, Formal Aspects of Computing) meeting in London
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in January 2006, many of these influences were discussed — a record of both
the panel position statements and the ensuing discussion is available as [2].

It is to be hoped that most people having studied this book will appreciate
that it is the notion of modelling systems abstractly that is crucial. This is
much more important than the fine details of one or another notation. To
emphasise this point, let me relate two personal experiences. In 1979–81, I
shared an office in Oxford with Jean-Raymond Abrial; we neither of us found
any difficulty in discussing models of interesting systems with Jean-Raymond
working in the then version of Z and me using the version of VDM used in my
1980 book.6 I now have the pleasure to be working again with Jean-Raymond
on the EU-funded project RODIN;7 I have no difficulty in expressing most
of my models in “Event-B” and benefit from the superb tools that his team
in ETH have produced (of course, it would be highly desirable if it were to
include rely and guarantee conditions!).

The preceding paragraph should not be seen as saying that the differences
between specification languages are irrelevant. In fact they are very interesting
and their logics are one of the areas of particular interest.

I’m delighted that Fitzgerald has written about LPF. His choice is not that
surprising since he was a member of the team that built “mural” (a theorem
proving assistant for which we explored interface ideas which have still to be
bettered!). Fitzgerald’s own books have also done a great deal to explore the
role of proof in program development.

It is a cause of puzzlement to me that LPF is not more widely used. To
be provocative, I am particularly surprised that RAISE did not use LPF. It is
certainly true that LPF is one possible solution to the problem of “undefined”
in specifications and designs of programs. It is not the only way around the
thorny issue of the frequent occurrence of operators and functions which can
be undefined. We have found that with tool support, one simply does not
notice that the axiomatisation is non-standard; one rarely misses the “law of
the excluded middle”. Fitzgerald’s chapter discusses mechanisation of LPF:
the only real problem would appear to be the re-working of the concept of
“resolution”.

I sincerely hope that this book will widen researchers’ awareness of those
technical distinctions which are important (and deflect them from discussing
less critical differences). In particular, I hope that the volume will serve to
stimulate a focused debate on the logics underlying specification languages.

1. D. Bjørner and C.B. Jones, editors. The Vienna Development Method:
The Meta-language, volume 61 of Lecture Notes in Computer Science.
Springer-Verlag, 1978.

6 The BCS-FACS meeting which is referred to above resulted in yet one more
publication of the paper (which connects to the purpose of this volume): [3]
highlights the main differences between Z and VDM.

7 See http://rodin.cs.ncl.ac.uk
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2. J.S. Fitzgerald. Perspectives on formal methods in the last 25 years.
Formal Aspects of Computing, 2006(2):13–33, 2006.

3. I.J. Hayes, C.B. Jones, and J.E. Nicholls. Understanding the differences
between VDM and Z. FACS FACTS, 2006(2):56–78, 2006.

4. C.B. Jones. The transition from VDL to VDM. JUCS, 7(8):631–640,
2001.

8 Leslie Lamport: The Specification Language TLA+

Stephan Merz describes the TLA logic in great detail and provides about as
good a description of TLA+ and how it can be used as is possible in a single
chapter. Here, I give a historical account of how I developed TLA and TLA+
that explains some of the design choices, and I briefly discuss how TLA+ is
used in practice.

Whence TLA

The logic TLA adds three things to the very simple temporal logic introduced
into computer science by Pnueli [4]:

• Invariance under stuttering.
• Temporal existential quantification.
• Taking as atomic formulas not just state predicates but also action formu-

las.

Here is what prompted these additions.
When Pnueli first introduced temporal logic to computer science in the

1970s, it was clear to me that it provided the right logic for expressing the
simple liveness properties of concurrent algorithms that were being considered
at the time and for formalizing their proofs. In the early 1980s, interest turned
from ad hoc properties of systems to complete specifications. The idea of
specifying a system as a conjunction of the temporal logic properties it should
satisfy seemed quite attractive [5]. However, it soon became obvious that this
approach does not work in practice. It is impossible to understand what a
conjunction of individual properties actually specifies. The only practical way
to specify non-trivial systems is to describe them as abstract state machines.
So, I started writing specifications as state machines, where the meaning of a
state machine was a temporal logic formula that described the set of all its
possible executions.

There is a basic problem with using a state machine as a specification.
Consider an hour clock—a clock that displays only the hour. Ignoring the
actual time that elapses between ticks, an hour clock is trivially specified by a
state machine that increments the hour with each step. This specification, or
any similar one, does not forbid the clock from showing minutes (or tempera-
ture or the phase of the moon). The specification should therefore be satisfied
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by a clock that shows both the hour and the minute. However, a naive state-
machine specification of the hour clock asserts that the hour changes with
every step, while an hour–minute clock changes the hour only on every 60th
step. This problem is solved by requiring invariance under stuttering. The
specification of the hour clock must allow any finite number of stuttering
steps—ones that leave the hour unchanged—between successive changes to
the hour. Steps of the hour–minute clock that change only the minute are
then stuttering steps allowed by the hour clock’s specification.

At the time, such state-machine specifications were criticized as being
overly specific. The state-machine specification of a FIFO queue I would have
written in those days would have been equivalent to the specification given
by module InternalFIFO in Merz’s Figure 4 (Section 3.5), though probably
written in a pseudo-programming language. Critics pointed out that a speci-
fication should only mention the interface variables in and out. The variable
q should not appear, since there is no reason why an implementation needs
to implement the required behavior with an explicit queue. The only way to
avoid all mention of q is to describe explicitly all the queue’s possible behav-
iors. To see how difficult this is, I urge the reader to try to write an informal
natural-language specification of a FIFO queue without mentioning the con-
tents of the queue. However, the criticism remained valid: a specification of
the queue should be in terms only of the variables in and out. The answer
was to hide internal state variables. Hiding a variable is expressed in temporal
logic by temporal existential quantification. The only (free) variables of the
specification Fifo in module FIFO of Merz’s Figure 4 are in and out.

The final step in the development of TLA came when I realized that taking
action formulas as the atomic formulas in Pnueli’s temporal logic made it easy
to describe state machines with temporal logic formulas. There was no need to
translate from a language for expressing state machines into temporal logic.
The state machine could be written directly as a temporal logic formula.

TLA has allowed me to better understand and to formalize many concepts
in concurrency. Merz discusses implementation as implication and composi-
tion as conjunction. The example that I find most compelling is reduction.
Reduction is the process of proving properties of a concurrent algorithm by
reasoning about a coarser-grained version. There are a number of theorems
and folk theorems stating when this is possible. For example, one reduction
folk theorem asserts that if shared variables are accessed only in mutually
exclusive critical sections, then we can pretend that the execution of an en-
tire critical section is a single atomic step. It was intuitively clear that these
results were all variations on one basic idea, but it was only with the aid of
TLA that I was able to understand reduction well enough to express that idea
as a single theorem that encompasses those prior results [1].



618 Dines Bjørner and Martin Henson (editors)

Whence TLA+

After deciding that TLA was the right way to describe and reason about
concurrent systems, my next step was to develop a complete specification
language based on it. Merz makes the simple idea of taking predicate logic
and (untyped) set theory as the logic of actions for TLA seem natural and
almost inevitable. In fact, it took me years to discard the usual concepts of
computer science to achieve the simplicity of TLA+. Here are two examples.

Like most computer scientists, I thought that assignment statements were
the natural way to describe state changes. I was skeptical when Jim Horning
suggested that I write x′ = x+1 instead of x := x+1. However, I tried it and
found that it worked quite well. Unlike most computer scientists, I realized
how much simpler x′ = x + 1 is than x := x + 1. The assignment state-
ment asserts that nothing but x changes—a concept that cannot be expressed
mathematically in any simple way. (Since there are an infinite number of pos-
sible variables and a mathematical formula can mention only a finite number
of them, a formula cannot assert that no variable other than x changes.) I
was therefore happy to eliminate assignment statements. Upon seeing TLA+,
almost every computer scientist suggests getting get rid of the unchanged

conjuncts, essentially by introducing assignment. Initially, I replied that this
would gain little, since removing the unchanged conjuncts would reduce the
size of most real specifications by less than 5%. I now point out that the ex-
plicit unchanged conjuncts provide valuable redundancy, allowing the model
checker to detect the common error of forgetting to specify the new value of
a variable.

Like most computer scientists, I assumed that a language should be typed.
When I realized that I could eliminate traditional types and let type correct-
ness be an invariant, Mart́ın Abadi encouraged me to do so. Only after I
took his advice and started writing untyped specifications did I realize how
complicated and constraining types are [2].

When I first started to think about a specification language for TLA, I
assumed it would need the usual kinds of programming-language constructs
favored by computer scientists. However, I didn’t know which ones. I therefore
decided to start with only TLA and simple mathematics, and to add other
constructs as I needed them. Somewhat to my surprise, I found that all I
needed were:

• A few constructs for writing mathematics formally, such as definitions and
an if/then/else operator.

• Variable declarations and name scoping, which led to the TLA+ module
structure.

Using TLA+

The initial motivation for TLA was to make completely formal, hierarchical
correctness proofs of concurrent systems as simple as possible. The develop-
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ment of TLA+ was motivated by the needs of engineers building large systems,
for which complete formal development is out of the question. Thus, the TLC
model checker was written about 6 years ago, while a project to develop a
mechanical proof checker for TLA+ is just starting. (This is in contrast to
B, which was developed for the complete mechanical verification of relatively
simple programs.)

The industrial TLA+ specifications I know of have mainly been high-level
descriptions of concurrent algorithms or protocols. They have been written
to debug the designs (with the aid of TLC) and to serve as documentation.
TLA+ specifications have also been used to improve testing of implementa-
tions. Randomly generated tests are notoriously inefficient at finding errors in
concurrent systems. It is much more effective to guide testing with behaviors
generated by TLC from the TLA+ specification [6].

My fundamental objective is to improve the design of systems by getting
engineers to think carefully about what they build. I have met with very
limited success. Most engineers are looking for tools that can find bugs au-
tomatically without requiring any thought. Such tools are useful, but good
systems are not built by removing the bugs from poorly designed ones. Thus
far, hardware engineers have been the most eager users of TLA+. They are
very concerned about errors and are accustomed to using formal tools.

A couple of years ago, I asked Brannon Batson, then a hardware designer
at Intel, why he used TLA+. He replied:

I get asked this question a lot. I randomly select between the following two
answers:
1. It saves a lot of effort to use a high-level language which easily mod-

els operations on complex data structures—i.e., select the subset of
elements in this set satisfying these conditions and apply this next
state equation, etc. Most languages achieve readability of such oper-
ations through function encapsulation and other information hiding
techniques. But information hiding is the last thing we want in a for-
mal specification. TLA+ provides a powerful set of operators (borrowed
from mathematics) which can be used to densely encode complex state-
ments in a readable fashion, without hiding information.

2. The next big frontier in computer engineering is algorithmic complex-
ity. In order to tackle this increasingly complex world, we need tools
and languages which augment human thought, not supplant it. TLA+
is a language which connects engineers to the underlying mathematics
of their design—providing insight which they otherwise wouldn’t have.

For an idea of the problems that face designers of complex systems, I recom-
mend trying to solve the Wildfire Challenge Problem [3].

1. Ernie Cohen and Leslie Lamport. Reduction in TLA. In David Sangiorgi
and Robert de Simone, editors, CONCUR’98 Concurrency Theory, vol-
ume 1466 of Lecture Notes in Computer Science, pages 317–331. Springer-
Verlag, 1998.
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9 James C.P. Woodcock: Z Logic and Its Applications

The chapter by Henson, Deutsch, and Reeves on Z logic and its applications
gives a suitably technical description of the Z notation from a logical view-
point. It assumes that the reader is familiar with the language, and gives an
authoritative account of the authors’ formalisation of the logical foundations
of Z and its theories of refinement. Having read this chapter and the rest of
the book, the reader will be struck by the diversity of the different specifi-
cation languages. So what more could I add as a reviewer asked to provide
a non-technical essay, taking the chapter as its departure point? How about
this?

In spite of their diversity, the specification languages in this book have

more in common than apparently separates them.

My short essay offers some evidence to support this claim.
Tony Hoare recruited me to his embryonic Verifying Compiler project [3]

when we lectured together at the Marktoberdorf Summer School in 2003.
The project has gradually turned into the Grand Challenge in Verified Soft-
ware [4], a worldwide association of researchers dedicated to advancing the
scientific principles of programming. We believe that a mature scientific dis-
cipline should set its own agenda and pursue ideals of purity, generality, and
accuracy far beyond current needs. Over the next 15 to 20 years, we want to
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collect a significant body of verified programs with precise external specifica-
tions, complete internal specifications, and machine-checked proofs of correct-
ness. These programs will replace existing unverified ones, and will continue
to evolve as verified code. This collection will constitute the Verified Software
Repository [1]. At the end of the project it will be clear to everyone what kind
of large industrial systems can be mechanically verified and how easily this
can be done.

The research road map and the goals of the Repository are described
elsewhere [2]. What I’d like to do is to describe briefly one of the experiments.
In January 2006, we launched the first pilot project: a year-long exercise to
demonstrate research collaboration and competition, and to generate artifacts
to populate the Repository. The task was to verify a key property of the
Mondex smart card for financial transactions, and in doing so to assess the
current state of proof mechanisation.

Mondex is an electronic purse hosted on a smart card. It was developed to
the high-assurance standard ITSEC Level E6 by a consortium led by NatWest,
a UK high-street bank. These purses interact using a communications device,
and strong guarantees are needed that transactions are secure. In spite of
power failures and mischievous attacks, we must guarantee that electronic cash
can’t be counterfeited. The transactions are completely distributed: there is
no centralised control, and all security measures locally implemented, without
any real-time external audit logging or monitoring. The original verification
was seriously security critical. Logica (with assistance from the University of
Oxford) used Z for the development process. We produced formal models of
the system and its abstract security policy, and made hand proofs that the
system design possesses the required security properties. The abstract security
policy specification is about 20 pages of Z and the concrete specification (of
an n-step protocol) is about 60 pages. The verification is suitable for the
independent evaluation needed for E6, and consists of about 200 pages of
refinement proof, with a further 100 pages of derivation of refinement rules.

The original hand proof was vital in getting the required certification; it
was also useful in finding and evaluating different models. In particular, the
original team made a key modelling discovery: an abstraction that gave a pre-
cise description of the security property and that explained why the protocol is
secure. It revealed a bug in the implementation of a secondary protocol, giving
a convincing counterexample. The challenge was to take a publicly available
version of the Mondex specification, designs, and proofs [5] and to investigate
the degree of automation that can now be achieved in the correctness proofs. It
was taken up by researchers working with specification languages described in
this book: ASM (Augsburg), Event-B (Southampton), Raise (Macao/DTU),
and Z (York). Other researchers used Alloy (MIT), OCL (Bremen), Perfect-
Developer (Escher Technologies), and the π-calculus (Newcastle).

The ASM group used the KIV specification and verification system to
produce an alternative formalisation of the communication protocol. They
produced a mechanical verification of the full Mondex case study, except tran-
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scription of failure logs to a central archive, which is orthogonal to the money-
transfer protocol. Their work was completed in just four weeks, although the
existence of a (nearly) correct refinement relation helped. The Event-B group
re-did the development from scratch using B4free. A key feature of this de-
velopment is the use of nine refinement levels. These small steps led to larger
numbers of verification conditions, but their resulting simplicity made their
discharge automatic. The Raise group verified their RSL specifications using
PVS. They created new models, viewing Mondex abstractly as a simple prob-
lem in accounting: no purses, no protocol messages, just bottom-line values
and money-transfer operations. The first refinement level introduces abstract
purses and concrete operations, but with no details of the mechanisms pre-
serving the asserted invariant. At the concrete level there are full details of the
value-transferring protocol. The Z group mechanised all the original models,
refinements, and proofs faithfully, without changing anything. The objective
was to show how the existing work could be automated without changing
things just to make life easier.

All four groups spent about the same amount of time mechanising their
developments, and they all found the same bugs in the system. These are
mostly to do with some missing properties in the intermediate design, permit-
ting operations involving inauthentic purses. The mechanisation of the proofs
turns out not to be the biggest problem in a development of this kind. In-
stead, the biggest problem is modelling: finding the right abstractions and
suitable invariants. And this was what united the eight groups working on
Mondex; the differences between the logics was rarely discussed. Instead, the
joint meetings during the project were exciting as 16 people got together to
discuss their work, exchanging ideas, models, and invariants, not debating
notational differences.

Future Repository projects will see different groups using each others’
notations and tools as we learn that there’s more uniting us than dividing us.
It’s the logical next step.

1. J. Bicarregui, C.A.R. Hoare, and J.C.P. Woodcock. The verified software
repository: a step towards the verifying compiler. Formal Aspects of Com-
puting 18(2):143–151 2006.

2. Verified Software Roadmap. qpq.csl.sri.com/vsr.
3. C.A.R. Hoare. The verifying compiler: A grand challenge for computing

research. Journal of ACM 50(1):63–69 2003.
4. C.B. Jones, P.W. O’Hearn, and Jim Woodcock. Verified Software: A

Grand Challenge. IEEE Computer 39(4):93–95 (2006).
5. S. Stepney, D. Cooper, and J.C.P. Woodcock. An Electronic Purse: Spec-

ification, Refinement, and Proof. Technical Monograph PRG-126, Pro-
gramming Research Group, Oxford University. (2000)



Reviews 623

10 Closing: Dines Bjørner and Martin C. Henson

The reader who makes it to this point will wish, with us, to extend heartfelt
thanks to all who made this book possible. Just now we must first say, to Yuri,
Jean-Raymond, Kokichi, Peter, Zhou, Klaus, Cliff, Leslie and Jim: thank you!
for your fascinating reflections.

The two weeks in Stara Lesna are now a three-year-old memory, but much
remembered with affection. We hope the memory lives on in the heads and
hearts of the wonderful students who attended. Each evening we celebrated a
day well-spent on study with excellent food and, if not Pilsner, then something
from a bottle brought by one of the participants (Irish whiskey from Dublin;
honeyed chilli vodka from the Ukraine, and so on). We all, students, presenters
and organizers alike, deserved it. And now, dear reader, so do you. Sit back,
put your feet up, empty your mind of all thoughts of category theory, higher-
order logic and the like, and sip on a Stara Lesna:

4-8 parts lemon vodka strong
1 part lime cordial sour
1 part lemon juice sour
1 part triple sec sweet
3 ice cubes cold

Blend and shake well before serving. If you made it with us to the end of the
book, then you really do deserve it!
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